design clan: 13_32_16
13-(32,16,m*3), 1 <= m <= 161; (144/2982) lambda_max=969, lambda_max_half=484
the clan contains 144 families:
- family 0, lambda = 3 containing 7 designs:
minpath=(0, 6, 0) minimal_t=3
-
7-(26,10,3)
-
6-(26,10,15) 6-(25,10,12)
6-(25,9,3)
-
5-(26,10,63) (#6350) 5-(25,10,48) (#6349) 5-(24,10,36) (#1429)
5-(25,9,15) (#6348) 5-(24,9,12) (#6347)
5-(24,8,3) (#5507)
-
4-(26,10,231) 4-(25,10,168) 4-(24,10,120) 4-(23,10,84)
4-(25,9,63) 4-(24,9,48) 4-(23,9,36)
4-(24,8,15) 4-(23,8,12)
4-(23,7,3)
-
3-(26,10,759) 3-(25,10,528) 3-(24,10,360) 3-(23,10,240) 3-(22,10,156)
3-(25,9,231) 3-(24,9,168) 3-(23,9,120) 3-(22,9,84) (#13)
3-(24,8,63) 3-(23,8,48) 3-(22,8,36)
3-(23,7,15) 3-(22,7,12)
3-(22,6,3)
- family 1, lambda = 6 containing 3 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,6)
-
8-(28,12,30) 8-(27,12,24)
8-(27,11,6)
-
7-(28,12,126) 7-(27,12,96) 7-(26,12,72)
7-(27,11,30) 7-(26,11,24)
7-(26,10,6)
-
6-(28,12,462) 6-(27,12,336) 6-(26,12,240) 6-(25,12,168)
6-(27,11,126) 6-(26,11,96) 6-(25,11,72)
6-(26,10,30) 6-(25,10,24)
6-(25,9,6)
-
5-(28,12,1518) 5-(27,12,1056) 5-(26,12,720) 5-(25,12,480) 5-(24,12,312) (#4435)
5-(27,11,462) 5-(26,11,336) 5-(25,11,240) 5-(24,11,168)
5-(26,10,126) 5-(25,10,96) 5-(24,10,72) (#1571)
5-(25,9,30) 5-(24,9,24)
5-(24,8,6) (#5858)
- family 2, lambda = 9 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,9)
-
6-(26,10,45) 6-(25,10,36)
6-(25,9,9)
-
5-(26,10,189) (#7047) 5-(25,10,144) (#7046) 5-(24,10,108) (#1279)
5-(25,9,45) (#7045) 5-(24,9,36) (#7044)
5-(24,8,9) (#6179)
- family 3, lambda = 12 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,12)
-
12-(32,16,60) 12-(31,16,48)
12-(31,15,12)
-
11-(32,16,252) 11-(31,16,192) 11-(30,16,144)
11-(31,15,60) 11-(30,15,48)
11-(30,14,12)
-
10-(32,16,924) 10-(31,16,672) 10-(30,16,480) 10-(29,16,336)
10-(31,15,252) 10-(30,15,192) 10-(29,15,144)
10-(30,14,60) 10-(29,14,48)
10-(29,13,12)
-
9-(32,16,3036) 9-(31,16,2112) 9-(30,16,1440) 9-(29,16,960) 9-(28,16,624)
9-(31,15,924) 9-(30,15,672) 9-(29,15,480) 9-(28,15,336)
9-(30,14,252) 9-(29,14,192) 9-(28,14,144)
9-(29,13,60) 9-(28,13,48)
9-(28,12,12)
-
8-(32,16,9108) 8-(31,16,6072) 8-(30,16,3960) 8-(29,16,2520) 8-(28,16,1560) 8-(27,16,936)
8-(31,15,3036) 8-(30,15,2112) 8-(29,15,1440) 8-(28,15,960) 8-(27,15,624)
8-(30,14,924) 8-(29,14,672) 8-(28,14,480) 8-(27,14,336)
8-(29,13,252) 8-(28,13,192) 8-(27,13,144)
8-(28,12,60) 8-(27,12,48)
8-(27,11,12)
-
7-(32,16,25300) 7-(31,16,16192) 7-(30,16,10120) 7-(29,16,6160) 7-(28,16,3640) 7-(27,16,2080) 7-(26,16,1144)
7-(31,15,9108) 7-(30,15,6072) 7-(29,15,3960) 7-(28,15,2520) 7-(27,15,1560) 7-(26,15,936)
7-(30,14,3036) 7-(29,14,2112) 7-(28,14,1440) 7-(27,14,960) 7-(26,14,624)
7-(29,13,924) 7-(28,13,672) 7-(27,13,480) 7-(26,13,336)
7-(28,12,252) 7-(27,12,192) 7-(26,12,144)
7-(27,11,60) 7-(26,11,48)
7-(26,10,12)
-
6-(32,16,65780) 6-(31,16,40480) 6-(30,16,24288) 6-(29,16,14168) 6-(28,16,8008) 6-(27,16,4368) 6-(26,16,2288) 6-(25,16,1144)
6-(31,15,25300) 6-(30,15,16192) 6-(29,15,10120) 6-(28,15,6160) 6-(27,15,3640) 6-(26,15,2080) 6-(25,15,1144)
6-(30,14,9108) 6-(29,14,6072) 6-(28,14,3960) 6-(27,14,2520) 6-(26,14,1560) 6-(25,14,936)
6-(29,13,3036) 6-(28,13,2112) 6-(27,13,1440) 6-(26,13,960) 6-(25,13,624)
6-(28,12,924) 6-(27,12,672) 6-(26,12,480) 6-(25,12,336)
6-(27,11,252) 6-(26,11,192) 6-(25,11,144)
6-(26,10,60) 6-(25,10,48)
6-(25,9,12)
-
5-(32,16,161460) (#7156) 5-(31,16,95680) 5-(30,16,55200) 5-(29,16,30912) 5-(28,16,16744) 5-(27,16,8736) 5-(26,16,4368) 5-(25,16,2080) 5-(24,16,936)
5-(31,15,65780) (#7155) 5-(30,15,40480) (#7154) 5-(29,15,24288) 5-(28,15,14168) 5-(27,15,8008) 5-(26,15,4368) 5-(25,15,2288) 5-(24,15,1144)
5-(30,14,25300) (#7153) 5-(29,14,16192) (#7152) 5-(28,14,10120) (#4635) 5-(27,14,6160) 5-(26,14,3640) 5-(25,14,2080) 5-(24,14,1144)
5-(29,13,9108) (#7151) 5-(28,13,6072) (#7150) 5-(27,13,3960) (#4634) 5-(26,13,2520) (#4632) 5-(25,13,1560) 5-(24,13,936)
5-(28,12,3036) (#7149) 5-(27,12,2112) (#7148) 5-(26,12,1440) (#4633) 5-(25,12,960) (#4631) 5-(24,12,624) (#4630)
5-(27,11,924) (#7147) 5-(26,11,672) (#7146) 5-(25,11,480) (#1620) 5-(24,11,336) (#1619)
5-(26,10,252) (#7145) 5-(25,10,192) (#7144) 5-(24,10,144) (#1300)
5-(25,9,60) (#7143) 5-(24,9,48) (#7142)
5-(24,8,12) (#5261)
- family 4, lambda = 15 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,15)
-
6-(26,10,75) 6-(25,10,60)
6-(25,9,15)
-
5-(26,10,315) (#7255) 5-(25,10,240) (#7254) 5-(24,10,180) (#1322)
5-(25,9,75) (#7253) 5-(24,9,60) (#7252)
5-(24,8,15) (#5264)
- family 5, lambda = 18 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,18)
-
6-(26,10,90) 6-(25,10,72)
6-(25,9,18)
-
5-(26,10,378) (#7368) 5-(25,10,288) (#7367) 5-(24,10,216) (#1343)
5-(25,9,90) (#7366) 5-(24,9,72) (#7365)
5-(24,8,18) (#5363)
- family 6, lambda = 21 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,21)
-
6-(26,10,105) 6-(25,10,84)
6-(25,9,21)
-
5-(26,10,441) (#7459) 5-(25,10,336) (#7458) 5-(24,10,252) (#1365)
5-(25,9,105) (#7457) 5-(24,9,84) (#7456)
5-(24,8,21) (#5400)
- family 7, lambda = 24 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,24)
-
6-(26,10,120) 6-(25,10,96)
6-(25,9,24)
-
5-(26,10,504) (#7557) 5-(25,10,384) (#7556) 5-(24,10,288) (#1387)
5-(25,9,120) (#7555) 5-(24,9,96) (#7554)
5-(24,8,24) (#5435)
- family 8, lambda = 27 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,27)
-
6-(26,10,135) 6-(25,10,108)
6-(25,9,27)
-
5-(26,10,567) (#6251) 5-(25,10,432) (#6250) 5-(24,10,324) (#1408)
5-(25,9,135) (#6249) 5-(24,9,108) (#6248)
5-(24,8,27) (#5470)
- family 9, lambda = 30 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,30)
-
6-(26,10,150) 6-(25,10,120)
6-(25,9,30)
-
5-(26,10,630) (#6354) 5-(25,10,480) (#6353) 5-(24,10,360) (#1430)
5-(25,9,150) (#6352) 5-(24,9,120) (#6351)
5-(24,8,30) (#5508)
- family 10, lambda = 33 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,33)
-
12-(32,16,165) 12-(31,16,132)
12-(31,15,33)
-
11-(32,16,693) 11-(31,16,528) 11-(30,16,396)
11-(31,15,165) 11-(30,15,132)
11-(30,14,33)
-
10-(32,16,2541) 10-(31,16,1848) 10-(30,16,1320) 10-(29,16,924)
10-(31,15,693) 10-(30,15,528) 10-(29,15,396)
10-(30,14,165) 10-(29,14,132)
10-(29,13,33)
-
9-(32,16,8349) 9-(31,16,5808) 9-(30,16,3960) 9-(29,16,2640) 9-(28,16,1716)
9-(31,15,2541) 9-(30,15,1848) 9-(29,15,1320) 9-(28,15,924)
9-(30,14,693) 9-(29,14,528) 9-(28,14,396)
9-(29,13,165) 9-(28,13,132)
9-(28,12,33)
-
8-(32,16,25047) 8-(31,16,16698) 8-(30,16,10890) 8-(29,16,6930) 8-(28,16,4290) 8-(27,16,2574)
8-(31,15,8349) 8-(30,15,5808) 8-(29,15,3960) 8-(28,15,2640) 8-(27,15,1716)
8-(30,14,2541) 8-(29,14,1848) 8-(28,14,1320) 8-(27,14,924)
8-(29,13,693) 8-(28,13,528) 8-(27,13,396)
8-(28,12,165) 8-(27,12,132)
8-(27,11,33)
-
7-(32,16,69575) 7-(31,16,44528) 7-(30,16,27830) 7-(29,16,16940) 7-(28,16,10010) 7-(27,16,5720) 7-(26,16,3146)
7-(31,15,25047) 7-(30,15,16698) 7-(29,15,10890) 7-(28,15,6930) 7-(27,15,4290) 7-(26,15,2574)
7-(30,14,8349) 7-(29,14,5808) 7-(28,14,3960) 7-(27,14,2640) 7-(26,14,1716)
7-(29,13,2541) 7-(28,13,1848) 7-(27,13,1320) 7-(26,13,924)
7-(28,12,693) 7-(27,12,528) 7-(26,12,396)
7-(27,11,165) 7-(26,11,132)
7-(26,10,33)
-
6-(32,16,180895) 6-(31,16,111320) 6-(30,16,66792) 6-(29,16,38962) 6-(28,16,22022) 6-(27,16,12012) 6-(26,16,6292) 6-(25,16,3146)
6-(31,15,69575) 6-(30,15,44528) 6-(29,15,27830) 6-(28,15,16940) 6-(27,15,10010) 6-(26,15,5720) 6-(25,15,3146)
6-(30,14,25047) 6-(29,14,16698) 6-(28,14,10890) 6-(27,14,6930) 6-(26,14,4290) 6-(25,14,2574)
6-(29,13,8349) 6-(28,13,5808) 6-(27,13,3960) 6-(26,13,2640) 6-(25,13,1716)
6-(28,12,2541) 6-(27,12,1848) 6-(26,12,1320) 6-(25,12,924)
6-(27,11,693) 6-(26,11,528) 6-(25,11,396)
6-(26,10,165) 6-(25,10,132)
6-(25,9,33)
-
5-(32,16,444015) (#6456) 5-(31,16,263120) 5-(30,16,151800) 5-(29,16,85008) 5-(28,16,46046) 5-(27,16,24024) 5-(26,16,12012) 5-(25,16,5720) 5-(24,16,2574)
5-(31,15,180895) (#6455) 5-(30,15,111320) (#6454) 5-(29,15,66792) 5-(28,15,38962) 5-(27,15,22022) 5-(26,15,12012) 5-(25,15,6292) 5-(24,15,3146)
5-(30,14,69575) (#6453) 5-(29,14,44528) (#6452) 5-(28,14,27830) (#2989) 5-(27,14,16940) 5-(26,14,10010) 5-(25,14,5720) 5-(24,14,3146)
5-(29,13,25047) (#6451) 5-(28,13,16698) (#6450) 5-(27,13,10890) (#2988) 5-(26,13,6930) (#2986) 5-(25,13,4290) 5-(24,13,2574)
5-(28,12,8349) (#6449) 5-(27,12,5808) (#6448) 5-(26,12,3960) (#2987) 5-(25,12,2640) (#2985) 5-(24,12,1716) (#2984)
5-(27,11,2541) (#6447) 5-(26,11,1848) (#6446) 5-(25,11,1320) (#1676) 5-(24,11,924) (#1675)
5-(26,10,693) (#6445) 5-(25,10,528) (#6444) 5-(24,10,396) (#1452)
5-(25,9,165) (#6443) 5-(24,9,132) (#6442)
5-(24,8,33) (#5544)
- family 11, lambda = 36 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,36)
-
6-(26,10,180) 6-(25,10,144)
6-(25,9,36)
-
5-(26,10,756) (#6558) 5-(25,10,576) (#6557) 5-(24,10,432) (#1474)
5-(25,9,180) (#6556) 5-(24,9,144) (#6555)
5-(24,8,36) (#5581)
- family 12, lambda = 39 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,39)
-
8-(28,12,195) 8-(27,12,156)
8-(27,11,39)
-
7-(28,12,819) 7-(27,12,624) 7-(26,12,468)
7-(27,11,195) 7-(26,11,156)
7-(26,10,39)
-
6-(28,12,3003) 6-(27,12,2184) 6-(26,12,1560) 6-(25,12,1092)
6-(27,11,819) 6-(26,11,624) 6-(25,11,468)
6-(26,10,195) 6-(25,10,156)
6-(25,9,39)
-
5-(28,12,9867) 5-(27,12,6864) 5-(26,12,4680) 5-(25,12,3120) 5-(24,12,2028) (#3555)
5-(27,11,3003) 5-(26,11,2184) 5-(25,11,1560) 5-(24,11,1092)
5-(26,10,819) (#6651) 5-(25,10,624) (#6650) 5-(24,10,468) (#1495)
5-(25,9,195) (#6649) 5-(24,9,156) (#6648)
5-(24,8,39) (#5615)
- family 13, lambda = 42 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,42)
-
6-(26,10,210) 6-(25,10,168)
6-(25,9,42)
-
5-(26,10,882) (#6747) 5-(25,10,672) (#6746) 5-(24,10,504) (#1517)
5-(25,9,210) (#6745) 5-(24,9,168) (#6744)
5-(24,8,42) (#5652)
- family 14, lambda = 45 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,45)
-
12-(32,16,225) 12-(31,16,180)
12-(31,15,45)
-
11-(32,16,945) 11-(31,16,720) 11-(30,16,540)
11-(31,15,225) 11-(30,15,180)
11-(30,14,45)
-
10-(32,16,3465) 10-(31,16,2520) 10-(30,16,1800) 10-(29,16,1260)
10-(31,15,945) 10-(30,15,720) 10-(29,15,540)
10-(30,14,225) 10-(29,14,180)
10-(29,13,45)
-
9-(32,16,11385) 9-(31,16,7920) 9-(30,16,5400) 9-(29,16,3600) 9-(28,16,2340)
9-(31,15,3465) 9-(30,15,2520) 9-(29,15,1800) 9-(28,15,1260)
9-(30,14,945) 9-(29,14,720) 9-(28,14,540)
9-(29,13,225) 9-(28,13,180)
9-(28,12,45)
-
8-(32,16,34155) 8-(31,16,22770) 8-(30,16,14850) 8-(29,16,9450) 8-(28,16,5850) 8-(27,16,3510)
8-(31,15,11385) 8-(30,15,7920) 8-(29,15,5400) 8-(28,15,3600) 8-(27,15,2340)
8-(30,14,3465) 8-(29,14,2520) 8-(28,14,1800) 8-(27,14,1260)
8-(29,13,945) 8-(28,13,720) 8-(27,13,540)
8-(28,12,225) 8-(27,12,180)
8-(27,11,45)
-
7-(32,16,94875) 7-(31,16,60720) 7-(30,16,37950) 7-(29,16,23100) 7-(28,16,13650) 7-(27,16,7800) 7-(26,16,4290)
7-(31,15,34155) 7-(30,15,22770) 7-(29,15,14850) 7-(28,15,9450) 7-(27,15,5850) 7-(26,15,3510)
7-(30,14,11385) 7-(29,14,7920) 7-(28,14,5400) 7-(27,14,3600) 7-(26,14,2340)
7-(29,13,3465) 7-(28,13,2520) 7-(27,13,1800) 7-(26,13,1260)
7-(28,12,945) 7-(27,12,720) 7-(26,12,540)
7-(27,11,225) 7-(26,11,180)
7-(26,10,45)
-
6-(32,16,246675) 6-(31,16,151800) 6-(30,16,91080) 6-(29,16,53130) 6-(28,16,30030) 6-(27,16,16380) 6-(26,16,8580) 6-(25,16,4290)
6-(31,15,94875) 6-(30,15,60720) 6-(29,15,37950) 6-(28,15,23100) 6-(27,15,13650) 6-(26,15,7800) 6-(25,15,4290)
6-(30,14,34155) 6-(29,14,22770) 6-(28,14,14850) 6-(27,14,9450) 6-(26,14,5850) 6-(25,14,3510)
6-(29,13,11385) 6-(28,13,7920) 6-(27,13,5400) 6-(26,13,3600) 6-(25,13,2340)
6-(28,12,3465) 6-(27,12,2520) 6-(26,12,1800) 6-(25,12,1260)
6-(27,11,945) 6-(26,11,720) 6-(25,11,540)
6-(26,10,225) 6-(25,10,180)
6-(25,9,45)
-
5-(32,16,605475) (#6822) 5-(31,16,358800) 5-(30,16,207000) 5-(29,16,115920) 5-(28,16,62790) 5-(27,16,32760) 5-(26,16,16380) 5-(25,16,7800) 5-(24,16,3510)
5-(31,15,246675) (#6821) 5-(30,15,151800) (#6820) 5-(29,15,91080) 5-(28,15,53130) 5-(27,15,30030) 5-(26,15,16380) 5-(25,15,8580) 5-(24,15,4290)
5-(30,14,94875) (#6819) 5-(29,14,60720) (#6818) 5-(28,14,37950) (#4095) 5-(27,14,23100) 5-(26,14,13650) 5-(25,14,7800) 5-(24,14,4290)
5-(29,13,34155) (#6817) 5-(28,13,22770) (#6816) 5-(27,13,14850) (#4094) 5-(26,13,9450) (#4092) 5-(25,13,5850) 5-(24,13,3510)
5-(28,12,11385) (#6815) 5-(27,12,7920) (#6814) 5-(26,12,5400) (#4093) 5-(25,12,3600) (#4091) 5-(24,12,2340) (#4090)
5-(27,11,3465) (#6813) 5-(26,11,2520) (#6812) 5-(25,11,1800) (#1600) 5-(24,11,1260) (#1599)
5-(26,10,945) (#6811) 5-(25,10,720) (#6810) 5-(24,10,540) (#1538)
5-(25,9,225) (#6809) 5-(24,9,180) (#6808)
5-(24,8,45) (#5687)
- family 15, lambda = 48 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,48)
-
6-(26,10,240) 6-(25,10,192)
6-(25,9,48)
-
5-(26,10,1008) (#6903) 5-(25,10,768) (#6902) 5-(24,10,576) (#1559)
5-(25,9,240) (#6901) 5-(24,9,192) (#6900)
5-(24,8,48) (#5723)
- family 16, lambda = 54 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,54)
-
6-(26,10,270) 6-(25,10,216)
6-(25,9,54)
-
5-(26,10,1134) (#6936) 5-(25,10,864) (#6935) 5-(24,10,648) (#1567)
5-(25,9,270) (#6934) 5-(24,9,216) (#6933)
5-(24,8,54) (#5792)
- family 17, lambda = 60 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,60)
-
6-(26,10,300) 6-(25,10,240)
6-(25,9,60)
-
5-(26,10,1260) (#6950) 5-(25,10,960) (#6949) 5-(24,10,720) (#1572)
5-(25,9,300) (#6948) 5-(24,9,240) (#6947)
5-(24,8,60) (#5859)
- family 18, lambda = 63 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,63)
-
6-(26,10,315) 6-(25,10,252)
6-(25,9,63)
-
5-(26,10,1323) (#6961) 5-(25,10,1008) (#6960) 5-(24,10,756) (#1574)
5-(25,9,315) (#6959) 5-(24,9,252) (#6958)
5-(24,8,63) (#5892)
- family 19, lambda = 66 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,66)
-
12-(32,16,330) 12-(31,16,264)
12-(31,15,66)
-
11-(32,16,1386) 11-(31,16,1056) 11-(30,16,792)
11-(31,15,330) 11-(30,15,264)
11-(30,14,66)
-
10-(32,16,5082) 10-(31,16,3696) 10-(30,16,2640) 10-(29,16,1848)
10-(31,15,1386) 10-(30,15,1056) 10-(29,15,792)
10-(30,14,330) 10-(29,14,264)
10-(29,13,66)
-
9-(32,16,16698) 9-(31,16,11616) 9-(30,16,7920) 9-(29,16,5280) 9-(28,16,3432)
9-(31,15,5082) 9-(30,15,3696) 9-(29,15,2640) 9-(28,15,1848)
9-(30,14,1386) 9-(29,14,1056) 9-(28,14,792)
9-(29,13,330) 9-(28,13,264)
9-(28,12,66)
-
8-(32,16,50094) 8-(31,16,33396) 8-(30,16,21780) 8-(29,16,13860) 8-(28,16,8580) 8-(27,16,5148)
8-(31,15,16698) 8-(30,15,11616) 8-(29,15,7920) 8-(28,15,5280) 8-(27,15,3432)
8-(30,14,5082) 8-(29,14,3696) 8-(28,14,2640) 8-(27,14,1848)
8-(29,13,1386) 8-(28,13,1056) 8-(27,13,792)
8-(28,12,330) 8-(27,12,264)
8-(27,11,66)
-
7-(32,16,139150) 7-(31,16,89056) 7-(30,16,55660) 7-(29,16,33880) 7-(28,16,20020) 7-(27,16,11440) 7-(26,16,6292)
7-(31,15,50094) 7-(30,15,33396) 7-(29,15,21780) 7-(28,15,13860) 7-(27,15,8580) 7-(26,15,5148)
7-(30,14,16698) 7-(29,14,11616) 7-(28,14,7920) 7-(27,14,5280) 7-(26,14,3432)
7-(29,13,5082) 7-(28,13,3696) 7-(27,13,2640) 7-(26,13,1848)
7-(28,12,1386) 7-(27,12,1056) 7-(26,12,792)
7-(27,11,330) 7-(26,11,264)
7-(26,10,66)
-
6-(32,16,361790) 6-(31,16,222640) 6-(30,16,133584) 6-(29,16,77924) 6-(28,16,44044) 6-(27,16,24024) 6-(26,16,12584) 6-(25,16,6292)
6-(31,15,139150) 6-(30,15,89056) 6-(29,15,55660) 6-(28,15,33880) 6-(27,15,20020) 6-(26,15,11440) 6-(25,15,6292)
6-(30,14,50094) 6-(29,14,33396) 6-(28,14,21780) 6-(27,14,13860) 6-(26,14,8580) 6-(25,14,5148)
6-(29,13,16698) 6-(28,13,11616) 6-(27,13,7920) 6-(26,13,5280) 6-(25,13,3432)
6-(28,12,5082) 6-(27,12,3696) 6-(26,12,2640) 6-(25,12,1848)
6-(27,11,1386) 6-(26,11,1056) 6-(25,11,792)
6-(26,10,330) 6-(25,10,264)
6-(25,9,66)
-
5-(32,16,888030) (#6978) 5-(31,16,526240) 5-(30,16,303600) 5-(29,16,170016) 5-(28,16,92092) 5-(27,16,48048) 5-(26,16,24024) 5-(25,16,11440) 5-(24,16,5148)
5-(31,15,361790) (#6977) 5-(30,15,222640) (#6976) 5-(29,15,133584) 5-(28,15,77924) 5-(27,15,44044) 5-(26,15,24024) 5-(25,15,12584) 5-(24,15,6292)
5-(30,14,139150) (#6975) 5-(29,14,89056) (#6974) 5-(28,14,55660) (#4461) 5-(27,14,33880) 5-(26,14,20020) 5-(25,14,11440) 5-(24,14,6292)
5-(29,13,50094) (#6973) 5-(28,13,33396) (#6972) 5-(27,13,21780) (#4460) 5-(26,13,13860) (#4458) 5-(25,13,8580) 5-(24,13,5148)
5-(28,12,16698) (#6971) 5-(27,12,11616) (#6970) 5-(26,12,7920) (#4459) 5-(25,12,5280) (#4457) 5-(24,12,3432) (#4456)
5-(27,11,5082) (#6969) 5-(26,11,3696) (#6968) 5-(25,11,2640) (#1606) 5-(24,11,1848) (#1605)
5-(26,10,1386) (#6967) 5-(25,10,1056) (#6966) 5-(24,10,792) (#1576)
5-(25,9,330) (#6965) 5-(24,9,264) (#6964)
5-(24,8,66) (#5925)
- family 20, lambda = 69 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,69)
-
6-(26,10,345) 6-(25,10,276)
6-(25,9,69)
-
5-(26,10,1449) (#6984) 5-(25,10,1104) (#6983) 5-(24,10,828) (#1578)
5-(25,9,345) (#6982) 5-(24,9,276) (#6981)
5-(24,8,69) (#5959)
- family 21, lambda = 72 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,72)
-
10-(30,14,360) 10-(29,14,288)
10-(29,13,72)
-
9-(30,14,1512) 9-(29,14,1152) 9-(28,14,864)
9-(29,13,360) 9-(28,13,288)
9-(28,12,72)
-
8-(30,14,5544) 8-(29,14,4032) 8-(28,14,2880) 8-(27,14,2016)
8-(29,13,1512) 8-(28,13,1152) 8-(27,13,864)
8-(28,12,360) 8-(27,12,288)
8-(27,11,72)
-
7-(30,14,18216) 7-(29,14,12672) 7-(28,14,8640) (#11568) 7-(27,14,5760) 7-(26,14,3744)
7-(29,13,5544) 7-(28,13,4032) 7-(27,13,2880) 7-(26,13,2016)
7-(28,12,1512) 7-(27,12,1152) 7-(26,12,864)
7-(27,11,360) 7-(26,11,288)
7-(26,10,72)
-
6-(30,14,54648) 6-(29,14,36432) 6-(28,14,23760) (#11567) 6-(27,14,15120) (#11576) 6-(26,14,9360) 6-(25,14,5616)
6-(29,13,18216) 6-(28,13,12672) 6-(27,13,8640) (#11563) 6-(26,13,5760) 6-(25,13,3744)
6-(28,12,5544) 6-(27,12,4032) 6-(26,12,2880) 6-(25,12,2016)
6-(27,11,1512) 6-(26,11,1152) 6-(25,11,864)
6-(26,10,360) 6-(25,10,288)
6-(25,9,72)
-
5-(30,14,151800) 5-(29,14,97152) 5-(28,14,60720) (#11572) 5-(27,14,36960) (#11573) 5-(26,14,21840) (#11580) 5-(25,14,12480) 5-(24,14,6864)
5-(29,13,54648) 5-(28,13,36432) 5-(27,13,23760) (#11564) 5-(26,13,15120) (#11566) 5-(25,13,9360) 5-(24,13,5616)
5-(28,12,18216) 5-(27,12,12672) 5-(26,12,8640) (#11565) 5-(25,12,5760) 5-(24,12,3744) (#4476)
5-(27,11,5544) 5-(26,11,4032) 5-(25,11,2880) 5-(24,11,2016)
5-(26,10,1512) (#6990) 5-(25,10,1152) (#6989) 5-(24,10,864) (#1580)
5-(25,9,360) (#6988) 5-(24,9,288) (#6987)
5-(24,8,72) (#5993)
- family 22, lambda = 75 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,75)
-
6-(26,10,375) 6-(25,10,300)
6-(25,9,75)
-
5-(26,10,1575) (#6996) 5-(25,10,1200) (#6995) 5-(24,10,900) (#1583)
5-(25,9,375) (#6994) 5-(24,9,300) (#6993)
5-(24,8,75) (#6026)
- family 23, lambda = 78 containing 39 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,78)
-
12-(32,16,390) 12-(31,16,312)
12-(31,15,78)
-
11-(32,16,1638) 11-(31,16,1248) 11-(30,16,936)
11-(31,15,390) 11-(30,15,312)
11-(30,14,78)
-
10-(32,16,6006) 10-(31,16,4368) 10-(30,16,3120) 10-(29,16,2184)
10-(31,15,1638) 10-(30,15,1248) 10-(29,15,936)
10-(30,14,390) 10-(29,14,312)
10-(29,13,78)
-
9-(32,16,19734) 9-(31,16,13728) 9-(30,16,9360) 9-(29,16,6240) 9-(28,16,4056)
9-(31,15,6006) 9-(30,15,4368) 9-(29,15,3120) 9-(28,15,2184)
9-(30,14,1638) 9-(29,14,1248) 9-(28,14,936)
9-(29,13,390) 9-(28,13,312)
9-(28,12,78)
-
8-(32,16,59202) 8-(31,16,39468) 8-(30,16,25740) 8-(29,16,16380) 8-(28,16,10140) 8-(27,16,6084)
8-(31,15,19734) 8-(30,15,13728) 8-(29,15,9360) 8-(28,15,6240) 8-(27,15,4056)
8-(30,14,6006) 8-(29,14,4368) 8-(28,14,3120) 8-(27,14,2184)
8-(29,13,1638) 8-(28,13,1248) 8-(27,13,936)
8-(28,12,390) 8-(27,12,312)
8-(27,11,78)
-
7-(32,16,164450) 7-(31,16,105248) 7-(30,16,65780) 7-(29,16,40040) 7-(28,16,23660) 7-(27,16,13520) 7-(26,16,7436)
7-(31,15,59202) 7-(30,15,39468) (#11600) 7-(29,15,25740) 7-(28,15,16380) 7-(27,15,10140) 7-(26,15,6084)
7-(30,14,19734) 7-(29,14,13728) 7-(28,14,9360) (#11585) 7-(27,14,6240) 7-(26,14,4056)
7-(29,13,6006) 7-(28,13,4368) 7-(27,13,3120) 7-(26,13,2184)
7-(28,12,1638) 7-(27,12,1248) 7-(26,12,936)
7-(27,11,390) 7-(26,11,312)
7-(26,10,78)
-
6-(32,16,427570) 6-(31,16,263120) 6-(30,16,157872) 6-(29,16,92092) 6-(28,16,52052) 6-(27,16,28392) 6-(26,16,14872) 6-(25,16,7436)
6-(31,15,164450) 6-(30,15,105248) (#11599) 6-(29,15,65780) (#11607) 6-(28,15,40040) 6-(27,15,23660) 6-(26,15,13520) 6-(25,15,7436)
6-(30,14,59202) 6-(29,14,39468) (#11592) 6-(28,14,25740) (#11584) 6-(27,14,16380) (#11593) 6-(26,14,10140) 6-(25,14,6084)
6-(29,13,19734) 6-(28,13,13728) (#11588) 6-(27,13,9360) (#11583) 6-(26,13,6240) 6-(25,13,4056)
6-(28,12,6006) 6-(27,12,4368) (#10890) 6-(26,12,3120) 6-(25,12,2184)
6-(27,11,1638) 6-(26,11,1248) 6-(25,11,936)
6-(26,10,390) 6-(25,10,312)
6-(25,9,78)
-
5-(32,16,1049490) (#7013) 5-(31,16,621920) 5-(30,16,358800) 5-(29,16,200928) 5-(28,16,108836) 5-(27,16,56784) 5-(26,16,28392) 5-(25,16,13520) 5-(24,16,6084)
5-(31,15,427570) (#7012) 5-(30,15,263120) (#7011) 5-(29,15,157872) (#11605) 5-(28,15,92092) (#11611) 5-(27,15,52052) 5-(26,15,28392) 5-(25,15,14872) 5-(24,15,7436)
5-(30,14,164450) (#7010) 5-(29,14,105248) (#7009) 5-(28,14,65780) (#4496) 5-(27,14,40040) (#11589) 5-(26,14,23660) (#11601) 5-(25,14,13520) 5-(24,14,7436)
5-(29,13,59202) (#7008) 5-(28,13,39468) (#7007) 5-(27,13,25740) (#4495) 5-(26,13,16380) (#4493) 5-(25,13,10140) 5-(24,13,6084)
5-(28,12,19734) (#7006) 5-(27,12,13728) (#7005) 5-(26,12,9360) (#4494) 5-(25,12,6240) (#4492) 5-(24,12,4056) (#4491)
5-(27,11,6006) (#7004) 5-(26,11,4368) (#7003) 5-(25,11,3120) (#1608) 5-(24,11,2184) (#1607)
5-(26,10,1638) (#7002) 5-(25,10,1248) (#7001) 5-(24,10,936) (#1585)
5-(25,9,390) (#7000) 5-(24,9,312) (#6999)
5-(24,8,78) (#6059)
- family 24, lambda = 81 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,81)
-
8-(28,12,405) 8-(27,12,324)
8-(27,11,81)
-
7-(28,12,1701) 7-(27,12,1296) 7-(26,12,972)
7-(27,11,405) 7-(26,11,324)
7-(26,10,81)
-
6-(28,12,6237) (#10899) 6-(27,12,4536) (#10894) 6-(26,12,3240) 6-(25,12,2268)
6-(27,11,1701) (#10617) 6-(26,11,1296) 6-(25,11,972)
6-(26,10,405) 6-(25,10,324)
6-(25,9,81)
-
5-(28,12,20493) (#10900) 5-(27,12,14256) (#10895) 5-(26,12,9720) (#10896) 5-(25,12,6480) 5-(24,12,4212)
5-(27,11,6237) (#10618) 5-(26,11,4536) (#10619) 5-(25,11,3240) 5-(24,11,2268)
5-(26,10,1701) (#7019) 5-(25,10,1296) (#7018) 5-(24,10,972) (#1587)
5-(25,9,405) (#7017) 5-(24,9,324) (#7016)
5-(24,8,81) (#6093)
- family 25, lambda = 84 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,84)
-
6-(26,10,420) 6-(25,10,336)
6-(25,9,84)
-
5-(26,10,1764) (#7030) 5-(25,10,1344) (#7029) 5-(24,10,1008) (#1276)
5-(25,9,420) (#7028) 5-(24,9,336) (#7027)
5-(24,8,84) (#6126)
- family 26, lambda = 87 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,87)
-
6-(26,10,435) 6-(25,10,348)
6-(25,9,87)
-
5-(26,10,1827) (#7041) 5-(25,10,1392) (#7040) 5-(24,10,1044) (#1277)
5-(25,9,435) (#7039) 5-(24,9,348) (#7038)
5-(24,8,87) (#6160)
- family 27, lambda = 90 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,90)
-
6-(26,10,450) 6-(25,10,360)
6-(25,9,90)
-
5-(26,10,1890) (#7051) 5-(25,10,1440) (#7050) 5-(24,10,1080) (#1280)
5-(25,9,450) (#7049) 5-(24,9,360) (#7048)
5-(24,8,90) (#6180)
- family 28, lambda = 93 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,93)
-
6-(26,10,465) 6-(25,10,372)
6-(25,9,93)
-
5-(26,10,1953) (#7057) 5-(25,10,1488) (#7056) 5-(24,10,1116) (#1282)
5-(25,9,465) (#7055) 5-(24,9,372) (#7054)
5-(24,8,93) (#6183)
- family 29, lambda = 96 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,96)
-
6-(26,10,480) 6-(25,10,384)
6-(25,9,96)
-
5-(26,10,2016) (#7068) 5-(25,10,1536) (#7067) 5-(24,10,1152) (#1284)
5-(25,9,480) (#7066) 5-(24,9,384) (#7065)
5-(24,8,96) (#6186)
- family 30, lambda = 99 containing 26 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,99)
-
12-(32,16,495) 12-(31,16,396)
12-(31,15,99)
-
11-(32,16,2079) 11-(31,16,1584) 11-(30,16,1188)
11-(31,15,495) 11-(30,15,396)
11-(30,14,99)
-
10-(32,16,7623) 10-(31,16,5544) 10-(30,16,3960) 10-(29,16,2772)
10-(31,15,2079) 10-(30,15,1584) 10-(29,15,1188)
10-(30,14,495) 10-(29,14,396)
10-(29,13,99)
-
9-(32,16,25047) 9-(31,16,17424) 9-(30,16,11880) 9-(29,16,7920) 9-(28,16,5148)
9-(31,15,7623) 9-(30,15,5544) 9-(29,15,3960) 9-(28,15,2772)
9-(30,14,2079) 9-(29,14,1584) 9-(28,14,1188)
9-(29,13,495) 9-(28,13,396)
9-(28,12,99)
-
8-(32,16,75141) 8-(31,16,50094) 8-(30,16,32670) 8-(29,16,20790) 8-(28,16,12870) 8-(27,16,7722)
8-(31,15,25047) 8-(30,15,17424) 8-(29,15,11880) 8-(28,15,7920) 8-(27,15,5148)
8-(30,14,7623) 8-(29,14,5544) 8-(28,14,3960) 8-(27,14,2772)
8-(29,13,2079) 8-(28,13,1584) 8-(27,13,1188)
8-(28,12,495) 8-(27,12,396)
8-(27,11,99)
-
7-(32,16,208725) 7-(31,16,133584) 7-(30,16,83490) 7-(29,16,50820) 7-(28,16,30030) 7-(27,16,17160) 7-(26,16,9438)
7-(31,15,75141) 7-(30,15,50094) 7-(29,15,32670) 7-(28,15,20790) 7-(27,15,12870) 7-(26,15,7722)
7-(30,14,25047) 7-(29,14,17424) 7-(28,14,11880) 7-(27,14,7920) 7-(26,14,5148)
7-(29,13,7623) 7-(28,13,5544) 7-(27,13,3960) 7-(26,13,2772)
7-(28,12,2079) 7-(27,12,1584) 7-(26,12,1188)
7-(27,11,495) 7-(26,11,396)
7-(26,10,99)
-
6-(32,16,542685) 6-(31,16,333960) 6-(30,16,200376) 6-(29,16,116886) 6-(28,16,66066) 6-(27,16,36036) 6-(26,16,18876) 6-(25,16,9438)
6-(31,15,208725) 6-(30,15,133584) 6-(29,15,83490) 6-(28,15,50820) 6-(27,15,30030) 6-(26,15,17160) 6-(25,15,9438)
6-(30,14,75141) 6-(29,14,50094) 6-(28,14,32670) 6-(27,14,20790) 6-(26,14,12870) 6-(25,14,7722)
6-(29,13,25047) 6-(28,13,17424) 6-(27,13,11880) 6-(26,13,7920) 6-(25,13,5148)
6-(28,12,7623) 6-(27,12,5544) 6-(26,12,3960) 6-(25,12,2772)
6-(27,11,2079) (#10623) 6-(26,11,1584) 6-(25,11,1188)
6-(26,10,495) 6-(25,10,396)
6-(25,9,99)
-
5-(32,16,1332045) (#7085) 5-(31,16,789360) 5-(30,16,455400) 5-(29,16,255024) 5-(28,16,138138) 5-(27,16,72072) 5-(26,16,36036) 5-(25,16,17160) 5-(24,16,7722)
5-(31,15,542685) (#7084) 5-(30,15,333960) (#7083) 5-(29,15,200376) 5-(28,15,116886) 5-(27,15,66066) 5-(26,15,36036) 5-(25,15,18876) 5-(24,15,9438)
5-(30,14,208725) (#7082) 5-(29,14,133584) (#7081) 5-(28,14,83490) (#4566) 5-(27,14,50820) 5-(26,14,30030) 5-(25,14,17160) 5-(24,14,9438)
5-(29,13,75141) (#7080) 5-(28,13,50094) (#7079) 5-(27,13,32670) (#4565) 5-(26,13,20790) (#4563) 5-(25,13,12870) 5-(24,13,7722)
5-(28,12,25047) (#7078) 5-(27,12,17424) (#7077) 5-(26,12,11880) (#4564) 5-(25,12,7920) (#4562) 5-(24,12,5148) (#4561)
5-(27,11,7623) (#7076) 5-(26,11,5544) (#7075) 5-(25,11,3960) (#1614) 5-(24,11,2772) (#1613)
5-(26,10,2079) (#7074) 5-(25,10,1584) (#7073) 5-(24,10,1188) (#1286)
5-(25,9,495) (#7072) 5-(24,9,396) (#7071)
5-(24,8,99) (#6189)
- family 31, lambda = 105 containing 8 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,105)
-
8-(28,12,525) 8-(27,12,420)
8-(27,11,105)
-
7-(28,12,2205) 7-(27,12,1680) 7-(26,12,1260)
7-(27,11,525) 7-(26,11,420)
7-(26,10,105)
-
6-(28,12,8085) 6-(27,12,5880) 6-(26,12,4200) 6-(25,12,2940)
6-(27,11,2205) 6-(26,11,1680) 6-(25,11,1260)
6-(26,10,525) 6-(25,10,420)
6-(25,9,105) (#10414)
-
5-(28,12,26565) 5-(27,12,18480) 5-(26,12,12600) 5-(25,12,8400) 5-(24,12,5460) (#4581)
5-(27,11,8085) 5-(26,11,5880) 5-(25,11,4200) 5-(24,11,2940)
5-(26,10,2205) (#7103) 5-(25,10,1680) (#7102) 5-(24,10,1260) (#1291)
5-(25,9,525) (#7101) 5-(24,9,420) (#7100)
5-(24,8,105) (#5272)
- family 32, lambda = 108 containing 13 designs:
minpath=(0, 5, 0) minimal_t=5
-
8-(27,11,108)
-
7-(27,11,540) (#14362) 7-(26,11,432)
7-(26,10,108)
-
6-(27,11,2268) (#10627) 6-(26,11,1728) (#14364) 6-(25,11,1296)
6-(26,10,540) (#14363) 6-(25,10,432)
6-(25,9,108)
-
5-(27,11,8316) (#10628) 5-(26,11,6048) (#10629) 5-(25,11,4320) (#14370) 5-(24,11,3024)
5-(26,10,2268) (#7109) 5-(25,10,1728) (#7108) 5-(24,10,1296) (#1293)
5-(25,9,540) (#7107) 5-(24,9,432) (#7106)
5-(24,8,108) (#5275)
- family 33, lambda = 111 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,111)
-
12-(32,16,555) 12-(31,16,444)
12-(31,15,111)
-
11-(32,16,2331) 11-(31,16,1776) 11-(30,16,1332)
11-(31,15,555) 11-(30,15,444)
11-(30,14,111)
-
10-(32,16,8547) 10-(31,16,6216) 10-(30,16,4440) 10-(29,16,3108)
10-(31,15,2331) 10-(30,15,1776) 10-(29,15,1332)
10-(30,14,555) 10-(29,14,444)
10-(29,13,111)
-
9-(32,16,28083) 9-(31,16,19536) 9-(30,16,13320) 9-(29,16,8880) 9-(28,16,5772)
9-(31,15,8547) 9-(30,15,6216) 9-(29,15,4440) 9-(28,15,3108)
9-(30,14,2331) 9-(29,14,1776) 9-(28,14,1332)
9-(29,13,555) 9-(28,13,444)
9-(28,12,111)
-
8-(32,16,84249) 8-(31,16,56166) 8-(30,16,36630) 8-(29,16,23310) 8-(28,16,14430) 8-(27,16,8658)
8-(31,15,28083) 8-(30,15,19536) 8-(29,15,13320) 8-(28,15,8880) 8-(27,15,5772)
8-(30,14,8547) 8-(29,14,6216) 8-(28,14,4440) 8-(27,14,3108)
8-(29,13,2331) 8-(28,13,1776) 8-(27,13,1332)
8-(28,12,555) 8-(27,12,444)
8-(27,11,111)
-
7-(32,16,234025) 7-(31,16,149776) 7-(30,16,93610) 7-(29,16,56980) 7-(28,16,33670) 7-(27,16,19240) 7-(26,16,10582)
7-(31,15,84249) 7-(30,15,56166) 7-(29,15,36630) 7-(28,15,23310) 7-(27,15,14430) 7-(26,15,8658)
7-(30,14,28083) 7-(29,14,19536) 7-(28,14,13320) 7-(27,14,8880) 7-(26,14,5772)
7-(29,13,8547) 7-(28,13,6216) 7-(27,13,4440) 7-(26,13,3108)
7-(28,12,2331) 7-(27,12,1776) 7-(26,12,1332)
7-(27,11,555) 7-(26,11,444)
7-(26,10,111)
-
6-(32,16,608465) 6-(31,16,374440) 6-(30,16,224664) 6-(29,16,131054) 6-(28,16,74074) 6-(27,16,40404) 6-(26,16,21164) 6-(25,16,10582)
6-(31,15,234025) 6-(30,15,149776) 6-(29,15,93610) 6-(28,15,56980) 6-(27,15,33670) 6-(26,15,19240) 6-(25,15,10582)
6-(30,14,84249) 6-(29,14,56166) 6-(28,14,36630) 6-(27,14,23310) 6-(26,14,14430) 6-(25,14,8658)
6-(29,13,28083) 6-(28,13,19536) 6-(27,13,13320) 6-(26,13,8880) 6-(25,13,5772)
6-(28,12,8547) 6-(27,12,6216) 6-(26,12,4440) 6-(25,12,3108)
6-(27,11,2331) 6-(26,11,1776) 6-(25,11,1332)
6-(26,10,555) 6-(25,10,444)
6-(25,9,111)
-
5-(32,16,1493505) (#7126) 5-(31,16,885040) 5-(30,16,510600) 5-(29,16,285936) 5-(28,16,154882) 5-(27,16,80808) 5-(26,16,40404) 5-(25,16,19240) 5-(24,16,8658)
5-(31,15,608465) (#7125) 5-(30,15,374440) (#7124) 5-(29,15,224664) 5-(28,15,131054) 5-(27,15,74074) 5-(26,15,40404) 5-(25,15,21164) 5-(24,15,10582)
5-(30,14,234025) (#7123) 5-(29,14,149776) (#7122) 5-(28,14,93610) (#4602) 5-(27,14,56980) 5-(26,14,33670) 5-(25,14,19240) 5-(24,14,10582)
5-(29,13,84249) (#7121) 5-(28,13,56166) (#7120) 5-(27,13,36630) (#4601) 5-(26,13,23310) (#4599) 5-(25,13,14430) 5-(24,13,8658)
5-(28,12,28083) (#7119) 5-(27,12,19536) (#7118) 5-(26,12,13320) (#4600) 5-(25,12,8880) (#4598) 5-(24,12,5772) (#4597)
5-(27,11,8547) (#7117) 5-(26,11,6216) (#7116) 5-(25,11,4440) (#1616) 5-(24,11,3108) (#1615)
5-(26,10,2331) (#7115) 5-(25,10,1776) (#7114) 5-(24,10,1332) (#1295)
5-(25,9,555) (#7113) 5-(24,9,444) (#7112)
5-(24,8,111) (#5278)
- family 34, lambda = 117 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,117)
-
6-(26,10,585) 6-(25,10,468)
6-(25,9,117)
-
5-(26,10,2457) (#7139) 5-(25,10,1872) (#7138) 5-(24,10,1404) (#1298)
5-(25,9,585) (#7137) 5-(24,9,468) (#7136)
5-(24,8,117) (#5292)
- family 35, lambda = 120 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,120)
-
6-(26,10,600) 6-(25,10,480)
6-(25,9,120)
-
5-(26,10,2520) (#7160) 5-(25,10,1920) (#7159) 5-(24,10,1440) (#1301)
5-(25,9,600) (#7158) 5-(24,9,480) (#7157)
5-(24,8,120) (#5296)
- family 36, lambda = 123 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,123)
-
6-(26,10,615) 6-(25,10,492)
6-(25,9,123)
-
5-(26,10,2583) (#7166) 5-(25,10,1968) (#7165) 5-(24,10,1476) (#1303)
5-(25,9,615) (#7164) 5-(24,9,492) (#7163)
5-(24,8,123) (#5299)
- family 37, lambda = 126 containing 9 designs:
minpath=(0, 5, 0) minimal_t=5
-
8-(27,11,126)
-
7-(27,11,630) 7-(26,11,504)
7-(26,10,126)
-
6-(27,11,2646) (#10633) 6-(26,11,2016) 6-(25,11,1512)
6-(26,10,630) 6-(25,10,504)
6-(25,9,126)
-
5-(27,11,9702) (#10634) 5-(26,11,7056) (#10635) 5-(25,11,5040) 5-(24,11,3528)
5-(26,10,2646) (#7172) 5-(25,10,2016) (#7171) 5-(24,10,1512) (#1305)
5-(25,9,630) (#7170) 5-(24,9,504) (#7169)
5-(24,8,126) (#5302)
- family 38, lambda = 129 containing 6 designs:
minpath=(0, 6, 0) minimal_t=5
-
7-(26,10,129)
-
6-(26,10,645) 6-(25,10,516)
6-(25,9,129)
-
5-(26,10,2709) (#7183) 5-(25,10,2064) (#7182) 5-(24,10,1548) (#1307)
5-(25,9,645) (#7181) 5-(24,9,516) (#7180)
5-(24,8,129) (#5305)
- family 39, lambda = 132 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,132)
-
12-(32,16,660) 12-(31,16,528)
12-(31,15,132)
-
11-(32,16,2772) 11-(31,16,2112) 11-(30,16,1584)
11-(31,15,660) 11-(30,15,528)
11-(30,14,132)
-
10-(32,16,10164) 10-(31,16,7392) 10-(30,16,5280) 10-(29,16,3696)
10-(31,15,2772) 10-(30,15,2112) 10-(29,15,1584)
10-(30,14,660) 10-(29,14,528)
10-(29,13,132)
-
9-(32,16,33396) 9-(31,16,23232) 9-(30,16,15840) 9-(29,16,10560) 9-(28,16,6864)
9-(31,15,10164) 9-(30,15,7392) 9-(29,15,5280) 9-(28,15,3696)
9-(30,14,2772) 9-(29,14,2112) 9-(28,14,1584)
9-(29,13,660) 9-(28,13,528)
9-(28,12,132)
-
8-(32,16,100188) 8-(31,16,66792) 8-(30,16,43560) 8-(29,16,27720) 8-(28,16,17160) 8-(27,16,10296)
8-(31,15,33396) 8-(30,15,23232) 8-(29,15,15840) 8-(28,15,10560) 8-(27,15,6864)
8-(30,14,10164) 8-(29,14,7392) 8-(28,14,5280) 8-(27,14,3696)
8-(29,13,2772) 8-(28,13,2112) 8-(27,13,1584)
8-(28,12,660) 8-(27,12,528)
8-(27,11,132)
-
7-(32,16,278300) 7-(31,16,178112) 7-(30,16,111320) 7-(29,16,67760) 7-(28,16,40040) 7-(27,16,22880) 7-(26,16,12584)
7-(31,15,100188) 7-(30,15,66792) 7-(29,15,43560) 7-(28,15,27720) 7-(27,15,17160) 7-(26,15,10296)
7-(30,14,33396) 7-(29,14,23232) 7-(28,14,15840) 7-(27,14,10560) 7-(26,14,6864)
7-(29,13,10164) 7-(28,13,7392) 7-(27,13,5280) 7-(26,13,3696)
7-(28,12,2772) 7-(27,12,2112) 7-(26,12,1584)
7-(27,11,660) 7-(26,11,528)
7-(26,10,132)
-
6-(32,16,723580) 6-(31,16,445280) 6-(30,16,267168) 6-(29,16,155848) 6-(28,16,88088) 6-(27,16,48048) 6-(26,16,25168) 6-(25,16,12584)
6-(31,15,278300) 6-(30,15,178112) 6-(29,15,111320) 6-(28,15,67760) 6-(27,15,40040) 6-(26,15,22880) 6-(25,15,12584)
6-(30,14,100188) 6-(29,14,66792) 6-(28,14,43560) 6-(27,14,27720) 6-(26,14,17160) 6-(25,14,10296)
6-(29,13,33396) 6-(28,13,23232) 6-(27,13,15840) 6-(26,13,10560) 6-(25,13,6864)
6-(28,12,10164) 6-(27,12,7392) 6-(26,12,5280) 6-(25,12,3696)
6-(27,11,2772) 6-(26,11,2112) 6-(25,11,1584)
6-(26,10,660) 6-(25,10,528)
6-(25,9,132)
-
5-(32,16,1776060) (#7200) 5-(31,16,1052480) 5-(30,16,607200) 5-(29,16,340032) 5-(28,16,184184) 5-(27,16,96096) 5-(26,16,48048) 5-(25,16,22880) 5-(24,16,10296)
5-(31,15,723580) (#7199) 5-(30,15,445280) (#7198) 5-(29,15,267168) 5-(28,15,155848) 5-(27,15,88088) 5-(26,15,48048) 5-(25,15,25168) 5-(24,15,12584)
5-(30,14,278300) (#7197) 5-(29,14,178112) (#7196) 5-(28,14,111320) (#4674) 5-(27,14,67760) 5-(26,14,40040) 5-(25,14,22880) 5-(24,14,12584)
5-(29,13,100188) (#7195) 5-(28,13,66792) (#7194) 5-(27,13,43560) (#4673) 5-(26,13,27720) (#4671) 5-(25,13,17160) 5-(24,13,10296)
5-(28,12,33396) (#7193) 5-(27,12,23232) (#7192) 5-(26,12,15840) (#4672) 5-(25,12,10560) (#4670) 5-(24,12,6864) (#4669)
5-(27,11,10164) (#7191) 5-(26,11,7392) (#7190) 5-(25,11,5280) (#1624) 5-(24,11,3696) (#1623)
5-(26,10,2772) (#7189) 5-(25,10,2112) (#7188) 5-(24,10,1584) (#1309)
5-(25,9,660) (#7187) 5-(24,9,528) (#7186)
5-(24,8,132) (#5308)
- family 40, lambda = 135 containing 13 designs:
minpath=(0, 5, 0) minimal_t=5
-
8-(27,11,135)
-
7-(27,11,675) (#14372) 7-(26,11,540)
7-(26,10,135)
-
6-(27,11,2835) (#14373) 6-(26,11,2160) (#14374) 6-(25,11,1620)
6-(26,10,675) (#10537) 6-(25,10,540)
6-(25,9,135)
-
5-(27,11,10395) (#14378) 5-(26,11,7560) (#14379) 5-(25,11,5400) (#14382) 5-(24,11,3780)
5-(26,10,2835) (#7208) 5-(25,10,2160) (#7207) 5-(24,10,1620) (#1312)
5-(25,9,675) (#7206) 5-(24,9,540) (#7205)
5-(24,8,135) (#5311)
- family 41, lambda = 138 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,138)
-
8-(28,12,690) 8-(27,12,552)
8-(27,11,138)
-
7-(28,12,2898) 7-(27,12,2208) 7-(26,12,1656)
7-(27,11,690) 7-(26,11,552)
7-(26,10,138)
-
6-(28,12,10626) 6-(27,12,7728) 6-(26,12,5520) 6-(25,12,3864)
6-(27,11,2898) 6-(26,11,2208) 6-(25,11,1656)
6-(26,10,690) 6-(25,10,552)
6-(25,9,138)
-
5-(28,12,34914) 5-(27,12,24288) 5-(26,12,16560) 5-(25,12,11040) 5-(24,12,7176) (#4704)
5-(27,11,10626) 5-(26,11,7728) 5-(25,11,5520) 5-(24,11,3864)
5-(26,10,2898) (#7214) 5-(25,10,2208) (#7213) 5-(24,10,1656) (#1314)
5-(25,9,690) (#7212) 5-(24,9,552) (#7211)
5-(24,8,138) (#5315)
- family 42, lambda = 141 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,141)
-
8-(28,12,705) 8-(27,12,564)
8-(27,11,141)
-
7-(28,12,2961) 7-(27,12,2256) 7-(26,12,1692)
7-(27,11,705) 7-(26,11,564)
7-(26,10,141)
-
6-(28,12,10857) 6-(27,12,7896) 6-(26,12,5640) 6-(25,12,3948)
6-(27,11,2961) 6-(26,11,2256) 6-(25,11,1692)
6-(26,10,705) 6-(25,10,564)
6-(25,9,141)
-
5-(28,12,35673) 5-(27,12,24816) 5-(26,12,16920) 5-(25,12,11280) 5-(24,12,7332) (#4729)
5-(27,11,10857) 5-(26,11,7896) 5-(25,11,5640) 5-(24,11,3948)
5-(26,10,2961) (#7220) 5-(25,10,2256) (#7219) 5-(24,10,1692) (#1316)
5-(25,9,705) (#7218) 5-(24,9,564) (#7217)
5-(24,8,141) (#5318)
- family 43, lambda = 144 containing 27 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,144)
-
12-(32,16,720) 12-(31,16,576)
12-(31,15,144)
-
11-(32,16,3024) 11-(31,16,2304) 11-(30,16,1728)
11-(31,15,720) 11-(30,15,576)
11-(30,14,144)
-
10-(32,16,11088) 10-(31,16,8064) 10-(30,16,5760) 10-(29,16,4032)
10-(31,15,3024) 10-(30,15,2304) 10-(29,15,1728)
10-(30,14,720) 10-(29,14,576)
10-(29,13,144)
-
9-(32,16,36432) 9-(31,16,25344) 9-(30,16,17280) 9-(29,16,11520) 9-(28,16,7488)
9-(31,15,11088) 9-(30,15,8064) 9-(29,15,5760) 9-(28,15,4032)
9-(30,14,3024) 9-(29,14,2304) 9-(28,14,1728)
9-(29,13,720) 9-(28,13,576)
9-(28,12,144)
-
8-(32,16,109296) 8-(31,16,72864) 8-(30,16,47520) 8-(29,16,30240) 8-(28,16,18720) 8-(27,16,11232)
8-(31,15,36432) 8-(30,15,25344) 8-(29,15,17280) 8-(28,15,11520) 8-(27,15,7488)
8-(30,14,11088) 8-(29,14,8064) 8-(28,14,5760) 8-(27,14,4032)
8-(29,13,3024) 8-(28,13,2304) 8-(27,13,1728)
8-(28,12,720) 8-(27,12,576)
8-(27,11,144)
-
7-(32,16,303600) 7-(31,16,194304) 7-(30,16,121440) 7-(29,16,73920) 7-(28,16,43680) 7-(27,16,24960) 7-(26,16,13728)
7-(31,15,109296) 7-(30,15,72864) 7-(29,15,47520) 7-(28,15,30240) 7-(27,15,18720) 7-(26,15,11232)
7-(30,14,36432) 7-(29,14,25344) 7-(28,14,17280) 7-(27,14,11520) 7-(26,14,7488)
7-(29,13,11088) 7-(28,13,8064) 7-(27,13,5760) 7-(26,13,4032)
7-(28,12,3024) 7-(27,12,2304) 7-(26,12,1728)
7-(27,11,720) 7-(26,11,576)
7-(26,10,144)
-
6-(32,16,789360) 6-(31,16,485760) 6-(30,16,291456) 6-(29,16,170016) 6-(28,16,96096) 6-(27,16,52416) 6-(26,16,27456) 6-(25,16,13728)
6-(31,15,303600) 6-(30,15,194304) 6-(29,15,121440) 6-(28,15,73920) 6-(27,15,43680) 6-(26,15,24960) 6-(25,15,13728)
6-(30,14,109296) 6-(29,14,72864) 6-(28,14,47520) 6-(27,14,30240) 6-(26,14,18720) 6-(25,14,11232)
6-(29,13,36432) 6-(28,13,25344) 6-(27,13,17280) 6-(26,13,11520) 6-(25,13,7488)
6-(28,12,11088) 6-(27,12,8064) 6-(26,12,5760) 6-(25,12,4032)
6-(27,11,3024) 6-(26,11,2304) 6-(25,11,1728)
6-(26,10,720) (#10541) 6-(25,10,576)
6-(25,9,144) (#10417)
-
5-(32,16,1937520) (#7237) 5-(31,16,1148160) 5-(30,16,662400) 5-(29,16,370944) 5-(28,16,200928) 5-(27,16,104832) 5-(26,16,52416) 5-(25,16,24960) 5-(24,16,11232)
5-(31,15,789360) (#7236) 5-(30,15,485760) (#7235) 5-(29,15,291456) 5-(28,15,170016) 5-(27,15,96096) 5-(26,15,52416) 5-(25,15,27456) 5-(24,15,13728)
5-(30,14,303600) (#7234) 5-(29,14,194304) (#7233) 5-(28,14,121440) (#4760) 5-(27,14,73920) 5-(26,14,43680) 5-(25,14,24960) 5-(24,14,13728)
5-(29,13,109296) (#7232) 5-(28,13,72864) (#7231) 5-(27,13,47520) (#4759) 5-(26,13,30240) (#4757) 5-(25,13,18720) 5-(24,13,11232)
5-(28,12,36432) (#7230) 5-(27,12,25344) (#7229) 5-(26,12,17280) (#4758) 5-(25,12,11520) (#4756) 5-(24,12,7488) (#4755)
5-(27,11,11088) (#7228) 5-(26,11,8064) (#7227) 5-(25,11,5760) (#1626) 5-(24,11,4032) (#1625)
5-(26,10,3024) (#7226) 5-(25,10,2304) (#7225) 5-(24,10,1728) (#1318)
5-(25,9,720) (#7224) 5-(24,9,576) (#7223)
5-(24,8,144) (#5321)
- family 44, lambda = 147 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,147)
-
8-(28,12,735) 8-(27,12,588)
8-(27,11,147)
-
7-(28,12,3087) 7-(27,12,2352) 7-(26,12,1764)
7-(27,11,735) 7-(26,11,588)
7-(26,10,147)
-
6-(28,12,11319) 6-(27,12,8232) 6-(26,12,5880) 6-(25,12,4116)
6-(27,11,3087) 6-(26,11,2352) 6-(25,11,1764)
6-(26,10,735) 6-(25,10,588)
6-(25,9,147)
-
5-(28,12,37191) 5-(27,12,25872) 5-(26,12,17640) 5-(25,12,11760) 5-(24,12,7644) (#4786)
5-(27,11,11319) 5-(26,11,8232) 5-(25,11,5880) 5-(24,11,4116)
5-(26,10,3087) (#7243) 5-(25,10,2352) (#7242) 5-(24,10,1764) (#1320)
5-(25,9,735) (#7241) 5-(24,9,588) (#7240)
5-(24,8,147) (#5324)
- family 45, lambda = 150 containing 8 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,150)
-
8-(28,12,750) 8-(27,12,600)
8-(27,11,150)
-
7-(28,12,3150) 7-(27,12,2400) 7-(26,12,1800)
7-(27,11,750) 7-(26,11,600)
7-(26,10,150)
-
6-(28,12,11550) 6-(27,12,8400) 6-(26,12,6000) 6-(25,12,4200)
6-(27,11,3150) 6-(26,11,2400) 6-(25,11,1800)
6-(26,10,750) (#10544) 6-(25,10,600)
6-(25,9,150)
-
5-(28,12,37950) 5-(27,12,26400) 5-(26,12,18000) 5-(25,12,12000) 5-(24,12,7800) (#4817)
5-(27,11,11550) 5-(26,11,8400) 5-(25,11,6000) 5-(24,11,4200)
5-(26,10,3150) (#7259) 5-(25,10,2400) (#7258) 5-(24,10,1800) (#1323)
5-(25,9,750) (#7257) 5-(24,9,600) (#7256)
5-(24,8,150) (#5327)
- family 46, lambda = 156 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,156)
-
8-(28,12,780) 8-(27,12,624)
8-(27,11,156)
-
7-(28,12,3276) 7-(27,12,2496) 7-(26,12,1872)
7-(27,11,780) 7-(26,11,624)
7-(26,10,156)
-
6-(28,12,12012) 6-(27,12,8736) 6-(26,12,6240) 6-(25,12,4368)
6-(27,11,3276) 6-(26,11,2496) 6-(25,11,1872)
6-(26,10,780) 6-(25,10,624)
6-(25,9,156)
-
5-(28,12,39468) 5-(27,12,27456) 5-(26,12,18720) 5-(25,12,12480) 5-(24,12,8112) (#4868)
5-(27,11,12012) 5-(26,11,8736) 5-(25,11,6240) 5-(24,11,4368)
5-(26,10,3276) (#7275) 5-(25,10,2496) (#7274) 5-(24,10,1872) (#1327)
5-(25,9,780) (#7273) 5-(24,9,624) (#7272)
5-(24,8,156) (#5335)
- family 47, lambda = 159 containing 31 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,159)
-
12-(32,16,795) 12-(31,16,636)
12-(31,15,159)
-
11-(32,16,3339) 11-(31,16,2544) 11-(30,16,1908)
11-(31,15,795) 11-(30,15,636)
11-(30,14,159)
-
10-(32,16,12243) 10-(31,16,8904) 10-(30,16,6360) 10-(29,16,4452)
10-(31,15,3339) 10-(30,15,2544) 10-(29,15,1908)
10-(30,14,795) 10-(29,14,636)
10-(29,13,159)
-
9-(32,16,40227) 9-(31,16,27984) 9-(30,16,19080) 9-(29,16,12720) 9-(28,16,8268)
9-(31,15,12243) 9-(30,15,8904) 9-(29,15,6360) 9-(28,15,4452)
9-(30,14,3339) 9-(29,14,2544) 9-(28,14,1908)
9-(29,13,795) 9-(28,13,636)
9-(28,12,159)
-
8-(32,16,120681) 8-(31,16,80454) 8-(30,16,52470) 8-(29,16,33390) 8-(28,16,20670) 8-(27,16,12402)
8-(31,15,40227) 8-(30,15,27984) 8-(29,15,19080) 8-(28,15,12720) 8-(27,15,8268)
8-(30,14,12243) 8-(29,14,8904) 8-(28,14,6360) 8-(27,14,4452)
8-(29,13,3339) 8-(28,13,2544) 8-(27,13,1908)
8-(28,12,795) 8-(27,12,636)
8-(27,11,159)
-
7-(32,16,335225) 7-(31,16,214544) 7-(30,16,134090) 7-(29,16,81620) 7-(28,16,48230) 7-(27,16,27560) 7-(26,16,15158)
7-(31,15,120681) 7-(30,15,80454) 7-(29,15,52470) 7-(28,15,33390) 7-(27,15,20670) 7-(26,15,12402)
7-(30,14,40227) 7-(29,14,27984) 7-(28,14,19080) 7-(27,14,12720) 7-(26,14,8268)
7-(29,13,12243) 7-(28,13,8904) 7-(27,13,6360) 7-(26,13,4452)
7-(28,12,3339) 7-(27,12,2544) (#14582) 7-(26,12,1908)
7-(27,11,795) 7-(26,11,636)
7-(26,10,159)
-
6-(32,16,871585) 6-(31,16,536360) 6-(30,16,321816) 6-(29,16,187726) 6-(28,16,106106) 6-(27,16,57876) 6-(26,16,30316) 6-(25,16,15158)
6-(31,15,335225) 6-(30,15,214544) 6-(29,15,134090) 6-(28,15,81620) 6-(27,15,48230) 6-(26,15,27560) 6-(25,15,15158)
6-(30,14,120681) 6-(29,14,80454) 6-(28,14,52470) 6-(27,14,33390) 6-(26,14,20670) 6-(25,14,12402)
6-(29,13,40227) 6-(28,13,27984) 6-(27,13,19080) 6-(26,13,12720) 6-(25,13,8268)
6-(28,12,12243) (#14593) 6-(27,12,8904) (#10916) 6-(26,12,6360) (#14584) 6-(25,12,4452)
6-(27,11,3339) (#14590) 6-(26,11,2544) (#14583) 6-(25,11,1908)
6-(26,10,795) (#10548) 6-(25,10,636)
6-(25,9,159)
-
5-(32,16,2139345) (#14612) 5-(31,16,1267760) 5-(30,16,731400) 5-(29,16,409584) 5-(28,16,221858) 5-(27,16,115752) 5-(26,16,57876) 5-(25,16,27560) 5-(24,16,12402)
5-(31,15,871585) (#14610) 5-(30,15,536360) (#14606) 5-(29,15,321816) 5-(28,15,187726) 5-(27,15,106106) 5-(26,15,57876) 5-(25,15,30316) 5-(24,15,15158)
5-(30,14,335225) (#14607) 5-(29,14,214544) (#14602) 5-(28,14,134090) (#14598) 5-(27,14,81620) 5-(26,14,48230) 5-(25,14,27560) 5-(24,14,15158)
5-(29,13,120681) (#14603) 5-(28,13,80454) (#14599) 5-(27,13,52470) (#14596) 5-(26,13,33390) (#14594) 5-(25,13,20670) 5-(24,13,12402)
5-(28,12,40227) (#10925) 5-(27,12,27984) (#10917) 5-(26,12,19080) (#10919) 5-(25,12,12720) (#14591) 5-(24,12,8268) (#4894)
5-(27,11,12243) (#10923) 5-(26,11,8904) (#10918) 5-(25,11,6360) (#14588) 5-(24,11,4452)
5-(26,10,3339) (#7281) 5-(25,10,2544) (#7280) 5-(24,10,1908) (#1329)
5-(25,9,795) (#7279) 5-(24,9,636) (#7278)
5-(24,8,159) (#5338)
- family 48, lambda = 162 containing 33 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,162)
-
12-(32,16,810) 12-(31,16,648)
12-(31,15,162)
-
11-(32,16,3402) 11-(31,16,2592) 11-(30,16,1944)
11-(31,15,810) 11-(30,15,648)
11-(30,14,162)
-
10-(32,16,12474) 10-(31,16,9072) 10-(30,16,6480) 10-(29,16,4536)
10-(31,15,3402) 10-(30,15,2592) 10-(29,15,1944)
10-(30,14,810) 10-(29,14,648)
10-(29,13,162)
-
9-(32,16,40986) 9-(31,16,28512) 9-(30,16,19440) 9-(29,16,12960) 9-(28,16,8424)
9-(31,15,12474) 9-(30,15,9072) 9-(29,15,6480) 9-(28,15,4536)
9-(30,14,3402) 9-(29,14,2592) 9-(28,14,1944)
9-(29,13,810) 9-(28,13,648)
9-(28,12,162)
-
8-(32,16,122958) 8-(31,16,81972) 8-(30,16,53460) 8-(29,16,34020) 8-(28,16,21060) 8-(27,16,12636)
8-(31,15,40986) 8-(30,15,28512) 8-(29,15,19440) 8-(28,15,12960) 8-(27,15,8424)
8-(30,14,12474) 8-(29,14,9072) 8-(28,14,6480) 8-(27,14,4536)
8-(29,13,3402) 8-(28,13,2592) 8-(27,13,1944)
8-(28,12,810) 8-(27,12,648)
8-(27,11,162)
-
7-(32,16,341550) 7-(31,16,218592) 7-(30,16,136620) 7-(29,16,83160) 7-(28,16,49140) 7-(27,16,28080) 7-(26,16,15444)
7-(31,15,122958) 7-(30,15,81972) 7-(29,15,53460) 7-(28,15,34020) 7-(27,15,21060) 7-(26,15,12636)
7-(30,14,40986) 7-(29,14,28512) 7-(28,14,19440) 7-(27,14,12960) 7-(26,14,8424)
7-(29,13,12474) 7-(28,13,9072) 7-(27,13,6480) 7-(26,13,4536)
7-(28,12,3402) (#14618) 7-(27,12,2592) (#14614) 7-(26,12,1944)
7-(27,11,810) (#14447) 7-(26,11,648)
7-(26,10,162)
-
6-(32,16,888030) 6-(31,16,546480) 6-(30,16,327888) 6-(29,16,191268) 6-(28,16,108108) 6-(27,16,58968) 6-(26,16,30888) 6-(25,16,15444)
6-(31,15,341550) 6-(30,15,218592) 6-(29,15,136620) 6-(28,15,83160) 6-(27,15,49140) 6-(26,15,28080) 6-(25,15,15444)
6-(30,14,122958) 6-(29,14,81972) 6-(28,14,53460) 6-(27,14,34020) 6-(26,14,21060) 6-(25,14,12636)
6-(29,13,40986) 6-(28,13,28512) 6-(27,13,19440) 6-(26,13,12960) 6-(25,13,8424)
6-(28,12,12474) (#14456) 6-(27,12,9072) (#10927) 6-(26,12,6480) (#14615) 6-(25,12,4536)
6-(27,11,3402) (#14448) 6-(26,11,2592) (#14450) 6-(25,11,1944)
6-(26,10,810) (#14449) 6-(25,10,648)
6-(25,9,162)
-
5-(32,16,2179710) (#14640) 5-(31,16,1291680) 5-(30,16,745200) 5-(29,16,417312) 5-(28,16,226044) 5-(27,16,117936) 5-(26,16,58968) 5-(25,16,28080) 5-(24,16,12636)
5-(31,15,888030) (#14638) 5-(30,15,546480) (#14634) 5-(29,15,327888) 5-(28,15,191268) 5-(27,15,108108) 5-(26,15,58968) 5-(25,15,30888) 5-(24,15,15444)
5-(30,14,341550) (#14635) 5-(29,14,218592) (#14630) 5-(28,14,136620) (#14626) 5-(27,14,83160) 5-(26,14,49140) 5-(25,14,28080) 5-(24,14,15444)
5-(29,13,122958) (#14631) 5-(28,13,81972) (#14627) 5-(27,13,53460) (#14624) 5-(26,13,34020) (#14622) 5-(25,13,21060) 5-(24,13,12636)
5-(28,12,40986) (#10935) 5-(27,12,28512) (#10928) 5-(26,12,19440) (#10930) 5-(25,12,12960) (#14619) 5-(24,12,8424) (#4925)
5-(27,11,12474) (#10934) 5-(26,11,9072) (#10929) 5-(25,11,6480) (#14459) 5-(24,11,4536)
5-(26,10,3402) (#7292) 5-(25,10,2592) (#7291) 5-(24,10,1944) (#1331)
5-(25,9,810) (#7290) 5-(24,9,648) (#7289)
5-(24,8,162) (#5342)
- family 49, lambda = 165 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,165)
-
12-(32,16,825) 12-(31,16,660)
12-(31,15,165)
-
11-(32,16,3465) 11-(31,16,2640) 11-(30,16,1980)
11-(31,15,825) 11-(30,15,660)
11-(30,14,165)
-
10-(32,16,12705) 10-(31,16,9240) 10-(30,16,6600) 10-(29,16,4620)
10-(31,15,3465) 10-(30,15,2640) 10-(29,15,1980)
10-(30,14,825) 10-(29,14,660)
10-(29,13,165)
-
9-(32,16,41745) 9-(31,16,29040) 9-(30,16,19800) 9-(29,16,13200) 9-(28,16,8580)
9-(31,15,12705) 9-(30,15,9240) 9-(29,15,6600) 9-(28,15,4620)
9-(30,14,3465) 9-(29,14,2640) 9-(28,14,1980)
9-(29,13,825) 9-(28,13,660)
9-(28,12,165)
-
8-(32,16,125235) 8-(31,16,83490) 8-(30,16,54450) 8-(29,16,34650) 8-(28,16,21450) 8-(27,16,12870)
8-(31,15,41745) 8-(30,15,29040) 8-(29,15,19800) 8-(28,15,13200) 8-(27,15,8580)
8-(30,14,12705) 8-(29,14,9240) 8-(28,14,6600) 8-(27,14,4620)
8-(29,13,3465) 8-(28,13,2640) 8-(27,13,1980)
8-(28,12,825) 8-(27,12,660)
8-(27,11,165)
-
7-(32,16,347875) 7-(31,16,222640) 7-(30,16,139150) 7-(29,16,84700) 7-(28,16,50050) 7-(27,16,28600) 7-(26,16,15730)
7-(31,15,125235) 7-(30,15,83490) 7-(29,15,54450) 7-(28,15,34650) 7-(27,15,21450) 7-(26,15,12870)
7-(30,14,41745) 7-(29,14,29040) 7-(28,14,19800) 7-(27,14,13200) 7-(26,14,8580)
7-(29,13,12705) 7-(28,13,9240) 7-(27,13,6600) 7-(26,13,4620)
7-(28,12,3465) 7-(27,12,2640) 7-(26,12,1980)
7-(27,11,825) 7-(26,11,660)
7-(26,10,165)
-
6-(32,16,904475) 6-(31,16,556600) 6-(30,16,333960) 6-(29,16,194810) 6-(28,16,110110) 6-(27,16,60060) 6-(26,16,31460) 6-(25,16,15730)
6-(31,15,347875) 6-(30,15,222640) 6-(29,15,139150) 6-(28,15,84700) 6-(27,15,50050) 6-(26,15,28600) 6-(25,15,15730)
6-(30,14,125235) 6-(29,14,83490) 6-(28,14,54450) 6-(27,14,34650) 6-(26,14,21450) 6-(25,14,12870)
6-(29,13,41745) 6-(28,13,29040) 6-(27,13,19800) 6-(26,13,13200) 6-(25,13,8580)
6-(28,12,12705) 6-(27,12,9240) 6-(26,12,6600) 6-(25,12,4620)
6-(27,11,3465) 6-(26,11,2640) 6-(25,11,1980)
6-(26,10,825) 6-(25,10,660)
6-(25,9,165)
-
5-(32,16,2220075) (#7316) 5-(31,16,1315600) 5-(30,16,759000) 5-(29,16,425040) 5-(28,16,230230) 5-(27,16,120120) 5-(26,16,60060) 5-(25,16,28600) 5-(24,16,12870)
5-(31,15,904475) (#7315) 5-(30,15,556600) (#7314) 5-(29,15,333960) 5-(28,15,194810) 5-(27,15,110110) 5-(26,15,60060) 5-(25,15,31460) 5-(24,15,15730)
5-(30,14,347875) (#7313) 5-(29,14,222640) (#7312) 5-(28,14,139150) (#4961) 5-(27,14,84700) 5-(26,14,50050) 5-(25,14,28600) 5-(24,14,15730)
5-(29,13,125235) (#7311) 5-(28,13,83490) (#7310) 5-(27,13,54450) (#4960) 5-(26,13,34650) (#4958) 5-(25,13,21450) 5-(24,13,12870)
5-(28,12,41745) (#7309) 5-(27,12,29040) (#7308) 5-(26,12,19800) (#4959) 5-(25,12,13200) (#4957) 5-(24,12,8580) (#4956)
5-(27,11,12705) (#7307) 5-(26,11,9240) (#7306) 5-(25,11,6600) (#1634) 5-(24,11,4620) (#1633)
5-(26,10,3465) (#7305) 5-(25,10,2640) (#7304) 5-(24,10,1980) (#1334)
5-(25,9,825) (#7303) 5-(24,9,660) (#7302)
5-(24,8,165) (#5345)
- family 50, lambda = 168 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,168)
-
8-(28,12,840) 8-(27,12,672)
8-(27,11,168)
-
7-(28,12,3528) 7-(27,12,2688) 7-(26,12,2016)
7-(27,11,840) (#14462) 7-(26,11,672)
7-(26,10,168)
-
6-(28,12,12936) 6-(27,12,9408) 6-(26,12,6720) 6-(25,12,4704)
6-(27,11,3528) (#14463) 6-(26,11,2688) (#14465) 6-(25,11,2016)
6-(26,10,840) (#14464) 6-(25,10,672)
6-(25,9,168)
-
5-(28,12,42504) 5-(27,12,29568) 5-(26,12,20160) 5-(25,12,13440) 5-(24,12,8736) (#4987)
5-(27,11,12936) (#14469) 5-(26,11,9408) (#14470) 5-(25,11,6720) (#14476) 5-(24,11,4704)
5-(26,10,3528) (#7322) 5-(25,10,2688) (#7321) 5-(24,10,2016) (#1336)
5-(25,9,840) (#7320) 5-(24,9,672) (#7319)
5-(24,8,168) (#5348)
- family 51, lambda = 174 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,174)
-
8-(28,12,870) 8-(27,12,696)
8-(27,11,174)
-
7-(28,12,3654) 7-(27,12,2784) 7-(26,12,2088)
7-(27,11,870) 7-(26,11,696)
7-(26,10,174)
-
6-(28,12,13398) 6-(27,12,9744) 6-(26,12,6960) 6-(25,12,4872)
6-(27,11,3654) 6-(26,11,2784) 6-(25,11,2088)
6-(26,10,870) 6-(25,10,696)
6-(25,9,174)
-
5-(28,12,44022) 5-(27,12,30624) 5-(26,12,20880) 5-(25,12,13920) 5-(24,12,9048) (#5039)
5-(27,11,13398) 5-(26,11,9744) 5-(25,11,6960) 5-(24,11,4872)
5-(26,10,3654) (#7345) 5-(25,10,2784) (#7344) 5-(24,10,2088) (#1339)
5-(25,9,870) (#7343) 5-(24,9,696) (#7342)
5-(24,8,174) (#5357)
- family 52, lambda = 177 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,177)
-
12-(32,16,885) 12-(31,16,708)
12-(31,15,177)
-
11-(32,16,3717) 11-(31,16,2832) 11-(30,16,2124)
11-(31,15,885) 11-(30,15,708)
11-(30,14,177)
-
10-(32,16,13629) 10-(31,16,9912) 10-(30,16,7080) 10-(29,16,4956)
10-(31,15,3717) 10-(30,15,2832) 10-(29,15,2124)
10-(30,14,885) 10-(29,14,708)
10-(29,13,177)
-
9-(32,16,44781) 9-(31,16,31152) 9-(30,16,21240) 9-(29,16,14160) 9-(28,16,9204)
9-(31,15,13629) 9-(30,15,9912) 9-(29,15,7080) 9-(28,15,4956)
9-(30,14,3717) 9-(29,14,2832) 9-(28,14,2124)
9-(29,13,885) 9-(28,13,708)
9-(28,12,177)
-
8-(32,16,134343) 8-(31,16,89562) 8-(30,16,58410) 8-(29,16,37170) 8-(28,16,23010) 8-(27,16,13806)
8-(31,15,44781) 8-(30,15,31152) 8-(29,15,21240) 8-(28,15,14160) 8-(27,15,9204)
8-(30,14,13629) 8-(29,14,9912) 8-(28,14,7080) 8-(27,14,4956)
8-(29,13,3717) 8-(28,13,2832) 8-(27,13,2124)
8-(28,12,885) 8-(27,12,708)
8-(27,11,177)
-
7-(32,16,373175) 7-(31,16,238832) 7-(30,16,149270) 7-(29,16,90860) 7-(28,16,53690) 7-(27,16,30680) 7-(26,16,16874)
7-(31,15,134343) 7-(30,15,89562) 7-(29,15,58410) 7-(28,15,37170) 7-(27,15,23010) 7-(26,15,13806)
7-(30,14,44781) 7-(29,14,31152) 7-(28,14,21240) 7-(27,14,14160) 7-(26,14,9204)
7-(29,13,13629) 7-(28,13,9912) 7-(27,13,7080) 7-(26,13,4956)
7-(28,12,3717) 7-(27,12,2832) 7-(26,12,2124)
7-(27,11,885) 7-(26,11,708)
7-(26,10,177)
-
6-(32,16,970255) 6-(31,16,597080) 6-(30,16,358248) 6-(29,16,208978) 6-(28,16,118118) 6-(27,16,64428) 6-(26,16,33748) 6-(25,16,16874)
6-(31,15,373175) 6-(30,15,238832) 6-(29,15,149270) 6-(28,15,90860) 6-(27,15,53690) 6-(26,15,30680) 6-(25,15,16874)
6-(30,14,134343) 6-(29,14,89562) 6-(28,14,58410) 6-(27,14,37170) 6-(26,14,23010) 6-(25,14,13806)
6-(29,13,44781) 6-(28,13,31152) 6-(27,13,21240) 6-(26,13,14160) 6-(25,13,9204)
6-(28,12,13629) 6-(27,12,9912) 6-(26,12,7080) 6-(25,12,4956)
6-(27,11,3717) 6-(26,11,2832) 6-(25,11,2124)
6-(26,10,885) 6-(25,10,708)
6-(25,9,177)
-
5-(32,16,2381535) (#7362) 5-(31,16,1411280) 5-(30,16,814200) 5-(29,16,455952) 5-(28,16,246974) 5-(27,16,128856) 5-(26,16,64428) 5-(25,16,30680) 5-(24,16,13806)
5-(31,15,970255) (#7361) 5-(30,15,597080) (#7360) 5-(29,15,358248) 5-(28,15,208978) 5-(27,15,118118) 5-(26,15,64428) 5-(25,15,33748) 5-(24,15,16874)
5-(30,14,373175) (#7359) 5-(29,14,238832) (#7358) 5-(28,14,149270) (#5071) 5-(27,14,90860) 5-(26,14,53690) 5-(25,14,30680) 5-(24,14,16874)
5-(29,13,134343) (#7357) 5-(28,13,89562) (#7356) 5-(27,13,58410) (#5070) 5-(26,13,37170) (#5068) 5-(25,13,23010) 5-(24,13,13806)
5-(28,12,44781) (#7355) 5-(27,12,31152) (#7354) 5-(26,12,21240) (#5069) 5-(25,12,14160) (#5067) 5-(24,12,9204) (#5066)
5-(27,11,13629) (#7353) 5-(26,11,9912) (#7352) 5-(25,11,7080) (#1636) 5-(24,11,4956) (#1635)
5-(26,10,3717) (#7351) 5-(25,10,2832) (#7350) 5-(24,10,2124) (#1341)
5-(25,9,885) (#7349) 5-(24,9,708) (#7348)
5-(24,8,177) (#5360)
- family 53, lambda = 180 containing 53 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,180)
-
12-(32,16,900) 12-(31,16,720)
12-(31,15,180)
-
11-(32,16,3780) 11-(31,16,2880) 11-(30,16,2160)
11-(31,15,900) 11-(30,15,720)
11-(30,14,180)
-
10-(32,16,13860) 10-(31,16,10080) 10-(30,16,7200) 10-(29,16,5040)
10-(31,15,3780) 10-(30,15,2880) 10-(29,15,2160)
10-(30,14,900) 10-(29,14,720)
10-(29,13,180)
-
9-(32,16,45540) 9-(31,16,31680) 9-(30,16,21600) 9-(29,16,14400) 9-(28,16,9360)
9-(31,15,13860) 9-(30,15,10080) 9-(29,15,7200) 9-(28,15,5040)
9-(30,14,3780) 9-(29,14,2880) 9-(28,14,2160)
9-(29,13,900) 9-(28,13,720)
9-(28,12,180)
-
8-(32,16,136620) 8-(31,16,91080) 8-(30,16,59400) 8-(29,16,37800) 8-(28,16,23400) 8-(27,16,14040)
8-(31,15,45540) 8-(30,15,31680) 8-(29,15,21600) 8-(28,15,14400) 8-(27,15,9360)
8-(30,14,13860) 8-(29,14,10080) 8-(28,14,7200) 8-(27,14,5040)
8-(29,13,3780) 8-(28,13,2880) 8-(27,13,2160)
8-(28,12,900) 8-(27,12,720)
8-(27,11,180)
-
7-(32,16,379500) (#15185) 7-(31,16,242880) 7-(30,16,151800) 7-(29,16,92400) 7-(28,16,54600) 7-(27,16,31200) 7-(26,16,17160)
7-(31,15,136620) 7-(30,15,91080) (#15166) 7-(29,15,59400) 7-(28,15,37800) 7-(27,15,23400) 7-(26,15,14040)
7-(30,14,45540) 7-(29,14,31680) (#15157) 7-(28,14,21600) (#15142) 7-(27,14,14400) 7-(26,14,9360)
7-(29,13,13860) 7-(28,13,10080) (#15124) 7-(27,13,7200) 7-(26,13,5040)
7-(28,12,3780) 7-(27,12,2880) 7-(26,12,2160)
7-(27,11,900) (#14478) 7-(26,11,720)
7-(26,10,180)
-
6-(32,16,986700) (#15184) 6-(31,16,607200) (#15194) 6-(30,16,364320) 6-(29,16,212520) 6-(28,16,120120) 6-(27,16,65520) 6-(26,16,34320) 6-(25,16,17160)
6-(31,15,379500) (#15176) 6-(30,15,242880) (#15165) 6-(29,15,151800) (#15179) 6-(28,15,92400) 6-(27,15,54600) 6-(26,15,31200) 6-(25,15,17160)
6-(30,14,136620) (#15164) 6-(29,14,91080) (#15154) 6-(28,14,59400) (#15141) 6-(27,14,37800) (#15155) 6-(26,14,23400) 6-(25,14,14040)
6-(29,13,45540) (#15151) 6-(28,13,31680) (#15125) 6-(27,13,21600) (#15127) 6-(26,13,14400) 6-(25,13,9360)
6-(28,12,13860) (#15139) 6-(27,12,10080) (#15126) 6-(26,12,7200) 6-(25,12,5040)
6-(27,11,3780) (#14479) 6-(26,11,2880) (#14480) 6-(25,11,2160)
6-(26,10,900) (#10552) 6-(25,10,720)
6-(25,9,180) (#10420)
-
5-(32,16,2421900) (#15190) 5-(31,16,1435200) (#15192) 5-(30,16,828000) (#15196) 5-(29,16,463680) 5-(28,16,251160) 5-(27,16,131040) 5-(26,16,65520) 5-(25,16,31200) 5-(24,16,14040)
5-(31,15,986700) (#15182) 5-(30,15,607200) (#15173) 5-(29,15,364320) (#15177) 5-(28,15,212520) (#15186) 5-(27,15,120120) 5-(26,15,65520) 5-(25,15,34320) 5-(24,15,17160)
5-(30,14,379500) (#15172) 5-(29,14,242880) (#15161) 5-(28,14,151800) (#15148) 5-(27,14,92400) (#15152) 5-(26,14,54600) (#15167) 5-(25,14,31200) 5-(24,14,17160)
5-(29,13,136620) (#15160) 5-(28,13,91080) (#15131) 5-(27,13,59400) (#15133) 5-(26,13,37800) (#15140) 5-(25,13,23400) 5-(24,13,14040)
5-(28,12,45540) (#15147) 5-(27,12,31680) (#15132) 5-(26,12,21600) (#15137) 5-(25,12,14400) 5-(24,12,9360) (#5097)
5-(27,11,13860) (#14484) 5-(26,11,10080) (#14485) 5-(25,11,7200) (#14488) 5-(24,11,5040)
5-(26,10,3780) (#7372) 5-(25,10,2880) (#7371) 5-(24,10,2160) (#1344)
5-(25,9,900) (#7370) 5-(24,9,720) (#7369)
5-(24,8,180) (#5364)
- family 54, lambda = 183 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,183)
-
8-(28,12,915) 8-(27,12,732)
8-(27,11,183)
-
7-(28,12,3843) 7-(27,12,2928) 7-(26,12,2196)
7-(27,11,915) 7-(26,11,732)
7-(26,10,183)
-
6-(28,12,14091) 6-(27,12,10248) 6-(26,12,7320) 6-(25,12,5124)
6-(27,11,3843) 6-(26,11,2928) 6-(25,11,2196)
6-(26,10,915) 6-(25,10,732)
6-(25,9,183)
-
5-(28,12,46299) 5-(27,12,32208) 5-(26,12,21960) 5-(25,12,14640) 5-(24,12,9516) (#5128)
5-(27,11,14091) 5-(26,11,10248) 5-(25,11,7320) 5-(24,11,5124)
5-(26,10,3843) (#7383) 5-(25,10,2928) (#7382) 5-(24,10,2196) (#1346)
5-(25,9,915) (#7381) 5-(24,9,732) (#7380)
5-(24,8,183) (#5367)
- family 55, lambda = 186 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,186)
-
8-(28,12,930) 8-(27,12,744)
8-(27,11,186)
-
7-(28,12,3906) 7-(27,12,2976) 7-(26,12,2232)
7-(27,11,930) (#14490) 7-(26,11,744)
7-(26,10,186)
-
6-(28,12,14322) 6-(27,12,10416) 6-(26,12,7440) 6-(25,12,5208)
6-(27,11,3906) (#14491) 6-(26,11,2976) (#14493) 6-(25,11,2232)
6-(26,10,930) (#14492) 6-(25,10,744)
6-(25,9,186)
-
5-(28,12,47058) 5-(27,12,32736) 5-(26,12,22320) 5-(25,12,14880) 5-(24,12,9672) (#5155)
5-(27,11,14322) (#14497) 5-(26,11,10416) (#14498) 5-(25,11,7440) (#14504) 5-(24,11,5208)
5-(26,10,3906) (#7389) 5-(25,10,2976) (#7388) 5-(24,10,2232) (#1348)
5-(25,9,930) (#7387) 5-(24,9,744) (#7386)
5-(24,8,186) (#5370)
- family 56, lambda = 189 containing 34 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,189)
-
12-(32,16,945) 12-(31,16,756)
12-(31,15,189)
-
11-(32,16,3969) 11-(31,16,3024) 11-(30,16,2268)
11-(31,15,945) 11-(30,15,756)
11-(30,14,189)
-
10-(32,16,14553) 10-(31,16,10584) 10-(30,16,7560) 10-(29,16,5292)
10-(31,15,3969) 10-(30,15,3024) 10-(29,15,2268)
10-(30,14,945) 10-(29,14,756)
10-(29,13,189)
-
9-(32,16,47817) 9-(31,16,33264) 9-(30,16,22680) 9-(29,16,15120) 9-(28,16,9828)
9-(31,15,14553) 9-(30,15,10584) 9-(29,15,7560) 9-(28,15,5292)
9-(30,14,3969) 9-(29,14,3024) 9-(28,14,2268)
9-(29,13,945) 9-(28,13,756)
9-(28,12,189)
-
8-(32,16,143451) 8-(31,16,95634) 8-(30,16,62370) 8-(29,16,39690) 8-(28,16,24570) 8-(27,16,14742)
8-(31,15,47817) 8-(30,15,33264) 8-(29,15,22680) 8-(28,15,15120) 8-(27,15,9828)
8-(30,14,14553) 8-(29,14,10584) 8-(28,14,7560) 8-(27,14,5292)
8-(29,13,3969) 8-(28,13,3024) 8-(27,13,2268)
8-(28,12,945) 8-(27,12,756)
8-(27,11,189)
-
7-(32,16,398475) 7-(31,16,255024) 7-(30,16,159390) 7-(29,16,97020) 7-(28,16,57330) 7-(27,16,32760) 7-(26,16,18018)
7-(31,15,143451) 7-(30,15,95634) 7-(29,15,62370) 7-(28,15,39690) 7-(27,15,24570) 7-(26,15,14742)
7-(30,14,47817) 7-(29,14,33264) 7-(28,14,22680) (#11001) 7-(27,14,15120) 7-(26,14,9828)
7-(29,13,14553) 7-(28,13,10584) 7-(27,13,7560) 7-(26,13,5292)
7-(28,12,3969) 7-(27,12,3024) 7-(26,12,2268)
7-(27,11,945) (#14506) 7-(26,11,756)
7-(26,10,189)
-
6-(32,16,1036035) 6-(31,16,637560) 6-(30,16,382536) 6-(29,16,223146) 6-(28,16,126126) 6-(27,16,68796) 6-(26,16,36036) 6-(25,16,18018)
6-(31,15,398475) 6-(30,15,255024) 6-(29,15,159390) 6-(28,15,97020) 6-(27,15,57330) 6-(26,15,32760) 6-(25,15,18018)
6-(30,14,143451) 6-(29,14,95634) 6-(28,14,62370) (#11000) 6-(27,14,39690) (#11009) 6-(26,14,24570) 6-(25,14,14742)
6-(29,13,47817) 6-(28,13,33264) 6-(27,13,22680) (#10996) 6-(26,13,15120) 6-(25,13,9828)
6-(28,12,14553) 6-(27,12,10584) 6-(26,12,7560) 6-(25,12,5292)
6-(27,11,3969) (#14507) 6-(26,11,3024) (#14508) 6-(25,11,2268)
6-(26,10,945) (#10555) 6-(25,10,756)
6-(25,9,189) (#10423)
-
5-(32,16,2542995) (#14534) 5-(31,16,1506960) 5-(30,16,869400) 5-(29,16,486864) 5-(28,16,263718) 5-(27,16,137592) 5-(26,16,68796) 5-(25,16,32760) 5-(24,16,14742)
5-(31,15,1036035) (#14532) 5-(30,15,637560) (#14529) 5-(29,15,382536) 5-(28,15,223146) 5-(27,15,126126) 5-(26,15,68796) 5-(25,15,36036) 5-(24,15,18018)
5-(30,14,398475) (#14528) 5-(29,14,255024) (#14525) 5-(28,14,159390) (#11005) 5-(27,14,97020) (#11006) 5-(26,14,57330) (#11013) 5-(25,14,32760) 5-(24,14,18018)
5-(29,13,143451) (#14524) 5-(28,13,95634) (#14521) 5-(27,13,62370) (#10997) 5-(26,13,39690) (#10999) 5-(25,13,24570) 5-(24,13,14742)
5-(28,12,47817) (#14520) 5-(27,12,33264) (#14518) 5-(26,12,22680) (#10998) 5-(25,12,15120) 5-(24,12,9828) (#5182)
5-(27,11,14553) (#14512) 5-(26,11,10584) (#14513) 5-(25,11,7560) (#14516) 5-(24,11,5292)
5-(26,10,3969) (#7395) 5-(25,10,3024) (#7394) 5-(24,10,2268) (#1350)
5-(25,9,945) (#7393) 5-(24,9,756) (#7392)
5-(24,8,189) (#5374)
- family 57, lambda = 192 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,192)
-
10-(30,14,960) 10-(29,14,768)
10-(29,13,192)
-
9-(30,14,4032) 9-(29,14,3072) 9-(28,14,2304)
9-(29,13,960) 9-(28,13,768)
9-(28,12,192)
-
8-(30,14,14784) 8-(29,14,10752) 8-(28,14,7680) 8-(27,14,5376)
8-(29,13,4032) 8-(28,13,3072) 8-(27,13,2304)
8-(28,12,960) 8-(27,12,768)
8-(27,11,192)
-
7-(30,14,48576) 7-(29,14,33792) 7-(28,14,23040) (#15513) 7-(27,14,15360) 7-(26,14,9984)
7-(29,13,14784) 7-(28,13,10752) 7-(27,13,7680) 7-(26,13,5376)
7-(28,12,4032) 7-(27,12,3072) 7-(26,12,2304)
7-(27,11,960) 7-(26,11,768)
7-(26,10,192)
-
6-(30,14,145728) 6-(29,14,97152) 6-(28,14,63360) (#15514) 6-(27,14,40320) (#15516) 6-(26,14,24960) 6-(25,14,14976)
6-(29,13,48576) 6-(28,13,33792) 6-(27,13,23040) (#15515) 6-(26,13,15360) 6-(25,13,9984)
6-(28,12,14784) 6-(27,12,10752) 6-(26,12,7680) 6-(25,12,5376)
6-(27,11,4032) 6-(26,11,3072) 6-(25,11,2304)
6-(26,10,960) 6-(25,10,768)
6-(25,9,192)
-
5-(30,14,404800) 5-(29,14,259072) 5-(28,14,161920) (#15520) 5-(27,14,98560) (#15522) 5-(26,14,58240) (#15530) 5-(25,14,33280) 5-(24,14,18304)
5-(29,13,145728) 5-(28,13,97152) 5-(27,13,63360) (#15521) 5-(26,13,40320) (#15527) 5-(25,13,24960) 5-(24,13,14976)
5-(28,12,48576) 5-(27,12,33792) 5-(26,12,23040) (#15526) 5-(25,12,15360) 5-(24,12,9984) (#5209)
5-(27,11,14784) 5-(26,11,10752) 5-(25,11,7680) 5-(24,11,5376)
5-(26,10,4032) (#7401) 5-(25,10,3072) (#7400) 5-(24,10,2304) (#1352)
5-(25,9,960) (#7399) 5-(24,9,768) (#7398)
5-(24,8,192) (#5378)
- family 58, lambda = 195 containing 18 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,195)
-
10-(30,14,975) 10-(29,14,780)
10-(29,13,195)
-
9-(30,14,4095) 9-(29,14,3120) 9-(28,14,2340)
9-(29,13,975) 9-(28,13,780)
9-(28,12,195)
-
8-(30,14,15015) 8-(29,14,10920) 8-(28,14,7800) 8-(27,14,5460)
8-(29,13,4095) 8-(28,13,3120) 8-(27,13,2340)
8-(28,12,975) 8-(27,12,780)
8-(27,11,195)
-
7-(30,14,49335) 7-(29,14,34320) 7-(28,14,23400) (#11021) 7-(27,14,15600) 7-(26,14,10140)
7-(29,13,15015) 7-(28,13,10920) 7-(27,13,7800) 7-(26,13,5460)
7-(28,12,4095) 7-(27,12,3120) 7-(26,12,2340)
7-(27,11,975) 7-(26,11,780)
7-(26,10,195)
-
6-(30,14,148005) 6-(29,14,98670) 6-(28,14,64350) (#11020) 6-(27,14,40950) (#11029) 6-(26,14,25350) 6-(25,14,15210)
6-(29,13,49335) 6-(28,13,34320) 6-(27,13,23400) (#11016) 6-(26,13,15600) 6-(25,13,10140)
6-(28,12,15015) 6-(27,12,10920) 6-(26,12,7800) 6-(25,12,5460)
6-(27,11,4095) 6-(26,11,3120) 6-(25,11,2340)
6-(26,10,975) (#10558) 6-(25,10,780)
6-(25,9,195)
-
5-(30,14,411125) 5-(29,14,263120) 5-(28,14,164450) (#11025) 5-(27,14,100100) (#11026) 5-(26,14,59150) (#11033) 5-(25,14,33800) 5-(24,14,18590)
5-(29,13,148005) 5-(28,13,98670) 5-(27,13,64350) (#11017) 5-(26,13,40950) (#11019) 5-(25,13,25350) 5-(24,13,15210)
5-(28,12,49335) 5-(27,12,34320) 5-(26,12,23400) (#11018) 5-(25,12,15600) 5-(24,12,10140) (#1710)
5-(27,11,15015) 5-(26,11,10920) 5-(25,11,7800) 5-(24,11,5460)
5-(26,10,4095) (#7414) 5-(25,10,3120) (#7413) 5-(24,10,2340) (#1355)
5-(25,9,975) (#7412) 5-(24,9,780) (#7411)
5-(24,8,195) (#5381)
- family 59, lambda = 198 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,198)
-
12-(32,16,990) 12-(31,16,792)
12-(31,15,198)
-
11-(32,16,4158) 11-(31,16,3168) 11-(30,16,2376)
11-(31,15,990) 11-(30,15,792)
11-(30,14,198)
-
10-(32,16,15246) 10-(31,16,11088) 10-(30,16,7920) 10-(29,16,5544)
10-(31,15,4158) 10-(30,15,3168) 10-(29,15,2376)
10-(30,14,990) 10-(29,14,792)
10-(29,13,198)
-
9-(32,16,50094) 9-(31,16,34848) 9-(30,16,23760) 9-(29,16,15840) 9-(28,16,10296)
9-(31,15,15246) 9-(30,15,11088) 9-(29,15,7920) 9-(28,15,5544)
9-(30,14,4158) 9-(29,14,3168) 9-(28,14,2376)
9-(29,13,990) 9-(28,13,792)
9-(28,12,198)
-
8-(32,16,150282) 8-(31,16,100188) 8-(30,16,65340) 8-(29,16,41580) 8-(28,16,25740) 8-(27,16,15444)
8-(31,15,50094) 8-(30,15,34848) 8-(29,15,23760) 8-(28,15,15840) 8-(27,15,10296)
8-(30,14,15246) 8-(29,14,11088) 8-(28,14,7920) 8-(27,14,5544)
8-(29,13,4158) 8-(28,13,3168) 8-(27,13,2376)
8-(28,12,990) 8-(27,12,792)
8-(27,11,198)
-
7-(32,16,417450) 7-(31,16,267168) 7-(30,16,166980) 7-(29,16,101640) 7-(28,16,60060) 7-(27,16,34320) 7-(26,16,18876)
7-(31,15,150282) 7-(30,15,100188) 7-(29,15,65340) 7-(28,15,41580) 7-(27,15,25740) 7-(26,15,15444)
7-(30,14,50094) 7-(29,14,34848) 7-(28,14,23760) 7-(27,14,15840) 7-(26,14,10296)
7-(29,13,15246) 7-(28,13,11088) 7-(27,13,7920) 7-(26,13,5544)
7-(28,12,4158) 7-(27,12,3168) 7-(26,12,2376)
7-(27,11,990) 7-(26,11,792)
7-(26,10,198)
-
6-(32,16,1085370) 6-(31,16,667920) 6-(30,16,400752) 6-(29,16,233772) 6-(28,16,132132) 6-(27,16,72072) 6-(26,16,37752) 6-(25,16,18876)
6-(31,15,417450) 6-(30,15,267168) 6-(29,15,166980) 6-(28,15,101640) 6-(27,15,60060) 6-(26,15,34320) 6-(25,15,18876)
6-(30,14,150282) 6-(29,14,100188) 6-(28,14,65340) 6-(27,14,41580) 6-(26,14,25740) 6-(25,14,15444)
6-(29,13,50094) 6-(28,13,34848) 6-(27,13,23760) 6-(26,13,15840) 6-(25,13,10296)
6-(28,12,15246) 6-(27,12,11088) 6-(26,12,7920) 6-(25,12,5544)
6-(27,11,4158) 6-(26,11,3168) 6-(25,11,2376)
6-(26,10,990) 6-(25,10,792)
6-(25,9,198)
-
5-(32,16,2664090) (#7431) 5-(31,16,1578720) 5-(30,16,910800) 5-(29,16,510048) 5-(28,16,276276) 5-(27,16,144144) 5-(26,16,72072) 5-(25,16,34320) 5-(24,16,15444)
5-(31,15,1085370) (#7430) 5-(30,15,667920) (#7429) 5-(29,15,400752) 5-(28,15,233772) 5-(27,15,132132) 5-(26,15,72072) 5-(25,15,37752) 5-(24,15,18876)
5-(30,14,417450) (#7428) 5-(29,14,267168) (#7427) 5-(28,14,166980) (#1741) 5-(27,14,101640) 5-(26,14,60060) 5-(25,14,34320) 5-(24,14,18876)
5-(29,13,150282) (#7426) 5-(28,13,100188) (#7425) 5-(27,13,65340) (#1740) 5-(26,13,41580) (#1738) 5-(25,13,25740) 5-(24,13,15444)
5-(28,12,50094) (#7424) 5-(27,12,34848) (#7423) 5-(26,12,23760) (#1739) 5-(25,12,15840) (#1737) 5-(24,12,10296) (#1736)
5-(27,11,15246) (#7422) 5-(26,11,11088) (#7421) 5-(25,11,7920) (#1642) 5-(24,11,5544) (#1641)
5-(26,10,4158) (#7420) 5-(25,10,3168) (#7419) 5-(24,10,2376) (#1357)
5-(25,9,990) (#7418) 5-(24,9,792) (#7417)
5-(24,8,198) (#5384)
- family 60, lambda = 201 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,201)
-
8-(28,12,1005) 8-(27,12,804)
8-(27,11,201)
-
7-(28,12,4221) 7-(27,12,3216) 7-(26,12,2412)
7-(27,11,1005) 7-(26,11,804)
7-(26,10,201)
-
6-(28,12,15477) 6-(27,12,11256) 6-(26,12,8040) 6-(25,12,5628)
6-(27,11,4221) 6-(26,11,3216) 6-(25,11,2412)
6-(26,10,1005) 6-(25,10,804)
6-(25,9,201)
-
5-(28,12,50853) 5-(27,12,35376) 5-(26,12,24120) 5-(25,12,16080) 5-(24,12,10452) (#1768)
5-(27,11,15477) 5-(26,11,11256) 5-(25,11,8040) 5-(24,11,5628)
5-(26,10,4221) (#7437) 5-(25,10,3216) (#7436) 5-(24,10,2412) (#1359)
5-(25,9,1005) (#7435) 5-(24,9,804) (#7434)
5-(24,8,201) (#5389)
- family 61, lambda = 207 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,207)
-
8-(28,12,1035) 8-(27,12,828)
8-(27,11,207)
-
7-(28,12,4347) 7-(27,12,3312) 7-(26,12,2484)
7-(27,11,1035) (#13796) 7-(26,11,828)
7-(26,10,207)
-
6-(28,12,15939) 6-(27,12,11592) 6-(26,12,8280) 6-(25,12,5796)
6-(27,11,4347) (#13797) 6-(26,11,3312) (#13799) 6-(25,11,2484)
6-(26,10,1035) (#13798) 6-(25,10,828)
6-(25,9,207)
-
5-(28,12,52371) 5-(27,12,36432) 5-(26,12,24840) 5-(25,12,16560) 5-(24,12,10764) (#1819)
5-(27,11,15939) (#13803) 5-(26,11,11592) (#13804) 5-(25,11,8280) (#13810) 5-(24,11,5796)
5-(26,10,4347) (#7453) 5-(25,10,3312) (#7452) 5-(24,10,2484) (#1363)
5-(25,9,1035) (#7451) 5-(24,9,828) (#7450)
5-(24,8,207) (#5397)
- family 62, lambda = 210 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,210)
-
12-(32,16,1050) 12-(31,16,840)
12-(31,15,210)
-
11-(32,16,4410) 11-(31,16,3360) 11-(30,16,2520)
11-(31,15,1050) 11-(30,15,840)
11-(30,14,210)
-
10-(32,16,16170) 10-(31,16,11760) 10-(30,16,8400) 10-(29,16,5880)
10-(31,15,4410) 10-(30,15,3360) 10-(29,15,2520)
10-(30,14,1050) 10-(29,14,840)
10-(29,13,210)
-
9-(32,16,53130) 9-(31,16,36960) 9-(30,16,25200) 9-(29,16,16800) 9-(28,16,10920)
9-(31,15,16170) 9-(30,15,11760) 9-(29,15,8400) 9-(28,15,5880)
9-(30,14,4410) 9-(29,14,3360) 9-(28,14,2520)
9-(29,13,1050) 9-(28,13,840)
9-(28,12,210)
-
8-(32,16,159390) 8-(31,16,106260) 8-(30,16,69300) 8-(29,16,44100) 8-(28,16,27300) 8-(27,16,16380)
8-(31,15,53130) 8-(30,15,36960) 8-(29,15,25200) 8-(28,15,16800) 8-(27,15,10920)
8-(30,14,16170) 8-(29,14,11760) 8-(28,14,8400) 8-(27,14,5880)
8-(29,13,4410) 8-(28,13,3360) 8-(27,13,2520)
8-(28,12,1050) 8-(27,12,840)
8-(27,11,210)
-
7-(32,16,442750) 7-(31,16,283360) 7-(30,16,177100) 7-(29,16,107800) 7-(28,16,63700) 7-(27,16,36400) 7-(26,16,20020)
7-(31,15,159390) 7-(30,15,106260) 7-(29,15,69300) 7-(28,15,44100) 7-(27,15,27300) 7-(26,15,16380)
7-(30,14,53130) 7-(29,14,36960) 7-(28,14,25200) 7-(27,14,16800) 7-(26,14,10920)
7-(29,13,16170) 7-(28,13,11760) 7-(27,13,8400) 7-(26,13,5880)
7-(28,12,4410) 7-(27,12,3360) 7-(26,12,2520)
7-(27,11,1050) 7-(26,11,840)
7-(26,10,210)
-
6-(32,16,1151150) 6-(31,16,708400) 6-(30,16,425040) 6-(29,16,247940) 6-(28,16,140140) 6-(27,16,76440) 6-(26,16,40040) 6-(25,16,20020)
6-(31,15,442750) 6-(30,15,283360) 6-(29,15,177100) 6-(28,15,107800) 6-(27,15,63700) 6-(26,15,36400) 6-(25,15,20020)
6-(30,14,159390) 6-(29,14,106260) 6-(28,14,69300) 6-(27,14,44100) 6-(26,14,27300) 6-(25,14,16380)
6-(29,13,53130) 6-(28,13,36960) 6-(27,13,25200) 6-(26,13,16800) 6-(25,13,10920)
6-(28,12,16170) 6-(27,12,11760) 6-(26,12,8400) 6-(25,12,5880)
6-(27,11,4410) 6-(26,11,3360) 6-(25,11,2520)
6-(26,10,1050) 6-(25,10,840)
6-(25,9,210)
-
5-(32,16,2825550) (#7474) 5-(31,16,1674400) 5-(30,16,966000) 5-(29,16,540960) 5-(28,16,293020) 5-(27,16,152880) 5-(26,16,76440) 5-(25,16,36400) 5-(24,16,16380)
5-(31,15,1151150) (#7473) 5-(30,15,708400) (#7472) 5-(29,15,425040) 5-(28,15,247940) 5-(27,15,140140) 5-(26,15,76440) 5-(25,15,40040) 5-(24,15,20020)
5-(30,14,442750) (#7471) 5-(29,14,283360) (#7470) 5-(28,14,177100) (#1851) 5-(27,14,107800) 5-(26,14,63700) 5-(25,14,36400) 5-(24,14,20020)
5-(29,13,159390) (#7469) 5-(28,13,106260) (#7468) 5-(27,13,69300) (#1850) 5-(26,13,44100) (#1848) 5-(25,13,27300) 5-(24,13,16380)
5-(28,12,53130) (#7467) 5-(27,12,36960) (#7466) 5-(26,12,25200) (#1849) 5-(25,12,16800) (#1847) 5-(24,12,10920) (#1846)
5-(27,11,16170) (#7465) 5-(26,11,11760) (#7464) 5-(25,11,8400) (#1644) 5-(24,11,5880) (#1643)
5-(26,10,4410) (#7463) 5-(25,10,3360) (#7462) 5-(24,10,2520) (#1366)
5-(25,9,1050) (#7461) 5-(24,9,840) (#7460)
5-(24,8,210) (#5401)
- family 63, lambda = 213 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,213)
-
8-(28,12,1065) 8-(27,12,852)
8-(27,11,213)
-
7-(28,12,4473) 7-(27,12,3408) 7-(26,12,2556)
7-(27,11,1065) 7-(26,11,852)
7-(26,10,213)
-
6-(28,12,16401) 6-(27,12,11928) 6-(26,12,8520) 6-(25,12,5964)
6-(27,11,4473) 6-(26,11,3408) 6-(25,11,2556)
6-(26,10,1065) 6-(25,10,852)
6-(25,9,213)
-
5-(28,12,53889) 5-(27,12,37488) 5-(26,12,25560) 5-(25,12,17040) 5-(24,12,11076) (#1878)
5-(27,11,16401) 5-(26,11,11928) 5-(25,11,8520) 5-(24,11,5964)
5-(26,10,4473) (#7480) 5-(25,10,3408) (#7479) 5-(24,10,2556) (#1368)
5-(25,9,1065) (#7478) 5-(24,9,852) (#7477)
5-(24,8,213) (#5404)
- family 64, lambda = 216 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,216)
-
8-(28,12,1080) 8-(27,12,864)
8-(27,11,216)
-
7-(28,12,4536) 7-(27,12,3456) 7-(26,12,2592)
7-(27,11,1080) (#13812) 7-(26,11,864)
7-(26,10,216)
-
6-(28,12,16632) 6-(27,12,12096) 6-(26,12,8640) 6-(25,12,6048)
6-(27,11,4536) (#10639) 6-(26,11,3456) (#13814) 6-(25,11,2592)
6-(26,10,1080) (#13813) 6-(25,10,864)
6-(25,9,216)
-
5-(28,12,54648) 5-(27,12,38016) 5-(26,12,25920) 5-(25,12,17280) 5-(24,12,11232) (#1910)
5-(27,11,16632) (#10640) 5-(26,11,12096) (#10641) 5-(25,11,8640) (#13820) 5-(24,11,6048)
5-(26,10,4536) (#7491) 5-(25,10,3456) (#7490) 5-(24,10,2592) (#1370)
5-(25,9,1080) (#7489) 5-(24,9,864) (#7488)
5-(24,8,216) (#5407)
- family 65, lambda = 219 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,219)
-
8-(28,12,1095) 8-(27,12,876)
8-(27,11,219)
-
7-(28,12,4599) 7-(27,12,3504) 7-(26,12,2628)
7-(27,11,1095) 7-(26,11,876)
7-(26,10,219)
-
6-(28,12,16863) 6-(27,12,12264) 6-(26,12,8760) 6-(25,12,6132)
6-(27,11,4599) 6-(26,11,3504) 6-(25,11,2628)
6-(26,10,1095) 6-(25,10,876)
6-(25,9,219)
-
5-(28,12,55407) 5-(27,12,38544) 5-(26,12,26280) 5-(25,12,17520) 5-(24,12,11388) (#1935)
5-(27,11,16863) 5-(26,11,12264) 5-(25,11,8760) 5-(24,11,6132)
5-(26,10,4599) (#7497) 5-(25,10,3504) (#7496) 5-(24,10,2628) (#1372)
5-(25,9,1095) (#7495) 5-(24,9,876) (#7494)
5-(24,8,219) (#5410)
- family 66, lambda = 222 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,222)
-
8-(28,12,1110) 8-(27,12,888)
8-(27,11,222)
-
7-(28,12,4662) 7-(27,12,3552) 7-(26,12,2664)
7-(27,11,1110) (#13822) 7-(26,11,888)
7-(26,10,222)
-
6-(28,12,17094) 6-(27,12,12432) 6-(26,12,8880) 6-(25,12,6216)
6-(27,11,4662) (#13823) 6-(26,11,3552) (#13825) 6-(25,11,2664)
6-(26,10,1110) (#13824) 6-(25,10,888)
6-(25,9,222)
-
5-(28,12,56166) 5-(27,12,39072) 5-(26,12,26640) 5-(25,12,17760) 5-(24,12,11544) (#1963)
5-(27,11,17094) (#13829) 5-(26,11,12432) (#13830) 5-(25,11,8880) (#13836) 5-(24,11,6216)
5-(26,10,4662) (#7503) 5-(25,10,3552) (#7502) 5-(24,10,2664) (#1374)
5-(25,9,1110) (#7501) 5-(24,9,888) (#7500)
5-(24,8,222) (#5415)
- family 67, lambda = 225 containing 16 designs:
minpath=(0, 1, 0) minimal_t=5
-
12-(31,15,225)
-
11-(31,15,1125) 11-(30,15,900)
11-(30,14,225)
-
10-(31,15,4725) 10-(30,15,3600) 10-(29,15,2700)
10-(30,14,1125) 10-(29,14,900)
10-(29,13,225)
-
9-(31,15,17325) 9-(30,15,12600) 9-(29,15,9000) 9-(28,15,6300)
9-(30,14,4725) 9-(29,14,3600) 9-(28,14,2700)
9-(29,13,1125) 9-(28,13,900)
9-(28,12,225)
-
8-(31,15,56925) 8-(30,15,39600) 8-(29,15,27000) 8-(28,15,18000) 8-(27,15,11700)
8-(30,14,17325) 8-(29,14,12600) 8-(28,14,9000) 8-(27,14,6300)
8-(29,13,4725) 8-(28,13,3600) 8-(27,13,2700)
8-(28,12,1125) 8-(27,12,900)
8-(27,11,225)
-
7-(31,15,170775) 7-(30,15,113850) 7-(29,15,74250) 7-(28,15,47250) 7-(27,15,29250) 7-(26,15,17550)
7-(30,14,56925) 7-(29,14,39600) 7-(28,14,27000) 7-(27,14,18000) 7-(26,14,11700)
7-(29,13,17325) 7-(28,13,12600) 7-(27,13,9000) 7-(26,13,6300)
7-(28,12,4725) 7-(27,12,3600) 7-(26,12,2700)
7-(27,11,1125) 7-(26,11,900)
7-(26,10,225)
-
6-(31,15,474375) 6-(30,15,303600) 6-(29,15,189750) 6-(28,15,115500) 6-(27,15,68250) 6-(26,15,39000) 6-(25,15,21450)
6-(30,14,170775) 6-(29,14,113850) 6-(28,14,74250) 6-(27,14,47250) 6-(26,14,29250) 6-(25,14,17550)
6-(29,13,56925) 6-(28,13,39600) (#11819) 6-(27,13,27000) 6-(26,13,18000) 6-(25,13,11700)
6-(28,12,17325) 6-(27,12,12600) 6-(26,12,9000) 6-(25,12,6300)
6-(27,11,4725) 6-(26,11,3600) 6-(25,11,2700)
6-(26,10,1125) (#10472) 6-(25,10,900)
6-(25,9,225) (#10431)
-
5-(31,15,1233375) 5-(30,15,759000) (#11830) 5-(29,15,455400) 5-(28,15,265650) 5-(27,15,150150) 5-(26,15,81900) 5-(25,15,42900) 5-(24,15,21450)
5-(30,14,474375) 5-(29,14,303600) (#11828) 5-(28,14,189750) (#11826) 5-(27,14,115500) 5-(26,14,68250) 5-(25,14,39000) 5-(24,14,21450)
5-(29,13,170775) 5-(28,13,113850) (#11820) 5-(27,13,74250) (#11822) 5-(26,13,47250) 5-(25,13,29250) 5-(24,13,17550)
5-(28,12,56925) 5-(27,12,39600) (#11821) 5-(26,12,27000) 5-(25,12,18000) 5-(24,12,11700) (#1989)
5-(27,11,17325) 5-(26,11,12600) 5-(25,11,9000) 5-(24,11,6300)
5-(26,10,4725) (#7511) 5-(25,10,3600) (#7510) 5-(24,10,2700) (#1377)
5-(25,9,1125) (#7509) 5-(24,9,900) (#7508)
5-(24,8,225) (#5418)
- family 68, lambda = 231 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,231)
-
12-(32,16,1155) 12-(31,16,924)
12-(31,15,231)
-
11-(32,16,4851) 11-(31,16,3696) 11-(30,16,2772)
11-(31,15,1155) 11-(30,15,924)
11-(30,14,231)
-
10-(32,16,17787) 10-(31,16,12936) 10-(30,16,9240) 10-(29,16,6468)
10-(31,15,4851) 10-(30,15,3696) 10-(29,15,2772)
10-(30,14,1155) 10-(29,14,924)
10-(29,13,231)
-
9-(32,16,58443) 9-(31,16,40656) 9-(30,16,27720) 9-(29,16,18480) 9-(28,16,12012)
9-(31,15,17787) 9-(30,15,12936) 9-(29,15,9240) 9-(28,15,6468)
9-(30,14,4851) 9-(29,14,3696) 9-(28,14,2772)
9-(29,13,1155) 9-(28,13,924)
9-(28,12,231)
-
8-(32,16,175329) 8-(31,16,116886) 8-(30,16,76230) 8-(29,16,48510) 8-(28,16,30030) 8-(27,16,18018)
8-(31,15,58443) 8-(30,15,40656) 8-(29,15,27720) 8-(28,15,18480) 8-(27,15,12012)
8-(30,14,17787) 8-(29,14,12936) 8-(28,14,9240) 8-(27,14,6468)
8-(29,13,4851) 8-(28,13,3696) 8-(27,13,2772)
8-(28,12,1155) 8-(27,12,924)
8-(27,11,231)
-
7-(32,16,487025) 7-(31,16,311696) 7-(30,16,194810) 7-(29,16,118580) 7-(28,16,70070) 7-(27,16,40040) 7-(26,16,22022)
7-(31,15,175329) 7-(30,15,116886) 7-(29,15,76230) 7-(28,15,48510) 7-(27,15,30030) 7-(26,15,18018)
7-(30,14,58443) 7-(29,14,40656) 7-(28,14,27720) 7-(27,14,18480) 7-(26,14,12012)
7-(29,13,17787) 7-(28,13,12936) 7-(27,13,9240) 7-(26,13,6468)
7-(28,12,4851) 7-(27,12,3696) 7-(26,12,2772)
7-(27,11,1155) 7-(26,11,924)
7-(26,10,231)
-
6-(32,16,1266265) 6-(31,16,779240) 6-(30,16,467544) 6-(29,16,272734) 6-(28,16,154154) 6-(27,16,84084) 6-(26,16,44044) 6-(25,16,22022)
6-(31,15,487025) 6-(30,15,311696) 6-(29,15,194810) 6-(28,15,118580) 6-(27,15,70070) 6-(26,15,40040) 6-(25,15,22022)
6-(30,14,175329) 6-(29,14,116886) 6-(28,14,76230) 6-(27,14,48510) 6-(26,14,30030) 6-(25,14,18018)
6-(29,13,58443) 6-(28,13,40656) 6-(27,13,27720) 6-(26,13,18480) 6-(25,13,12012)
6-(28,12,17787) 6-(27,12,12936) 6-(26,12,9240) 6-(25,12,6468)
6-(27,11,4851) 6-(26,11,3696) 6-(25,11,2772)
6-(26,10,1155) 6-(25,10,924)
6-(25,9,231)
-
5-(32,16,3108105) (#7539) 5-(31,16,1841840) 5-(30,16,1062600) 5-(29,16,595056) 5-(28,16,322322) 5-(27,16,168168) 5-(26,16,84084) 5-(25,16,40040) 5-(24,16,18018)
5-(31,15,1266265) (#7538) 5-(30,15,779240) (#7537) 5-(29,15,467544) 5-(28,15,272734) 5-(27,15,154154) 5-(26,15,84084) 5-(25,15,44044) 5-(24,15,22022)
5-(30,14,487025) (#7536) 5-(29,14,311696) (#7535) 5-(28,14,194810) (#2052) 5-(27,14,118580) 5-(26,14,70070) 5-(25,14,40040) 5-(24,14,22022)
5-(29,13,175329) (#7534) 5-(28,13,116886) (#7533) 5-(27,13,76230) (#2051) 5-(26,13,48510) (#2049) 5-(25,13,30030) 5-(24,13,18018)
5-(28,12,58443) (#7532) 5-(27,12,40656) (#7531) 5-(26,12,27720) (#2050) 5-(25,12,18480) (#2048) 5-(24,12,12012) (#2047)
5-(27,11,17787) (#7530) 5-(26,11,12936) (#7529) 5-(25,11,9240) (#1650) 5-(24,11,6468) (#1649)
5-(26,10,4851) (#7528) 5-(25,10,3696) (#7527) 5-(24,10,2772) (#1381)
5-(25,9,1155) (#7526) 5-(24,9,924) (#7525)
5-(24,8,231) (#5425)
- family 69, lambda = 234 containing 33 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,234)
-
12-(32,16,1170) 12-(31,16,936)
12-(31,15,234)
-
11-(32,16,4914) 11-(31,16,3744) 11-(30,16,2808)
11-(31,15,1170) 11-(30,15,936)
11-(30,14,234)
-
10-(32,16,18018) 10-(31,16,13104) 10-(30,16,9360) 10-(29,16,6552)
10-(31,15,4914) 10-(30,15,3744) 10-(29,15,2808)
10-(30,14,1170) 10-(29,14,936)
10-(29,13,234)
-
9-(32,16,59202) 9-(31,16,41184) 9-(30,16,28080) 9-(29,16,18720) 9-(28,16,12168)
9-(31,15,18018) 9-(30,15,13104) 9-(29,15,9360) 9-(28,15,6552)
9-(30,14,4914) 9-(29,14,3744) 9-(28,14,2808)
9-(29,13,1170) 9-(28,13,936)
9-(28,12,234)
-
8-(32,16,177606) 8-(31,16,118404) 8-(30,16,77220) 8-(29,16,49140) 8-(28,16,30420) 8-(27,16,18252)
8-(31,15,59202) 8-(30,15,41184) 8-(29,15,28080) 8-(28,15,18720) 8-(27,15,12168)
8-(30,14,18018) 8-(29,14,13104) 8-(28,14,9360) 8-(27,14,6552)
8-(29,13,4914) 8-(28,13,3744) 8-(27,13,2808)
8-(28,12,1170) 8-(27,12,936)
8-(27,11,234)
-
7-(32,16,493350) 7-(31,16,315744) 7-(30,16,197340) 7-(29,16,120120) 7-(28,16,70980) 7-(27,16,40560) 7-(26,16,22308)
7-(31,15,177606) 7-(30,15,118404) 7-(29,15,77220) 7-(28,15,49140) 7-(27,15,30420) 7-(26,15,18252)
7-(30,14,59202) 7-(29,14,41184) 7-(28,14,28080) (#11061) 7-(27,14,18720) 7-(26,14,12168)
7-(29,13,18018) 7-(28,13,13104) 7-(27,13,9360) 7-(26,13,6552)
7-(28,12,4914) 7-(27,12,3744) 7-(26,12,2808)
7-(27,11,1170) (#13838) 7-(26,11,936)
7-(26,10,234)
-
6-(32,16,1282710) 6-(31,16,789360) 6-(30,16,473616) 6-(29,16,276276) 6-(28,16,156156) 6-(27,16,85176) 6-(26,16,44616) 6-(25,16,22308)
6-(31,15,493350) 6-(30,15,315744) 6-(29,15,197340) 6-(28,15,120120) 6-(27,15,70980) 6-(26,15,40560) 6-(25,15,22308)
6-(30,14,177606) 6-(29,14,118404) 6-(28,14,77220) (#11060) 6-(27,14,49140) (#11069) 6-(26,14,30420) 6-(25,14,18252)
6-(29,13,59202) 6-(28,13,41184) 6-(27,13,28080) (#11056) 6-(26,13,18720) 6-(25,13,12168)
6-(28,12,18018) 6-(27,12,13104) 6-(26,12,9360) 6-(25,12,6552)
6-(27,11,4914) (#13839) 6-(26,11,3744) (#13840) 6-(25,11,2808)
6-(26,10,1170) (#10475) 6-(25,10,936)
6-(25,9,234)
-
5-(32,16,3148470) (#13866) 5-(31,16,1865760) 5-(30,16,1076400) 5-(29,16,602784) 5-(28,16,326508) 5-(27,16,170352) 5-(26,16,85176) 5-(25,16,40560) 5-(24,16,18252)
5-(31,15,1282710) (#13864) 5-(30,15,789360) (#13861) 5-(29,15,473616) 5-(28,15,276276) 5-(27,15,156156) 5-(26,15,85176) 5-(25,15,44616) 5-(24,15,22308)
5-(30,14,493350) (#13860) 5-(29,14,315744) (#13857) 5-(28,14,197340) (#11065) 5-(27,14,120120) (#11066) 5-(26,14,70980) (#11073) 5-(25,14,40560) 5-(24,14,22308)
5-(29,13,177606) (#13856) 5-(28,13,118404) (#13853) 5-(27,13,77220) (#11057) 5-(26,13,49140) (#11059) 5-(25,13,30420) 5-(24,13,18252)
5-(28,12,59202) (#13852) 5-(27,12,41184) (#13850) 5-(26,12,28080) (#11058) 5-(25,12,18720) 5-(24,12,12168) (#2078)
5-(27,11,18018) (#13844) 5-(26,11,13104) (#13845) 5-(25,11,9360) (#13848) 5-(24,11,6552)
5-(26,10,4914) (#7545) 5-(25,10,3744) (#7544) 5-(24,10,2808) (#1383)
5-(25,9,1170) (#7543) 5-(24,9,936) (#7542)
5-(24,8,234) (#5428)
- family 70, lambda = 237 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,237)
-
8-(28,12,1185) 8-(27,12,948)
8-(27,11,237)
-
7-(28,12,4977) 7-(27,12,3792) 7-(26,12,2844)
7-(27,11,1185) 7-(26,11,948)
7-(26,10,237)
-
6-(28,12,18249) 6-(27,12,13272) 6-(26,12,9480) 6-(25,12,6636)
6-(27,11,4977) 6-(26,11,3792) 6-(25,11,2844)
6-(26,10,1185) 6-(25,10,948)
6-(25,9,237)
-
5-(28,12,59961) 5-(27,12,41712) 5-(26,12,28440) 5-(25,12,18960) 5-(24,12,12324) (#2104)
5-(27,11,18249) 5-(26,11,13272) 5-(25,11,9480) 5-(24,11,6636)
5-(26,10,4977) (#7551) 5-(25,10,3792) (#7550) 5-(24,10,2844) (#1385)
5-(25,9,1185) (#7549) 5-(24,9,948) (#7548)
5-(24,8,237) (#5431)
- family 71, lambda = 240 containing 34 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,240)
-
12-(32,16,1200) 12-(31,16,960)
12-(31,15,240)
-
11-(32,16,5040) 11-(31,16,3840) 11-(30,16,2880)
11-(31,15,1200) 11-(30,15,960)
11-(30,14,240)
-
10-(32,16,18480) 10-(31,16,13440) 10-(30,16,9600) 10-(29,16,6720)
10-(31,15,5040) 10-(30,15,3840) 10-(29,15,2880)
10-(30,14,1200) 10-(29,14,960)
10-(29,13,240)
-
9-(32,16,60720) 9-(31,16,42240) 9-(30,16,28800) 9-(29,16,19200) 9-(28,16,12480)
9-(31,15,18480) 9-(30,15,13440) 9-(29,15,9600) 9-(28,15,6720)
9-(30,14,5040) 9-(29,14,3840) 9-(28,14,2880)
9-(29,13,1200) 9-(28,13,960)
9-(28,12,240)
-
8-(32,16,182160) 8-(31,16,121440) 8-(30,16,79200) 8-(29,16,50400) 8-(28,16,31200) 8-(27,16,18720)
8-(31,15,60720) 8-(30,15,42240) 8-(29,15,28800) 8-(28,15,19200) 8-(27,15,12480)
8-(30,14,18480) 8-(29,14,13440) 8-(28,14,9600) 8-(27,14,6720)
8-(29,13,5040) 8-(28,13,3840) 8-(27,13,2880)
8-(28,12,1200) 8-(27,12,960)
8-(27,11,240)
-
7-(32,16,506000) 7-(31,16,323840) 7-(30,16,202400) 7-(29,16,123200) 7-(28,16,72800) 7-(27,16,41600) 7-(26,16,22880)
7-(31,15,182160) 7-(30,15,121440) 7-(29,15,79200) 7-(28,15,50400) 7-(27,15,31200) 7-(26,15,18720)
7-(30,14,60720) 7-(29,14,42240) 7-(28,14,28800) 7-(27,14,19200) 7-(26,14,12480)
7-(29,13,18480) 7-(28,13,13440) 7-(27,13,9600) 7-(26,13,6720)
7-(28,12,5040) (#14669) 7-(27,12,3840) (#14665) 7-(26,12,2880)
7-(27,11,1200) (#13868) 7-(26,11,960)
7-(26,10,240)
-
6-(32,16,1315600) 6-(31,16,809600) 6-(30,16,485760) 6-(29,16,283360) 6-(28,16,160160) 6-(27,16,87360) 6-(26,16,45760) 6-(25,16,22880)
6-(31,15,506000) 6-(30,15,323840) 6-(29,15,202400) 6-(28,15,123200) 6-(27,15,72800) 6-(26,15,41600) 6-(25,15,22880)
6-(30,14,182160) 6-(29,14,121440) 6-(28,14,79200) 6-(27,14,50400) 6-(26,14,31200) 6-(25,14,18720)
6-(29,13,60720) 6-(28,13,42240) 6-(27,13,28800) 6-(26,13,19200) 6-(25,13,12480)
6-(28,12,18480) (#13874) 6-(27,12,13440) (#10787) 6-(26,12,9600) (#14666) 6-(25,12,6720)
6-(27,11,5040) (#13869) 6-(26,11,3840) (#13870) 6-(25,11,2880)
6-(26,10,1200) (#10479) 6-(25,10,960)
6-(25,9,240) (#10434)
-
5-(32,16,3229200) (#14691) 5-(31,16,1913600) 5-(30,16,1104000) 5-(29,16,618240) 5-(28,16,334880) 5-(27,16,174720) 5-(26,16,87360) 5-(25,16,41600) 5-(24,16,18720)
5-(31,15,1315600) (#14689) 5-(30,15,809600) (#14685) 5-(29,15,485760) 5-(28,15,283360) 5-(27,15,160160) 5-(26,15,87360) 5-(25,15,45760) 5-(24,15,22880)
5-(30,14,506000) (#14686) 5-(29,14,323840) (#14681) 5-(28,14,202400) (#14677) 5-(27,14,123200) 5-(26,14,72800) 5-(25,14,41600) 5-(24,14,22880)
5-(29,13,182160) (#14682) 5-(28,13,121440) (#14678) 5-(27,13,79200) (#14675) 5-(26,13,50400) (#14673) 5-(25,13,31200) 5-(24,13,18720)
5-(28,12,60720) (#10796) 5-(27,12,42240) (#10788) 5-(26,12,28800) (#10790) 5-(25,12,19200) (#14670) 5-(24,12,12480) (#2131)
5-(27,11,18480) (#10794) 5-(26,11,13440) (#10789) 5-(25,11,9600) (#13875) 5-(24,11,6720)
5-(26,10,5040) (#7561) 5-(25,10,3840) (#7560) 5-(24,10,2880) (#1388)
5-(25,9,1200) (#7559) 5-(24,9,960) (#7558)
5-(24,8,240) (#5436)
- family 72, lambda = 243 containing 34 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,243)
-
12-(32,16,1215) 12-(31,16,972)
12-(31,15,243)
-
11-(32,16,5103) 11-(31,16,3888) 11-(30,16,2916)
11-(31,15,1215) 11-(30,15,972)
11-(30,14,243)
-
10-(32,16,18711) 10-(31,16,13608) 10-(30,16,9720) 10-(29,16,6804)
10-(31,15,5103) 10-(30,15,3888) 10-(29,15,2916)
10-(30,14,1215) 10-(29,14,972)
10-(29,13,243)
-
9-(32,16,61479) 9-(31,16,42768) 9-(30,16,29160) 9-(29,16,19440) 9-(28,16,12636)
9-(31,15,18711) 9-(30,15,13608) 9-(29,15,9720) 9-(28,15,6804)
9-(30,14,5103) 9-(29,14,3888) 9-(28,14,2916)
9-(29,13,1215) 9-(28,13,972)
9-(28,12,243)
-
8-(32,16,184437) 8-(31,16,122958) 8-(30,16,80190) 8-(29,16,51030) 8-(28,16,31590) 8-(27,16,18954)
8-(31,15,61479) 8-(30,15,42768) 8-(29,15,29160) 8-(28,15,19440) 8-(27,15,12636)
8-(30,14,18711) 8-(29,14,13608) 8-(28,14,9720) 8-(27,14,6804)
8-(29,13,5103) 8-(28,13,3888) 8-(27,13,2916)
8-(28,12,1215) 8-(27,12,972)
8-(27,11,243)
-
7-(32,16,512325) 7-(31,16,327888) 7-(30,16,204930) 7-(29,16,124740) 7-(28,16,73710) 7-(27,16,42120) 7-(26,16,23166)
7-(31,15,184437) 7-(30,15,122958) 7-(29,15,80190) 7-(28,15,51030) 7-(27,15,31590) 7-(26,15,18954)
7-(30,14,61479) 7-(29,14,42768) 7-(28,14,29160) 7-(27,14,19440) 7-(26,14,12636)
7-(29,13,18711) 7-(28,13,13608) 7-(27,13,9720) 7-(26,13,6804)
7-(28,12,5103) (#14697) 7-(27,12,3888) (#14693) 7-(26,12,2916)
7-(27,11,1215) (#13877) 7-(26,11,972)
7-(26,10,243)
-
6-(32,16,1332045) 6-(31,16,819720) 6-(30,16,491832) 6-(29,16,286902) 6-(28,16,162162) 6-(27,16,88452) 6-(26,16,46332) 6-(25,16,23166)
6-(31,15,512325) 6-(30,15,327888) 6-(29,15,204930) 6-(28,15,124740) 6-(27,15,73710) 6-(26,15,42120) 6-(25,15,23166)
6-(30,14,184437) 6-(29,14,122958) 6-(28,14,80190) 6-(27,14,51030) 6-(26,14,31590) 6-(25,14,18954)
6-(29,13,61479) 6-(28,13,42768) 6-(27,13,29160) 6-(26,13,19440) 6-(25,13,12636)
6-(28,12,18711) (#10801) 6-(27,12,13608) (#10798) 6-(26,12,9720) (#14694) 6-(25,12,6804)
6-(27,11,5103) (#10645) 6-(26,11,3888) (#13879) 6-(25,11,2916)
6-(26,10,1215) (#13878) 6-(25,10,972)
6-(25,9,243)
-
5-(32,16,3269565) (#7578) 5-(31,16,1937520) 5-(30,16,1117800) 5-(29,16,625968) 5-(28,16,339066) 5-(27,16,176904) 5-(26,16,88452) 5-(25,16,42120) 5-(24,16,18954)
5-(31,15,1332045) (#7577) 5-(30,15,819720) (#7576) 5-(29,15,491832) 5-(28,15,286902) 5-(27,15,162162) 5-(26,15,88452) 5-(25,15,46332) 5-(24,15,23166)
5-(30,14,512325) (#7575) 5-(29,14,327888) (#7574) 5-(28,14,204930) (#2163) 5-(27,14,124740) 5-(26,14,73710) 5-(25,14,42120) 5-(24,14,23166)
5-(29,13,184437) (#7573) 5-(28,13,122958) (#7572) 5-(27,13,80190) (#2162) 5-(26,13,51030) (#2160) 5-(25,13,31590) 5-(24,13,18954)
5-(28,12,61479) (#7571) 5-(27,12,42768) (#7570) 5-(26,12,29160) (#2161) 5-(25,12,19440) (#2159) 5-(24,12,12636) (#2158)
5-(27,11,18711) (#7569) 5-(26,11,13608) (#7568) 5-(25,11,9720) (#1652) 5-(24,11,6804) (#1651)
5-(26,10,5103) (#7567) 5-(25,10,3888) (#7566) 5-(24,10,2916) (#1390)
5-(25,9,1215) (#7565) 5-(24,9,972) (#7564)
5-(24,8,243) (#5439)
- family 73, lambda = 246 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,246)
-
8-(28,12,1230) 8-(27,12,984)
8-(27,11,246)
-
7-(28,12,5166) 7-(27,12,3936) 7-(26,12,2952)
7-(27,11,1230) 7-(26,11,984)
7-(26,10,246)
-
6-(28,12,18942) 6-(27,12,13776) 6-(26,12,9840) 6-(25,12,6888)
6-(27,11,5166) 6-(26,11,3936) 6-(25,11,2952)
6-(26,10,1230) 6-(25,10,984)
6-(25,9,246)
-
5-(28,12,62238) 5-(27,12,43296) 5-(26,12,29520) 5-(25,12,19680) 5-(24,12,12792) (#2189)
5-(27,11,18942) 5-(26,11,13776) 5-(25,11,9840) 5-(24,11,6888)
5-(26,10,5166) (#7584) 5-(25,10,3936) (#7583) 5-(24,10,2952) (#1392)
5-(25,9,1230) (#7582) 5-(24,9,984) (#7581)
5-(24,8,246) (#5442)
- family 74, lambda = 249 containing 9 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,249)
-
8-(28,12,1245) 8-(27,12,996)
8-(27,11,249)
-
7-(28,12,5229) 7-(27,12,3984) 7-(26,12,2988)
7-(27,11,1245) 7-(26,11,996)
7-(26,10,249)
-
6-(28,12,19173) 6-(27,12,13944) 6-(26,12,9960) 6-(25,12,6972)
6-(27,11,5229) 6-(26,11,3984) 6-(25,11,2988)
6-(26,10,1245) (#10482) 6-(25,10,996)
6-(25,9,249) (#10437)
-
5-(28,12,62997) 5-(27,12,43824) 5-(26,12,29880) 5-(25,12,19920) 5-(24,12,12948) (#2221)
5-(27,11,19173) 5-(26,11,13944) 5-(25,11,9960) 5-(24,11,6972)
5-(26,10,5229) (#7595) 5-(25,10,3984) (#7594) 5-(24,10,2988) (#1394)
5-(25,9,1245) (#7593) 5-(24,9,996) (#7592)
5-(24,8,249) (#5445)
- family 75, lambda = 252 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,252)
-
10-(30,14,1260) 10-(29,14,1008)
10-(29,13,252)
-
9-(30,14,5292) 9-(29,14,4032) 9-(28,14,3024)
9-(29,13,1260) 9-(28,13,1008)
9-(28,12,252)
-
8-(30,14,19404) 8-(29,14,14112) 8-(28,14,10080) 8-(27,14,7056)
8-(29,13,5292) 8-(28,13,4032) 8-(27,13,3024)
8-(28,12,1260) 8-(27,12,1008)
8-(27,11,252)
-
7-(30,14,63756) 7-(29,14,44352) 7-(28,14,30240) (#15533) 7-(27,14,20160) 7-(26,14,13104)
7-(29,13,19404) 7-(28,13,14112) 7-(27,13,10080) 7-(26,13,7056)
7-(28,12,5292) 7-(27,12,4032) 7-(26,12,3024)
7-(27,11,1260) 7-(26,11,1008)
7-(26,10,252)
-
6-(30,14,191268) 6-(29,14,127512) 6-(28,14,83160) (#15534) 6-(27,14,52920) (#15536) 6-(26,14,32760) 6-(25,14,19656)
6-(29,13,63756) 6-(28,13,44352) 6-(27,13,30240) (#15535) 6-(26,13,20160) 6-(25,13,13104)
6-(28,12,19404) 6-(27,12,14112) 6-(26,12,10080) 6-(25,12,7056)
6-(27,11,5292) 6-(26,11,4032) 6-(25,11,3024)
6-(26,10,1260) 6-(25,10,1008)
6-(25,9,252)
-
5-(30,14,531300) 5-(29,14,340032) 5-(28,14,212520) (#15540) 5-(27,14,129360) (#15542) 5-(26,14,76440) (#15550) 5-(25,14,43680) 5-(24,14,24024)
5-(29,13,191268) 5-(28,13,127512) 5-(27,13,83160) (#15541) 5-(26,13,52920) (#15547) 5-(25,13,32760) 5-(24,13,19656)
5-(28,12,63756) 5-(27,12,44352) 5-(26,12,30240) (#15546) 5-(25,12,20160) 5-(24,12,13104) (#2248)
5-(27,11,19404) 5-(26,11,14112) 5-(25,11,10080) 5-(24,11,7056)
5-(26,10,5292) (#6195) 5-(25,10,4032) (#6194) 5-(24,10,3024) (#1396)
5-(25,9,1260) (#6193) 5-(24,9,1008) (#6192)
5-(24,8,252) (#5449)
- family 76, lambda = 258 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,258)
-
8-(28,12,1290) 8-(27,12,1032)
8-(27,11,258)
-
7-(28,12,5418) 7-(27,12,4128) 7-(26,12,3096)
7-(27,11,1290) 7-(26,11,1032)
7-(26,10,258)
-
6-(28,12,19866) 6-(27,12,14448) 6-(26,12,10320) 6-(25,12,7224)
6-(27,11,5418) 6-(26,11,4128) 6-(25,11,3096)
6-(26,10,1290) 6-(25,10,1032)
6-(25,9,258)
-
5-(28,12,65274) 5-(27,12,45408) 5-(26,12,30960) 5-(25,12,20640) 5-(24,12,13416) (#2301)
5-(27,11,19866) 5-(26,11,14448) 5-(25,11,10320) 5-(24,11,7224)
5-(26,10,5418) (#6211) 5-(25,10,4128) (#6210) 5-(24,10,3096) (#1400)
5-(25,9,1290) (#6209) 5-(24,9,1032) (#6208)
5-(24,8,258) (#5457)
- family 77, lambda = 261 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,261)
-
8-(28,12,1305) 8-(27,12,1044)
8-(27,11,261)
-
7-(28,12,5481) 7-(27,12,4176) 7-(26,12,3132)
7-(27,11,1305) (#13886) 7-(26,11,1044)
7-(26,10,261)
-
6-(28,12,20097) 6-(27,12,14616) 6-(26,12,10440) 6-(25,12,7308)
6-(27,11,5481) (#10649) 6-(26,11,4176) (#13888) 6-(25,11,3132)
6-(26,10,1305) (#13887) 6-(25,10,1044)
6-(25,9,261)
-
5-(28,12,66033) 5-(27,12,45936) 5-(26,12,31320) 5-(25,12,20880) 5-(24,12,13572) (#2333)
5-(27,11,20097) (#10650) 5-(26,11,14616) (#10651) 5-(25,11,10440) (#13894) 5-(24,11,7308)
5-(26,10,5481) (#6222) 5-(25,10,4176) (#6221) 5-(24,10,3132) (#1402)
5-(25,9,1305) (#6220) 5-(24,9,1044) (#6219)
5-(24,8,261) (#5461)
- family 78, lambda = 264 containing 25 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,264)
-
12-(32,16,1320) 12-(31,16,1056)
12-(31,15,264)
-
11-(32,16,5544) 11-(31,16,4224) 11-(30,16,3168)
11-(31,15,1320) 11-(30,15,1056)
11-(30,14,264)
-
10-(32,16,20328) 10-(31,16,14784) 10-(30,16,10560) 10-(29,16,7392)
10-(31,15,5544) 10-(30,15,4224) 10-(29,15,3168)
10-(30,14,1320) 10-(29,14,1056)
10-(29,13,264)
-
9-(32,16,66792) 9-(31,16,46464) 9-(30,16,31680) 9-(29,16,21120) 9-(28,16,13728)
9-(31,15,20328) 9-(30,15,14784) 9-(29,15,10560) 9-(28,15,7392)
9-(30,14,5544) 9-(29,14,4224) 9-(28,14,3168)
9-(29,13,1320) 9-(28,13,1056)
9-(28,12,264)
-
8-(32,16,200376) 8-(31,16,133584) 8-(30,16,87120) 8-(29,16,55440) 8-(28,16,34320) 8-(27,16,20592)
8-(31,15,66792) 8-(30,15,46464) 8-(29,15,31680) 8-(28,15,21120) 8-(27,15,13728)
8-(30,14,20328) 8-(29,14,14784) 8-(28,14,10560) 8-(27,14,7392)
8-(29,13,5544) 8-(28,13,4224) 8-(27,13,3168)
8-(28,12,1320) 8-(27,12,1056)
8-(27,11,264)
-
7-(32,16,556600) 7-(31,16,356224) 7-(30,16,222640) 7-(29,16,135520) 7-(28,16,80080) 7-(27,16,45760) 7-(26,16,25168)
7-(31,15,200376) 7-(30,15,133584) 7-(29,15,87120) 7-(28,15,55440) 7-(27,15,34320) 7-(26,15,20592)
7-(30,14,66792) 7-(29,14,46464) 7-(28,14,31680) 7-(27,14,21120) 7-(26,14,13728)
7-(29,13,20328) 7-(28,13,14784) 7-(27,13,10560) 7-(26,13,7392)
7-(28,12,5544) 7-(27,12,4224) 7-(26,12,3168)
7-(27,11,1320) 7-(26,11,1056)
7-(26,10,264)
-
6-(32,16,1447160) 6-(31,16,890560) 6-(30,16,534336) 6-(29,16,311696) 6-(28,16,176176) 6-(27,16,96096) 6-(26,16,50336) 6-(25,16,25168)
6-(31,15,556600) 6-(30,15,356224) 6-(29,15,222640) 6-(28,15,135520) 6-(27,15,80080) 6-(26,15,45760) 6-(25,15,25168)
6-(30,14,200376) 6-(29,14,133584) 6-(28,14,87120) 6-(27,14,55440) 6-(26,14,34320) 6-(25,14,20592)
6-(29,13,66792) 6-(28,13,46464) 6-(27,13,31680) 6-(26,13,21120) 6-(25,13,13728)
6-(28,12,20328) 6-(27,12,14784) 6-(26,12,10560) 6-(25,12,7392)
6-(27,11,5544) 6-(26,11,4224) 6-(25,11,3168)
6-(26,10,1320) 6-(25,10,1056)
6-(25,9,264)
-
5-(32,16,3552120) (#6239) 5-(31,16,2104960) 5-(30,16,1214400) 5-(29,16,680064) 5-(28,16,368368) 5-(27,16,192192) 5-(26,16,96096) 5-(25,16,45760) 5-(24,16,20592)
5-(31,15,1447160) (#6238) 5-(30,15,890560) (#6237) 5-(29,15,534336) 5-(28,15,311696) 5-(27,15,176176) 5-(26,15,96096) 5-(25,15,50336) 5-(24,15,25168)
5-(30,14,556600) (#6236) 5-(29,14,356224) (#6235) 5-(28,14,222640) (#2365) 5-(27,14,135520) 5-(26,14,80080) 5-(25,14,45760) 5-(24,14,25168)
5-(29,13,200376) (#6234) 5-(28,13,133584) (#6233) 5-(27,13,87120) (#2364) 5-(26,13,55440) (#2362) 5-(25,13,34320) 5-(24,13,20592)
5-(28,12,66792) (#6232) 5-(27,12,46464) (#6231) 5-(26,12,31680) (#2363) 5-(25,12,21120) (#2361) 5-(24,12,13728) (#2360)
5-(27,11,20328) (#6230) 5-(26,11,14784) (#6229) 5-(25,11,10560) (#1658) 5-(24,11,7392) (#1657)
5-(26,10,5544) (#6228) 5-(25,10,4224) (#6227) 5-(24,10,3168) (#1404)
5-(25,9,1320) (#6226) 5-(24,9,1056) (#6225)
5-(24,8,264) (#5464)
- family 79, lambda = 267 containing 72 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,267)
-
12-(32,16,1335) 12-(31,16,1068)
12-(31,15,267)
-
11-(32,16,5607) 11-(31,16,4272) 11-(30,16,3204)
11-(31,15,1335) 11-(30,15,1068)
11-(30,14,267)
-
10-(32,16,20559) 10-(31,16,14952) 10-(30,16,10680) 10-(29,16,7476)
10-(31,15,5607) 10-(30,15,4272) 10-(29,15,3204)
10-(30,14,1335) 10-(29,14,1068)
10-(29,13,267)
-
9-(32,16,67551) 9-(31,16,46992) 9-(30,16,32040) 9-(29,16,21360) 9-(28,16,13884)
9-(31,15,20559) 9-(30,15,14952) 9-(29,15,10680) 9-(28,15,7476)
9-(30,14,5607) 9-(29,14,4272) 9-(28,14,3204) (#17647)
9-(29,13,1335) 9-(28,13,1068)
9-(28,12,267)
-
8-(32,16,202653) 8-(31,16,135102) 8-(30,16,88110) 8-(29,16,56070) 8-(28,16,34710) 8-(27,16,20826)
8-(31,15,67551) 8-(30,15,46992) 8-(29,15,32040) 8-(28,15,21360) 8-(27,15,13884)
8-(30,14,20559) 8-(29,14,14952) 8-(28,14,10680) (#17646) 8-(27,14,7476) (#17667)
8-(29,13,5607) 8-(28,13,4272) 8-(27,13,3204) (#17642)
8-(28,12,1335) 8-(27,12,1068)
8-(27,11,267)
-
7-(32,16,562925) (#17747) 7-(31,16,360272) 7-(30,16,225170) 7-(29,16,137060) 7-(28,16,80990) 7-(27,16,46280) 7-(26,16,25454)
7-(31,15,202653) 7-(30,15,135102) (#17730) 7-(29,15,88110) 7-(28,15,56070) 7-(27,15,34710) 7-(26,15,20826)
7-(30,14,67551) 7-(29,14,46992) 7-(28,14,32040) (#17654) 7-(27,14,21360) (#17664) 7-(26,14,13884) (#17695)
7-(29,13,20559) 7-(28,13,14952) 7-(27,13,10680) (#17643) 7-(26,13,7476) (#17645)
7-(28,12,5607) 7-(27,12,4272) 7-(26,12,3204) (#17644)
7-(27,11,1335) (#13896) 7-(26,11,1068)
7-(26,10,267)
-
6-(32,16,1463605) (#17746) 6-(31,16,900680) (#17756) 6-(30,16,540408) 6-(29,16,315238) 6-(28,16,178178) 6-(27,16,97188) 6-(26,16,50908) 6-(25,16,25454)
6-(31,15,562925) (#17738) 6-(30,15,360272) (#17729) 6-(29,15,225170) (#17741) 6-(28,15,137060) 6-(27,15,80990) 6-(26,15,46280) 6-(25,15,25454)
6-(30,14,202653) (#17728) 6-(29,14,135102) (#17719) 6-(28,14,88110) (#17674) 6-(27,14,56070) (#17683) 6-(26,14,34710) (#17693) 6-(25,14,20826) (#17712)
6-(29,13,67551) (#17718) 6-(28,13,46992) (#17705) 6-(27,13,32040) (#17651) 6-(26,13,21360) (#17653) 6-(25,13,13884) (#17662)
6-(28,12,20559) (#17704) 6-(27,12,14952) (#17680) 6-(26,12,10680) (#17652) 6-(25,12,7476) (#17659)
6-(27,11,5607) (#13897) 6-(26,11,4272) (#13899) 6-(25,11,3204) (#17658)
6-(26,10,1335) (#13898) 6-(25,10,1068)
6-(25,9,267)
-
5-(32,16,3592485) (#17752) 5-(31,16,2128880) (#17754) 5-(30,16,1228200) (#17758) 5-(29,16,687792) 5-(28,16,372554) 5-(27,16,194376) 5-(26,16,97188) 5-(25,16,46280) 5-(24,16,20826)
5-(31,15,1463605) (#17744) 5-(30,15,900680) (#17735) 5-(29,15,540408) (#17739) 5-(28,15,315238) (#17748) 5-(27,15,178178) 5-(26,15,97188) 5-(25,15,50908) 5-(24,15,25454)
5-(30,14,562925) (#17734) 5-(29,14,360272) (#17725) 5-(28,14,225170) (#17698) 5-(27,14,137060) (#17700) 5-(26,14,80990) (#17706) 5-(25,14,46280) (#17710) 5-(24,14,25454) (#17722)
5-(29,13,202653) (#17724) 5-(28,13,135102) (#17715) 5-(27,13,88110) (#17671) 5-(26,13,56070) (#17673) 5-(25,13,34710) (#17681) 5-(24,13,20826) (#17691)
5-(28,12,67551) (#17714) 5-(27,12,46992) (#17699) 5-(26,12,32040) (#17672) 5-(25,12,21360) (#17678) 5-(24,12,13884) (#2392)
5-(27,11,20559) (#13903) 5-(26,11,14952) (#13904) 5-(25,11,10680) (#13910) 5-(24,11,7476) (#17687)
5-(26,10,5607) (#6245) 5-(25,10,4272) (#6244) 5-(24,10,3204) (#1406)
5-(25,9,1335) (#6243) 5-(24,9,1068) (#6242)
5-(24,8,267) (#5467)
- family 80, lambda = 270 containing 81 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,270)
-
12-(32,16,1350) 12-(31,16,1080)
12-(31,15,270)
-
11-(32,16,5670) 11-(31,16,4320) 11-(30,16,3240)
11-(31,15,1350) 11-(30,15,1080)
11-(30,14,270)
-
10-(32,16,20790) 10-(31,16,15120) 10-(30,16,10800) 10-(29,16,7560)
10-(31,15,5670) 10-(30,15,4320) 10-(29,15,3240)
10-(30,14,1350) 10-(29,14,1080)
10-(29,13,270)
-
9-(32,16,68310) 9-(31,16,47520) 9-(30,16,32400) 9-(29,16,21600) 9-(28,16,14040)
9-(31,15,20790) 9-(30,15,15120) 9-(29,15,10800) 9-(28,15,7560)
9-(30,14,5670) 9-(29,14,4320) 9-(28,14,3240) (#17765)
9-(29,13,1350) 9-(28,13,1080)
9-(28,12,270)
-
8-(32,16,204930) 8-(31,16,136620) 8-(30,16,89100) 8-(29,16,56700) 8-(28,16,35100) 8-(27,16,21060)
8-(31,15,68310) 8-(30,15,47520) 8-(29,15,32400) 8-(28,15,21600) 8-(27,15,14040)
8-(30,14,20790) 8-(29,14,15120) 8-(28,14,10800) (#17764) 8-(27,14,7560) (#17780)
8-(29,13,5670) 8-(28,13,4320) 8-(27,13,3240) (#17760)
8-(28,12,1350) 8-(27,12,1080)
8-(27,11,270)
-
7-(32,16,569250) (#15212) 7-(31,16,364320) 7-(30,16,227700) 7-(29,16,138600) 7-(28,16,81900) 7-(27,16,46800) 7-(26,16,25740)
7-(31,15,204930) (#17804) 7-(30,15,136620) (#11835) 7-(29,15,89100) 7-(28,15,56700) 7-(27,15,35100) 7-(26,15,21060)
7-(30,14,68310) (#17801) 7-(29,14,47520) (#15202) 7-(28,14,32400) (#11116) 7-(27,14,21600) (#17778) 7-(26,14,14040) (#17793)
7-(29,13,20790) (#17796) 7-(28,13,15120) (#15198) 7-(27,13,10800) (#17761) 7-(26,13,7560) (#17763)
7-(28,12,5670) (#17788) 7-(27,12,4320) (#17775) 7-(26,12,3240) (#17762)
7-(27,11,1350) (#13912) 7-(26,11,1080) (#13531)
7-(26,10,270)
-
6-(32,16,1480050) (#15211) 6-(31,16,910800) (#15217) 6-(30,16,546480) 6-(29,16,318780) 6-(28,16,180180) 6-(27,16,98280) 6-(26,16,51480) 6-(25,16,25740)
6-(31,15,569250) (#15209) 6-(30,15,364320) (#11834) 6-(29,15,227700) (#11838) 6-(28,15,138600) 6-(27,15,81900) 6-(26,15,46800) 6-(25,15,25740)
6-(30,14,204930) (#15207) 6-(29,14,136620) (#11833) 6-(28,14,89100) (#11115) 6-(27,14,56700) (#11125) 6-(26,14,35100) (#17791) 6-(25,14,21060) (#17799)
6-(29,13,68310) (#15205) 6-(28,13,47520) (#11832) 6-(27,13,32400) (#11111) 6-(26,13,21600) (#17770) 6-(25,13,14040) (#17776)
6-(28,12,20790) (#15203) 6-(27,12,15120) (#15199) 6-(26,12,10800) (#17769) 6-(25,12,7560) (#17773)
6-(27,11,5670) (#10655) 6-(26,11,4320) (#13532) 6-(25,11,3240) (#13534)
6-(26,10,1350) (#10485) 6-(25,10,1080) (#13533)
6-(25,9,270)
-
5-(32,16,3632850) (#11147) 5-(31,16,2152800) (#15215) 5-(30,16,1242000) (#15219) 5-(29,16,695520) 5-(28,16,376740) 5-(27,16,196560) 5-(26,16,98280) 5-(25,16,46800) 5-(24,16,21060)
5-(31,15,1480050) (#11145) 5-(30,15,910800) (#11142) 5-(29,15,546480) (#11836) 5-(28,15,318780) (#11842) 5-(27,15,180180) 5-(26,15,98280) 5-(25,15,51480) 5-(24,15,25740)
5-(30,14,569250) (#11141) 5-(29,14,364320) (#11138) 5-(28,14,227700) (#11120) 5-(27,14,138600) (#11122) 5-(26,14,81900) (#11132) 5-(25,14,46800) (#17797) 5-(24,14,25740) (#17802)
5-(29,13,204930) (#11137) 5-(28,13,136620) (#11131) 5-(27,13,89100) (#11112) 5-(26,13,56700) (#11114) 5-(25,13,35100) (#17785) 5-(24,13,21060) (#17789)
5-(28,12,68310) (#11130) 5-(27,12,47520) (#11121) 5-(26,12,32400) (#11113) 5-(25,12,21600) (#13544) 5-(24,12,14040) (#2418)
5-(27,11,20790) (#10656) 5-(26,11,15120) (#10657) 5-(25,11,10800) (#13538) 5-(24,11,7560) (#13542)
5-(26,10,5670) (#6255) 5-(25,10,4320) (#6254) 5-(24,10,3240) (#1409)
5-(25,9,1350) (#6253) 5-(24,9,1080) (#6252)
5-(24,8,270) (#5471)
- family 81, lambda = 273 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,273)
-
10-(30,14,1365) 10-(29,14,1092)
10-(29,13,273)
-
9-(30,14,5733) 9-(29,14,4368) 9-(28,14,3276)
9-(29,13,1365) 9-(28,13,1092)
9-(28,12,273)
-
8-(30,14,21021) 8-(29,14,15288) 8-(28,14,10920) 8-(27,14,7644)
8-(29,13,5733) 8-(28,13,4368) 8-(27,13,3276)
8-(28,12,1365) 8-(27,12,1092)
8-(27,11,273)
-
7-(30,14,69069) 7-(29,14,48048) 7-(28,14,32760) (#15553) 7-(27,14,21840) 7-(26,14,14196)
7-(29,13,21021) 7-(28,13,15288) 7-(27,13,10920) 7-(26,13,7644)
7-(28,12,5733) 7-(27,12,4368) 7-(26,12,3276)
7-(27,11,1365) 7-(26,11,1092)
7-(26,10,273)
-
6-(30,14,207207) 6-(29,14,138138) 6-(28,14,90090) (#15554) 6-(27,14,57330) (#15556) 6-(26,14,35490) 6-(25,14,21294)
6-(29,13,69069) 6-(28,13,48048) 6-(27,13,32760) (#15555) 6-(26,13,21840) 6-(25,13,14196)
6-(28,12,21021) 6-(27,12,15288) 6-(26,12,10920) 6-(25,12,7644)
6-(27,11,5733) 6-(26,11,4368) 6-(25,11,3276)
6-(26,10,1365) 6-(25,10,1092)
6-(25,9,273)
-
5-(30,14,575575) 5-(29,14,368368) 5-(28,14,230230) (#15560) 5-(27,14,140140) (#15562) 5-(26,14,82810) (#15570) 5-(25,14,47320) 5-(24,14,26026)
5-(29,13,207207) 5-(28,13,138138) 5-(27,13,90090) (#15561) 5-(26,13,57330) (#15567) 5-(25,13,35490) 5-(24,13,21294)
5-(28,12,69069) 5-(27,12,48048) 5-(26,12,32760) (#15566) 5-(25,12,21840) 5-(24,12,14196) (#2444)
5-(27,11,21021) 5-(26,11,15288) 5-(25,11,10920) 5-(24,11,7644)
5-(26,10,5733) (#6261) 5-(25,10,4368) (#6260) 5-(24,10,3276) (#1411)
5-(25,9,1365) (#6259) 5-(24,9,1092) (#6258)
5-(24,8,273) (#5475)
- family 82, lambda = 276 containing 35 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,276)
-
12-(32,16,1380) 12-(31,16,1104)
12-(31,15,276)
-
11-(32,16,5796) 11-(31,16,4416) 11-(30,16,3312)
11-(31,15,1380) 11-(30,15,1104)
11-(30,14,276)
-
10-(32,16,21252) 10-(31,16,15456) 10-(30,16,11040) 10-(29,16,7728)
10-(31,15,5796) 10-(30,15,4416) 10-(29,15,3312)
10-(30,14,1380) 10-(29,14,1104)
10-(29,13,276)
-
9-(32,16,69828) 9-(31,16,48576) 9-(30,16,33120) 9-(29,16,22080) 9-(28,16,14352)
9-(31,15,21252) 9-(30,15,15456) 9-(29,15,11040) 9-(28,15,7728)
9-(30,14,5796) 9-(29,14,4416) 9-(28,14,3312)
9-(29,13,1380) 9-(28,13,1104)
9-(28,12,276)
-
8-(32,16,209484) 8-(31,16,139656) 8-(30,16,91080) 8-(29,16,57960) 8-(28,16,35880) 8-(27,16,21528)
8-(31,15,69828) 8-(30,15,48576) 8-(29,15,33120) 8-(28,15,22080) 8-(27,15,14352)
8-(30,14,21252) 8-(29,14,15456) 8-(28,14,11040) 8-(27,14,7728)
8-(29,13,5796) 8-(28,13,4416) 8-(27,13,3312)
8-(28,12,1380) 8-(27,12,1104)
8-(27,11,276)
-
7-(32,16,581900) 7-(31,16,372416) 7-(30,16,232760) 7-(29,16,141680) 7-(28,16,83720) 7-(27,16,47840) 7-(26,16,26312)
7-(31,15,209484) 7-(30,15,139656) 7-(29,15,91080) 7-(28,15,57960) 7-(27,15,35880) 7-(26,15,21528)
7-(30,14,69828) 7-(29,14,48576) 7-(28,14,33120) 7-(27,14,22080) 7-(26,14,14352)
7-(29,13,21252) 7-(28,13,15456) 7-(27,13,11040) 7-(26,13,7728) (#9858)
7-(28,12,5796) 7-(27,12,4416) 7-(26,12,3312)
7-(27,11,1380) (#13915) 7-(26,11,1104)
7-(26,10,276)
-
6-(32,16,1512940) 6-(31,16,931040) 6-(30,16,558624) 6-(29,16,325864) 6-(28,16,184184) 6-(27,16,100464) 6-(26,16,52624) 6-(25,16,26312)
6-(31,15,581900) 6-(30,15,372416) 6-(29,15,232760) 6-(28,15,141680) 6-(27,15,83720) 6-(26,15,47840) 6-(25,15,26312)
6-(30,14,209484) 6-(29,14,139656) 6-(28,14,91080) 6-(27,14,57960) 6-(26,14,35880) 6-(25,14,21528)
6-(29,13,69828) 6-(28,13,48576) 6-(27,13,33120) 6-(26,13,22080) (#9857) 6-(25,13,14352) (#9865)
6-(28,12,21252) 6-(27,12,15456) 6-(26,12,11040) 6-(25,12,7728) (#9856)
6-(27,11,5796) (#13916) 6-(26,11,4416) (#13918) 6-(25,11,3312)
6-(26,10,1380) (#13917) 6-(25,10,1104)
6-(25,9,276)
-
5-(32,16,3713580) (#6278) 5-(31,16,2200640) 5-(30,16,1269600) 5-(29,16,710976) 5-(28,16,385112) 5-(27,16,200928) 5-(26,16,100464) 5-(25,16,47840) 5-(24,16,21528)
5-(31,15,1512940) (#6277) 5-(30,15,931040) (#6276) 5-(29,15,558624) 5-(28,15,325864) 5-(27,15,184184) 5-(26,15,100464) 5-(25,15,52624) 5-(24,15,26312)
5-(30,14,581900) (#6275) 5-(29,14,372416) (#6274) 5-(28,14,232760) (#2476) 5-(27,14,141680) 5-(26,14,83720) 5-(25,14,47840) 5-(24,14,26312)
5-(29,13,209484) (#6273) 5-(28,13,139656) (#6272) 5-(27,13,91080) (#2475) 5-(26,13,57960) (#2473) 5-(25,13,35880) (#9862) 5-(24,13,21528) (#9869)
5-(28,12,69828) (#6271) 5-(27,12,48576) (#6270) 5-(26,12,33120) (#2474) 5-(25,12,22080) (#2472) 5-(24,12,14352) (#2471)
5-(27,11,21252) (#6269) 5-(26,11,15456) (#6268) 5-(25,11,11040) (#1660) 5-(24,11,7728) (#1659)
5-(26,10,5796) (#6267) 5-(25,10,4416) (#6266) 5-(24,10,3312) (#1413)
5-(25,9,1380) (#6265) 5-(24,9,1104) (#6264)
5-(24,8,276) (#5478)
- family 83, lambda = 279 containing 8 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,279)
-
8-(28,12,1395) 8-(27,12,1116)
8-(27,11,279)
-
7-(28,12,5859) 7-(27,12,4464) 7-(26,12,3348)
7-(27,11,1395) 7-(26,11,1116)
7-(26,10,279)
-
6-(28,12,21483) 6-(27,12,15624) 6-(26,12,11160) 6-(25,12,7812)
6-(27,11,5859) 6-(26,11,4464) 6-(25,11,3348)
6-(26,10,1395) (#10489) 6-(25,10,1116)
6-(25,9,279)
-
5-(28,12,70587) 5-(27,12,49104) 5-(26,12,33480) 5-(25,12,22320) 5-(24,12,14508) (#2502)
5-(27,11,21483) 5-(26,11,15624) 5-(25,11,11160) 5-(24,11,7812)
5-(26,10,5859) (#6284) 5-(25,10,4464) (#6283) 5-(24,10,3348) (#1415)
5-(25,9,1395) (#6282) 5-(24,9,1116) (#6281)
5-(24,8,279) (#5481)
- family 84, lambda = 282 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,282)
-
8-(28,12,1410) 8-(27,12,1128)
8-(27,11,282)
-
7-(28,12,5922) 7-(27,12,4512) 7-(26,12,3384)
7-(27,11,1410) 7-(26,11,1128)
7-(26,10,282)
-
6-(28,12,21714) 6-(27,12,15792) 6-(26,12,11280) 6-(25,12,7896)
6-(27,11,5922) 6-(26,11,4512) 6-(25,11,3384)
6-(26,10,1410) 6-(25,10,1128)
6-(25,9,282)
-
5-(28,12,71346) 5-(27,12,49632) 5-(26,12,33840) 5-(25,12,22560) 5-(24,12,14664) (#2534)
5-(27,11,21714) 5-(26,11,15792) 5-(25,11,11280) 5-(24,11,7896)
5-(26,10,5922) (#6295) 5-(25,10,4512) (#6294) 5-(24,10,3384) (#1417)
5-(25,9,1410) (#6293) 5-(24,9,1128) (#6292)
5-(24,8,282) (#5485)
- family 85, lambda = 288 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,288)
-
8-(28,12,1440) 8-(27,12,1152)
8-(27,11,288)
-
7-(28,12,6048) 7-(27,12,4608) 7-(26,12,3456)
7-(27,11,1440) (#13940) 7-(26,11,1152)
7-(26,10,288)
-
6-(28,12,22176) 6-(27,12,16128) 6-(26,12,11520) 6-(25,12,8064)
6-(27,11,6048) (#10660) 6-(26,11,4608) (#13942) 6-(25,11,3456)
6-(26,10,1440) (#13941) 6-(25,10,1152)
6-(25,9,288)
-
5-(28,12,72864) 5-(27,12,50688) 5-(26,12,34560) 5-(25,12,23040) 5-(24,12,14976) (#2591)
5-(27,11,22176) (#10661) 5-(26,11,16128) (#10662) 5-(25,11,11520) (#13948) 5-(24,11,8064)
5-(26,10,6048) (#6310) 5-(25,10,4608) (#6309) 5-(24,10,3456) (#1421)
5-(25,9,1440) (#6308) 5-(24,9,1152) (#6307)
5-(24,8,288) (#5493)
- family 86, lambda = 291 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,291)
-
8-(28,12,1455) 8-(27,12,1164)
8-(27,11,291)
-
7-(28,12,6111) 7-(27,12,4656) 7-(26,12,3492)
7-(27,11,1455) 7-(26,11,1164)
7-(26,10,291)
-
6-(28,12,22407) 6-(27,12,16296) 6-(26,12,11640) 6-(25,12,8148)
6-(27,11,6111) 6-(26,11,4656) 6-(25,11,3492)
6-(26,10,1455) 6-(25,10,1164)
6-(25,9,291)
-
5-(28,12,73623) 5-(27,12,51216) 5-(26,12,34920) 5-(25,12,23280) 5-(24,12,15132) (#2620)
5-(27,11,22407) 5-(26,11,16296) 5-(25,11,11640) 5-(24,11,8148)
5-(26,10,6111) (#6316) 5-(25,10,4656) (#6315) 5-(24,10,3492) (#1423)
5-(25,9,1455) (#6314) 5-(24,9,1164) (#6313)
5-(24,8,291) (#5498)
- family 87, lambda = 294 containing 38 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,294)
-
12-(32,16,1470) 12-(31,16,1176)
12-(31,15,294)
-
11-(32,16,6174) 11-(31,16,4704) 11-(30,16,3528)
11-(31,15,1470) 11-(30,15,1176)
11-(30,14,294)
-
10-(32,16,22638) 10-(31,16,16464) 10-(30,16,11760) 10-(29,16,8232)
10-(31,15,6174) 10-(30,15,4704) 10-(29,15,3528)
10-(30,14,1470) 10-(29,14,1176)
10-(29,13,294)
-
9-(32,16,74382) 9-(31,16,51744) 9-(30,16,35280) 9-(29,16,23520) 9-(28,16,15288)
9-(31,15,22638) 9-(30,15,16464) 9-(29,15,11760) 9-(28,15,8232)
9-(30,14,6174) 9-(29,14,4704) 9-(28,14,3528)
9-(29,13,1470) 9-(28,13,1176)
9-(28,12,294)
-
8-(32,16,223146) 8-(31,16,148764) 8-(30,16,97020) 8-(29,16,61740) 8-(28,16,38220) 8-(27,16,22932)
8-(31,15,74382) 8-(30,15,51744) 8-(29,15,35280) 8-(28,15,23520) 8-(27,15,15288)
8-(30,14,22638) 8-(29,14,16464) 8-(28,14,11760) 8-(27,14,8232)
8-(29,13,6174) 8-(28,13,4704) 8-(27,13,3528)
8-(28,12,1470) 8-(27,12,1176)
8-(27,11,294)
-
7-(32,16,619850) 7-(31,16,396704) 7-(30,16,247940) 7-(29,16,150920) 7-(28,16,89180) 7-(27,16,50960) 7-(26,16,28028)
7-(31,15,223146) 7-(30,15,148764) 7-(29,15,97020) 7-(28,15,61740) 7-(27,15,38220) 7-(26,15,22932)
7-(30,14,74382) 7-(29,14,51744) 7-(28,14,35280) (#15573) 7-(27,14,23520) 7-(26,14,15288)
7-(29,13,22638) 7-(28,13,16464) 7-(27,13,11760) 7-(26,13,8232)
7-(28,12,6174) 7-(27,12,4704) 7-(26,12,3528)
7-(27,11,1470) (#13950) 7-(26,11,1176) (#13545)
7-(26,10,294)
-
6-(32,16,1611610) 6-(31,16,991760) 6-(30,16,595056) 6-(29,16,347116) 6-(28,16,196196) 6-(27,16,107016) 6-(26,16,56056) 6-(25,16,28028)
6-(31,15,619850) 6-(30,15,396704) 6-(29,15,247940) 6-(28,15,150920) 6-(27,15,89180) 6-(26,15,50960) 6-(25,15,28028)
6-(30,14,223146) 6-(29,14,148764) 6-(28,14,97020) (#15574) 6-(27,14,61740) (#15576) 6-(26,14,38220) 6-(25,14,22932)
6-(29,13,74382) 6-(28,13,51744) 6-(27,13,35280) (#15575) 6-(26,13,23520) 6-(25,13,15288)
6-(28,12,22638) 6-(27,12,16464) 6-(26,12,11760) 6-(25,12,8232)
6-(27,11,6174) (#10666) 6-(26,11,4704) (#13546) 6-(25,11,3528) (#13548)
6-(26,10,1470) (#10496) 6-(25,10,1176) (#13547)
6-(25,9,294)
-
5-(32,16,3955770) (#13571) 5-(31,16,2344160) 5-(30,16,1352400) 5-(29,16,757344) 5-(28,16,410228) 5-(27,16,214032) 5-(26,16,107016) 5-(25,16,50960) 5-(24,16,22932)
5-(31,15,1611610) (#13570) 5-(30,15,991760) (#13568) 5-(29,15,595056) 5-(28,15,347116) 5-(27,15,196196) 5-(26,15,107016) 5-(25,15,56056) 5-(24,15,28028)
5-(30,14,619850) (#13569) 5-(29,14,396704) (#13566) 5-(28,14,247940) (#13563) 5-(27,14,150920) (#15580) 5-(26,14,89180) (#15586) 5-(25,14,50960) 5-(24,14,28028)
5-(29,13,223146) (#13567) 5-(28,13,148764) (#13564) 5-(27,13,97020) (#13561) 5-(26,13,61740) (#13559) 5-(25,13,38220) 5-(24,13,22932)
5-(28,12,74382) (#13565) 5-(27,12,51744) (#13562) 5-(26,12,35280) (#13560) 5-(25,12,23520) (#13558) 5-(24,12,15288) (#2652)
5-(27,11,22638) (#10667) 5-(26,11,16464) (#10668) 5-(25,11,11760) (#13552) 5-(24,11,8232) (#13556)
5-(26,10,6174) (#6327) 5-(25,10,4704) (#6326) 5-(24,10,3528) (#1425)
5-(25,9,1470) (#6325) 5-(24,9,1176) (#6324)
5-(24,8,294) (#5501)
- family 88, lambda = 297 containing 41 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,297)
-
12-(32,16,1485) 12-(31,16,1188)
12-(31,15,297)
-
11-(32,16,6237) 11-(31,16,4752) 11-(30,16,3564)
11-(31,15,1485) 11-(30,15,1188)
11-(30,14,297)
-
10-(32,16,22869) 10-(31,16,16632) 10-(30,16,11880) 10-(29,16,8316)
10-(31,15,6237) 10-(30,15,4752) 10-(29,15,3564)
10-(30,14,1485) 10-(29,14,1188)
10-(29,13,297)
-
9-(32,16,75141) 9-(31,16,52272) 9-(30,16,35640) 9-(29,16,23760) 9-(28,16,15444)
9-(31,15,22869) 9-(30,15,16632) 9-(29,15,11880) 9-(28,15,8316)
9-(30,14,6237) 9-(29,14,4752) 9-(28,14,3564)
9-(29,13,1485) 9-(28,13,1188)
9-(28,12,297)
-
8-(32,16,225423) 8-(31,16,150282) 8-(30,16,98010) 8-(29,16,62370) 8-(28,16,38610) 8-(27,16,23166)
8-(31,15,75141) 8-(30,15,52272) 8-(29,15,35640) 8-(28,15,23760) 8-(27,15,15444)
8-(30,14,22869) 8-(29,14,16632) 8-(28,14,11880) 8-(27,14,8316)
8-(29,13,6237) 8-(28,13,4752) 8-(27,13,3564)
8-(28,12,1485) 8-(27,12,1188)
8-(27,11,297)
-
7-(32,16,626175) 7-(31,16,400752) 7-(30,16,250470) 7-(29,16,152460) 7-(28,16,90090) 7-(27,16,51480) 7-(26,16,28314)
7-(31,15,225423) 7-(30,15,150282) 7-(29,15,98010) 7-(28,15,62370) 7-(27,15,38610) 7-(26,15,23166)
7-(30,14,75141) 7-(29,14,52272) 7-(28,14,35640) (#15598) 7-(27,14,23760) 7-(26,14,15444)
7-(29,13,22869) 7-(28,13,16632) 7-(27,13,11880) 7-(26,13,8316) (#9906)
7-(28,12,6237) 7-(27,12,4752) 7-(26,12,3564)
7-(27,11,1485) (#13953) 7-(26,11,1188)
7-(26,10,297)
-
6-(32,16,1628055) 6-(31,16,1001880) 6-(30,16,601128) 6-(29,16,350658) 6-(28,16,198198) 6-(27,16,108108) 6-(26,16,56628) 6-(25,16,28314)
6-(31,15,626175) 6-(30,15,400752) 6-(29,15,250470) 6-(28,15,152460) 6-(27,15,90090) 6-(26,15,51480) 6-(25,15,28314)
6-(30,14,225423) 6-(29,14,150282) 6-(28,14,98010) (#15599) 6-(27,14,62370) (#15601) 6-(26,14,38610) 6-(25,14,23166)
6-(29,13,75141) 6-(28,13,52272) 6-(27,13,35640) (#15600) 6-(26,13,23760) (#9905) 6-(25,13,15444) (#9913)
6-(28,12,22869) 6-(27,12,16632) 6-(26,12,11880) 6-(25,12,8316) (#9904)
6-(27,11,6237) (#10671) 6-(26,11,4752) (#13955) 6-(25,11,3564)
6-(26,10,1485) (#13954) 6-(25,10,1188)
6-(25,9,297)
-
5-(32,16,3996135) (#6344) 5-(31,16,2368080) 5-(30,16,1366200) 5-(29,16,765072) 5-(28,16,414414) 5-(27,16,216216) 5-(26,16,108108) 5-(25,16,51480) 5-(24,16,23166)
5-(31,15,1628055) (#6343) 5-(30,15,1001880) (#6342) 5-(29,15,601128) 5-(28,15,350658) 5-(27,15,198198) 5-(26,15,108108) 5-(25,15,56628) 5-(24,15,28314)
5-(30,14,626175) (#6341) 5-(29,14,400752) (#6340) 5-(28,14,250470) (#2682) 5-(27,14,152460) (#15605) 5-(26,14,90090) (#15607) 5-(25,14,51480) 5-(24,14,28314)
5-(29,13,225423) (#6339) 5-(28,13,150282) (#6338) 5-(27,13,98010) (#2681) 5-(26,13,62370) (#2679) 5-(25,13,38610) (#9910) 5-(24,13,23166) (#9917)
5-(28,12,75141) (#6337) 5-(27,12,52272) (#6336) 5-(26,12,35640) (#2680) 5-(25,12,23760) (#2678) 5-(24,12,15444) (#2677)
5-(27,11,22869) (#6335) 5-(26,11,16632) (#6334) 5-(25,11,11880) (#1668) 5-(24,11,8316) (#1667)
5-(26,10,6237) (#6333) 5-(25,10,4752) (#6332) 5-(24,10,3564) (#1427)
5-(25,9,1485) (#6331) 5-(24,9,1188) (#6330)
5-(24,8,297) (#5504)
- family 89, lambda = 300 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,300)
-
8-(28,12,1500) 8-(27,12,1200)
8-(27,11,300)
-
7-(28,12,6300) 7-(27,12,4800) 7-(26,12,3600)
7-(27,11,1500) (#13974) 7-(26,11,1200)
7-(26,10,300)
-
6-(28,12,23100) 6-(27,12,16800) 6-(26,12,12000) 6-(25,12,8400)
6-(27,11,6300) (#13975) 6-(26,11,4800) (#13977) 6-(25,11,3600)
6-(26,10,1500) (#13976) 6-(25,10,1200)
6-(25,9,300)
-
5-(28,12,75900) 5-(27,12,52800) 5-(26,12,36000) 5-(25,12,24000) 5-(24,12,15600) (#2708)
5-(27,11,23100) (#13981) 5-(26,11,16800) (#13982) 5-(25,11,12000) (#13988) 5-(24,11,8400)
5-(26,10,6300) (#6358) 5-(25,10,4800) (#6357) 5-(24,10,3600) (#1431)
5-(25,9,1500) (#6356) 5-(24,9,1200) (#6355)
5-(24,8,300) (#5509)
- family 90, lambda = 303 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,303)
-
8-(28,12,1515) 8-(27,12,1212)
8-(27,11,303)
-
7-(28,12,6363) 7-(27,12,4848) 7-(26,12,3636)
7-(27,11,1515) (#13990) 7-(26,11,1212)
7-(26,10,303)
-
6-(28,12,23331) 6-(27,12,16968) 6-(26,12,12120) 6-(25,12,8484)
6-(27,11,6363) (#13991) 6-(26,11,4848) (#13993) 6-(25,11,3636)
6-(26,10,1515) (#13992) 6-(25,10,1212)
6-(25,9,303)
-
5-(28,12,76659) 5-(27,12,53328) 5-(26,12,36360) 5-(25,12,24240) 5-(24,12,15756) (#2734)
5-(27,11,23331) (#13997) 5-(26,11,16968) (#13998) 5-(25,11,12120) (#14004) 5-(24,11,8484)
5-(26,10,6363) (#6364) 5-(25,10,4848) (#6363) 5-(24,10,3636) (#1433)
5-(25,9,1515) (#6362) 5-(24,9,1212) (#6361)
5-(24,8,303) (#5512)
- family 91, lambda = 309 containing 31 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,309)
-
12-(32,16,1545) 12-(31,16,1236)
12-(31,15,309)
-
11-(32,16,6489) 11-(31,16,4944) 11-(30,16,3708)
11-(31,15,1545) 11-(30,15,1236)
11-(30,14,309)
-
10-(32,16,23793) 10-(31,16,17304) 10-(30,16,12360) 10-(29,16,8652)
10-(31,15,6489) 10-(30,15,4944) 10-(29,15,3708)
10-(30,14,1545) 10-(29,14,1236)
10-(29,13,309)
-
9-(32,16,78177) 9-(31,16,54384) 9-(30,16,37080) 9-(29,16,24720) 9-(28,16,16068)
9-(31,15,23793) 9-(30,15,17304) 9-(29,15,12360) 9-(28,15,8652)
9-(30,14,6489) 9-(29,14,4944) 9-(28,14,3708)
9-(29,13,1545) 9-(28,13,1236)
9-(28,12,309)
-
8-(32,16,234531) 8-(31,16,156354) 8-(30,16,101970) 8-(29,16,64890) 8-(28,16,40170) 8-(27,16,24102)
8-(31,15,78177) 8-(30,15,54384) 8-(29,15,37080) 8-(28,15,24720) 8-(27,15,16068)
8-(30,14,23793) 8-(29,14,17304) 8-(28,14,12360) 8-(27,14,8652)
8-(29,13,6489) 8-(28,13,4944) 8-(27,13,3708)
8-(28,12,1545) 8-(27,12,1236)
8-(27,11,309)
-
7-(32,16,651475) 7-(31,16,416944) 7-(30,16,260590) 7-(29,16,158620) 7-(28,16,93730) 7-(27,16,53560) 7-(26,16,29458)
7-(31,15,234531) 7-(30,15,156354) 7-(29,15,101970) 7-(28,15,64890) 7-(27,15,40170) 7-(26,15,24102)
7-(30,14,78177) 7-(29,14,54384) 7-(28,14,37080) 7-(27,14,24720) 7-(26,14,16068)
7-(29,13,23793) 7-(28,13,17304) 7-(27,13,12360) 7-(26,13,8652) (#9922)
7-(28,12,6489) 7-(27,12,4944) 7-(26,12,3708)
7-(27,11,1545) 7-(26,11,1236)
7-(26,10,309)
-
6-(32,16,1693835) 6-(31,16,1042360) 6-(30,16,625416) 6-(29,16,364826) 6-(28,16,206206) 6-(27,16,112476) 6-(26,16,58916) 6-(25,16,29458)
6-(31,15,651475) 6-(30,15,416944) 6-(29,15,260590) 6-(28,15,158620) 6-(27,15,93730) 6-(26,15,53560) 6-(25,15,29458)
6-(30,14,234531) 6-(29,14,156354) 6-(28,14,101970) 6-(27,14,64890) 6-(26,14,40170) 6-(25,14,24102)
6-(29,13,78177) 6-(28,13,54384) 6-(27,13,37080) 6-(26,13,24720) (#9921) 6-(25,13,16068) (#9929)
6-(28,12,23793) 6-(27,12,17304) 6-(26,12,12360) 6-(25,12,8652) (#9920)
6-(27,11,6489) 6-(26,11,4944) 6-(25,11,3708)
6-(26,10,1545) 6-(25,10,1236)
6-(25,9,309)
-
5-(32,16,4157595) (#6391) 5-(31,16,2463760) 5-(30,16,1421400) 5-(29,16,795984) 5-(28,16,431158) 5-(27,16,224952) 5-(26,16,112476) 5-(25,16,53560) 5-(24,16,24102)
5-(31,15,1693835) (#6390) 5-(30,15,1042360) (#6389) 5-(29,15,625416) 5-(28,15,364826) 5-(27,15,206206) 5-(26,15,112476) 5-(25,15,58916) 5-(24,15,29458)
5-(30,14,651475) (#6388) 5-(29,14,416944) (#6387) 5-(28,14,260590) (#2791) 5-(27,14,158620) 5-(26,14,93730) 5-(25,14,53560) 5-(24,14,29458)
5-(29,13,234531) (#6386) 5-(28,13,156354) (#6385) 5-(27,13,101970) (#2790) 5-(26,13,64890) (#2788) 5-(25,13,40170) (#9926) 5-(24,13,24102) (#9933)
5-(28,12,78177) (#6384) 5-(27,12,54384) (#6383) 5-(26,12,37080) (#2789) 5-(25,12,24720) (#2787) 5-(24,12,16068) (#2786)
5-(27,11,23793) (#6382) 5-(26,11,17304) (#6381) 5-(25,11,12360) (#1670) 5-(24,11,8652) (#1669)
5-(26,10,6489) (#6380) 5-(25,10,4944) (#6379) 5-(24,10,3708) (#1437)
5-(25,9,1545) (#6378) 5-(24,9,1236) (#6377)
5-(24,8,309) (#5520)
- family 92, lambda = 312 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,312)
-
8-(28,12,1560) 8-(27,12,1248)
8-(27,11,312)
-
7-(28,12,6552) 7-(27,12,4992) 7-(26,12,3744)
7-(27,11,1560) 7-(26,11,1248)
7-(26,10,312)
-
6-(28,12,24024) 6-(27,12,17472) 6-(26,12,12480) 6-(25,12,8736)
6-(27,11,6552) 6-(26,11,4992) 6-(25,11,3744)
6-(26,10,1560) 6-(25,10,1248)
6-(25,9,312)
-
5-(28,12,78936) 5-(27,12,54912) 5-(26,12,37440) 5-(25,12,24960) 5-(24,12,16224) (#2818)
5-(27,11,24024) 5-(26,11,17472) 5-(25,11,12480) 5-(24,11,8736)
5-(26,10,6552) (#6397) 5-(25,10,4992) (#6396) 5-(24,10,3744) (#1439)
5-(25,9,1560) (#6395) 5-(24,9,1248) (#6394)
5-(24,8,312) (#5524)
- family 93, lambda = 315 containing 52 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,315)
-
12-(32,16,1575) 12-(31,16,1260)
12-(31,15,315)
-
11-(32,16,6615) 11-(31,16,5040) 11-(30,16,3780)
11-(31,15,1575) 11-(30,15,1260)
11-(30,14,315)
-
10-(32,16,24255) 10-(31,16,17640) 10-(30,16,12600) 10-(29,16,8820)
10-(31,15,6615) 10-(30,15,5040) 10-(29,15,3780)
10-(30,14,1575) 10-(29,14,1260)
10-(29,13,315)
-
9-(32,16,79695) 9-(31,16,55440) 9-(30,16,37800) 9-(29,16,25200) 9-(28,16,16380)
9-(31,15,24255) 9-(30,15,17640) 9-(29,15,12600) 9-(28,15,8820)
9-(30,14,6615) 9-(29,14,5040) 9-(28,14,3780)
9-(29,13,1575) 9-(28,13,1260)
9-(28,12,315)
-
8-(32,16,239085) 8-(31,16,159390) 8-(30,16,103950) 8-(29,16,66150) 8-(28,16,40950) 8-(27,16,24570)
8-(31,15,79695) 8-(30,15,55440) 8-(29,15,37800) 8-(28,15,25200) 8-(27,15,16380)
8-(30,14,24255) 8-(29,14,17640) 8-(28,14,12600) 8-(27,14,8820)
8-(29,13,6615) 8-(28,13,5040) 8-(27,13,3780)
8-(28,12,1575) 8-(27,12,1260)
8-(27,11,315)
-
7-(32,16,664125) (#15282) 7-(31,16,425040) 7-(30,16,265650) 7-(29,16,161700) 7-(28,16,95550) 7-(27,16,54600) 7-(26,16,30030)
7-(31,15,239085) 7-(30,15,159390) (#15263) 7-(29,15,103950) 7-(28,15,66150) 7-(27,15,40950) 7-(26,15,24570)
7-(30,14,79695) 7-(29,14,55440) (#15254) 7-(28,14,37800) (#15239) 7-(27,14,25200) 7-(26,14,16380)
7-(29,13,24255) 7-(28,13,17640) (#15221) 7-(27,13,12600) 7-(26,13,8820)
7-(28,12,6615) 7-(27,12,5040) 7-(26,12,3780)
7-(27,11,1575) (#14006) 7-(26,11,1260)
7-(26,10,315)
-
6-(32,16,1726725) (#15281) 6-(31,16,1062600) (#15291) 6-(30,16,637560) 6-(29,16,371910) 6-(28,16,210210) 6-(27,16,114660) 6-(26,16,60060) 6-(25,16,30030)
6-(31,15,664125) (#15273) 6-(30,15,425040) (#15262) 6-(29,15,265650) (#15276) 6-(28,15,161700) 6-(27,15,95550) 6-(26,15,54600) 6-(25,15,30030)
6-(30,14,239085) (#15261) 6-(29,14,159390) (#15251) 6-(28,14,103950) (#15238) 6-(27,14,66150) (#15252) 6-(26,14,40950) 6-(25,14,24570)
6-(29,13,79695) (#15248) 6-(28,13,55440) (#15222) 6-(27,13,37800) (#15224) 6-(26,13,25200) 6-(25,13,16380)
6-(28,12,24255) (#15236) 6-(27,12,17640) (#15223) 6-(26,12,12600) 6-(25,12,8820)
6-(27,11,6615) (#10675) 6-(26,11,5040) (#14007) 6-(25,11,3780)
6-(26,10,1575) (#10500) 6-(25,10,1260)
6-(25,9,315)
-
5-(32,16,4238325) (#15287) 5-(31,16,2511600) (#15289) 5-(30,16,1449000) (#15293) 5-(29,16,811440) 5-(28,16,439530) 5-(27,16,229320) 5-(26,16,114660) 5-(25,16,54600) 5-(24,16,24570)
5-(31,15,1726725) (#15279) 5-(30,15,1062600) (#15270) 5-(29,15,637560) (#15274) 5-(28,15,371910) (#15283) 5-(27,15,210210) 5-(26,15,114660) 5-(25,15,60060) 5-(24,15,30030)
5-(30,14,664125) (#15269) 5-(29,14,425040) (#15258) 5-(28,14,265650) (#15245) 5-(27,14,161700) (#15249) 5-(26,14,95550) (#15264) 5-(25,14,54600) 5-(24,14,30030)
5-(29,13,239085) (#15257) 5-(28,13,159390) (#15228) 5-(27,13,103950) (#15230) 5-(26,13,66150) (#15237) 5-(25,13,40950) 5-(24,13,24570)
5-(28,12,79695) (#15244) 5-(27,12,55440) (#15229) 5-(26,12,37800) (#15234) 5-(25,12,25200) 5-(24,12,16380) (#2849)
5-(27,11,24255) (#10676) 5-(26,11,17640) (#10677) 5-(25,11,12600) (#14011) 5-(24,11,8820)
5-(26,10,6615) (#6410) 5-(25,10,5040) (#6409) 5-(24,10,3780) (#1442)
5-(25,9,1575) (#6408) 5-(24,9,1260) (#6407)
5-(24,8,315) (#5527)
- family 94, lambda = 318 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,318)
-
10-(30,14,1590) 10-(29,14,1272)
10-(29,13,318)
-
9-(30,14,6678) 9-(29,14,5088) 9-(28,14,3816)
9-(29,13,1590) 9-(28,13,1272)
9-(28,12,318)
-
8-(30,14,24486) 8-(29,14,17808) 8-(28,14,12720) 8-(27,14,8904)
8-(29,13,6678) 8-(28,13,5088) 8-(27,13,3816)
8-(28,12,1590) 8-(27,12,1272)
8-(27,11,318)
-
7-(30,14,80454) 7-(29,14,55968) 7-(28,14,38160) (#15610) 7-(27,14,25440) 7-(26,14,16536)
7-(29,13,24486) 7-(28,13,17808) 7-(27,13,12720) 7-(26,13,8904)
7-(28,12,6678) 7-(27,12,5088) 7-(26,12,3816)
7-(27,11,1590) 7-(26,11,1272)
7-(26,10,318)
-
6-(30,14,241362) 6-(29,14,160908) 6-(28,14,104940) (#15611) 6-(27,14,66780) (#15613) 6-(26,14,41340) 6-(25,14,24804)
6-(29,13,80454) 6-(28,13,55968) 6-(27,13,38160) (#15612) 6-(26,13,25440) 6-(25,13,16536)
6-(28,12,24486) 6-(27,12,17808) 6-(26,12,12720) 6-(25,12,8904)
6-(27,11,6678) 6-(26,11,5088) 6-(25,11,3816)
6-(26,10,1590) 6-(25,10,1272)
6-(25,9,318)
-
5-(30,14,670450) 5-(29,14,429088) 5-(28,14,268180) (#15617) 5-(27,14,163240) (#15619) 5-(26,14,96460) (#15627) 5-(25,14,55120) 5-(24,14,30316)
5-(29,13,241362) 5-(28,13,160908) 5-(27,13,104940) (#15618) 5-(26,13,66780) (#15624) 5-(25,13,41340) 5-(24,13,24804)
5-(28,12,80454) 5-(27,12,55968) 5-(26,12,38160) (#15623) 5-(25,12,25440) 5-(24,12,16536) (#2875)
5-(27,11,24486) 5-(26,11,17808) 5-(25,11,12720) 5-(24,11,8904)
5-(26,10,6678) (#6416) 5-(25,10,5088) (#6415) 5-(24,10,3816) (#1444)
5-(25,9,1590) (#6414) 5-(24,9,1272) (#6413)
5-(24,8,318) (#5530)
- family 95, lambda = 321 containing 33 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,321)
-
12-(32,16,1605) 12-(31,16,1284)
12-(31,15,321)
-
11-(32,16,6741) 11-(31,16,5136) 11-(30,16,3852)
11-(31,15,1605) 11-(30,15,1284)
11-(30,14,321)
-
10-(32,16,24717) 10-(31,16,17976) 10-(30,16,12840) 10-(29,16,8988)
10-(31,15,6741) 10-(30,15,5136) 10-(29,15,3852)
10-(30,14,1605) 10-(29,14,1284)
10-(29,13,321)
-
9-(32,16,81213) 9-(31,16,56496) 9-(30,16,38520) 9-(29,16,25680) 9-(28,16,16692)
9-(31,15,24717) 9-(30,15,17976) 9-(29,15,12840) 9-(28,15,8988)
9-(30,14,6741) 9-(29,14,5136) 9-(28,14,3852)
9-(29,13,1605) 9-(28,13,1284)
9-(28,12,321)
-
8-(32,16,243639) 8-(31,16,162426) 8-(30,16,105930) 8-(29,16,67410) 8-(28,16,41730) 8-(27,16,25038)
8-(31,15,81213) 8-(30,15,56496) 8-(29,15,38520) 8-(28,15,25680) 8-(27,15,16692)
8-(30,14,24717) 8-(29,14,17976) 8-(28,14,12840) 8-(27,14,8988)
8-(29,13,6741) 8-(28,13,5136) 8-(27,13,3852)
8-(28,12,1605) 8-(27,12,1284)
8-(27,11,321)
-
7-(32,16,676775) 7-(31,16,433136) 7-(30,16,270710) 7-(29,16,164780) 7-(28,16,97370) 7-(27,16,55640) 7-(26,16,30602)
7-(31,15,243639) 7-(30,15,162426) 7-(29,15,105930) 7-(28,15,67410) 7-(27,15,41730) 7-(26,15,25038)
7-(30,14,81213) 7-(29,14,56496) 7-(28,14,38520) 7-(27,14,25680) 7-(26,14,16692)
7-(29,13,24717) 7-(28,13,17976) 7-(27,13,12840) 7-(26,13,8988)
7-(28,12,6741) (#14737) 7-(27,12,5136) (#14733) 7-(26,12,3852)
7-(27,11,1605) (#14013) 7-(26,11,1284)
7-(26,10,321)
-
6-(32,16,1759615) 6-(31,16,1082840) 6-(30,16,649704) 6-(29,16,378994) 6-(28,16,214214) 6-(27,16,116844) 6-(26,16,61204) 6-(25,16,30602)
6-(31,15,676775) 6-(30,15,433136) 6-(29,15,270710) 6-(28,15,164780) 6-(27,15,97370) 6-(26,15,55640) 6-(25,15,30602)
6-(30,14,243639) 6-(29,14,162426) 6-(28,14,105930) 6-(27,14,67410) 6-(26,14,41730) 6-(25,14,25038)
6-(29,13,81213) 6-(28,13,56496) 6-(27,13,38520) 6-(26,13,25680) 6-(25,13,16692)
6-(28,12,24717) (#10824) 6-(27,12,17976) (#10819) 6-(26,12,12840) (#14734) 6-(25,12,8988)
6-(27,11,6741) (#10680) 6-(26,11,5136) (#14015) 6-(25,11,3852)
6-(26,10,1605) (#14014) 6-(25,10,1284)
6-(25,9,321)
-
5-(32,16,4319055) (#14759) 5-(31,16,2559440) 5-(30,16,1476600) 5-(29,16,826896) 5-(28,16,447902) 5-(27,16,233688) 5-(26,16,116844) 5-(25,16,55640) 5-(24,16,25038)
5-(31,15,1759615) (#14757) 5-(30,15,1082840) (#14753) 5-(29,15,649704) 5-(28,15,378994) 5-(27,15,214214) 5-(26,15,116844) 5-(25,15,61204) 5-(24,15,30602)
5-(30,14,676775) (#14754) 5-(29,14,433136) (#14749) 5-(28,14,270710) (#14745) 5-(27,14,164780) 5-(26,14,97370) 5-(25,14,55640) 5-(24,14,30602)
5-(29,13,243639) (#14750) 5-(28,13,162426) (#14746) 5-(27,13,105930) (#14743) 5-(26,13,67410) (#14741) 5-(25,13,41730) 5-(24,13,25038)
5-(28,12,81213) (#10825) 5-(27,12,56496) (#10820) 5-(26,12,38520) (#10821) 5-(25,12,25680) (#14738) 5-(24,12,16692) (#2901)
5-(27,11,24717) (#10681) 5-(26,11,17976) (#10682) 5-(25,11,12840) (#14021) 5-(24,11,8988)
5-(26,10,6741) (#6422) 5-(25,10,5136) (#6421) 5-(24,10,3852) (#1446)
5-(25,9,1605) (#6420) 5-(24,9,1284) (#6419)
5-(24,8,321) (#5534)
- family 96, lambda = 324 containing 73 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,324)
-
12-(32,16,1620) 12-(31,16,1296)
12-(31,15,324)
-
11-(32,16,6804) 11-(31,16,5184) 11-(30,16,3888)
11-(31,15,1620) 11-(30,15,1296)
11-(30,14,324)
-
10-(32,16,24948) 10-(31,16,18144) 10-(30,16,12960) 10-(29,16,9072)
10-(31,15,6804) 10-(30,15,5184) 10-(29,15,3888)
10-(30,14,1620) 10-(29,14,1296)
10-(29,13,324)
-
9-(32,16,81972) 9-(31,16,57024) 9-(30,16,38880) 9-(29,16,25920) 9-(28,16,16848)
9-(31,15,24948) 9-(30,15,18144) 9-(29,15,12960) 9-(28,15,9072)
9-(30,14,6804) 9-(29,14,5184) 9-(28,14,3888)
9-(29,13,1620) 9-(28,13,1296)
9-(28,12,324)
-
8-(32,16,245916) 8-(31,16,163944) 8-(30,16,106920) 8-(29,16,68040) 8-(28,16,42120) 8-(27,16,25272)
8-(31,15,81972) 8-(30,15,57024) 8-(29,15,38880) 8-(28,15,25920) 8-(27,15,16848)
8-(30,14,24948) 8-(29,14,18144) 8-(28,14,12960) 8-(27,14,9072)
8-(29,13,6804) 8-(28,13,5184) 8-(27,13,3888)
8-(28,12,1620) 8-(27,12,1296) (#17554)
8-(27,11,324)
-
7-(32,16,683100) (#17620) 7-(31,16,437184) 7-(30,16,273240) 7-(29,16,166320) 7-(28,16,98280) 7-(27,16,56160) 7-(26,16,30888)
7-(31,15,245916) (#17617) 7-(30,15,163944) (#17604) 7-(29,15,106920) 7-(28,15,68040) 7-(27,15,42120) 7-(26,15,25272)
7-(30,14,81972) (#17608) 7-(29,14,57024) (#17597) 7-(28,14,38880) (#17583) 7-(27,14,25920) 7-(26,14,16848)
7-(29,13,24948) (#17599) 7-(28,13,18144) (#17587) 7-(27,13,12960) (#17579) 7-(26,13,9072) (#17570)
7-(28,12,6804) (#14765) 7-(27,12,5184) (#14761) 7-(26,12,3888) (#17556)
7-(27,11,1620) (#14023) 7-(26,11,1296) (#17555)
7-(26,10,324)
-
6-(32,16,1776060) (#17619) 6-(31,16,1092960) (#17627) 6-(30,16,655776) 6-(29,16,382536) 6-(28,16,216216) 6-(27,16,117936) 6-(26,16,61776) 6-(25,16,30888)
6-(31,15,683100) (#17614) 6-(30,15,437184) (#17603) 6-(29,15,273240) (#17615) 6-(28,15,166320) 6-(27,15,98280) 6-(26,15,56160) 6-(25,15,30888)
6-(30,14,245916) (#17605) 6-(29,14,163944) (#17594) 6-(28,14,106920) (#17582) 6-(27,14,68040) (#17595) 6-(26,14,42120) 6-(25,14,25272)
6-(29,13,81972) (#17598) 6-(28,13,57024) (#17584) 6-(27,13,38880) (#17576) 6-(26,13,25920) (#17569) 6-(25,13,16848) (#17577)
6-(28,12,24948) (#10832) 6-(27,12,18144) (#10827) 6-(26,12,12960) (#14762) 6-(25,12,9072) (#17564)
6-(27,11,6804) (#10686) 6-(26,11,5184) (#14024) 6-(25,11,3888) (#17561)
6-(26,10,1620) (#10504) 6-(25,10,1296) (#17560)
6-(25,9,324) (#10443)
-
5-(32,16,4359420) (#14787) 5-(31,16,2583360) (#17625) 5-(30,16,1490400) (#17629) 5-(29,16,834624) 5-(28,16,452088) 5-(27,16,235872) 5-(26,16,117936) 5-(25,16,56160) 5-(24,16,25272)
5-(31,15,1776060) (#14785) 5-(30,15,1092960) (#14781) 5-(29,15,655776) (#17612) 5-(28,15,382536) (#17621) 5-(27,15,216216) 5-(26,15,117936) 5-(25,15,61776) 5-(24,15,30888)
5-(30,14,683100) (#14782) 5-(29,14,437184) (#14777) 5-(28,14,273240) (#14773) 5-(27,14,166320) (#17592) 5-(26,14,98280) (#17606) 5-(25,14,56160) 5-(24,14,30888)
5-(29,13,245916) (#14778) 5-(28,13,163944) (#14774) 5-(27,13,106920) (#14771) 5-(26,13,68040) (#14769) 5-(25,13,42120) (#17574) 5-(24,13,25272) (#17585)
5-(28,12,81972) (#10833) 5-(27,12,57024) (#10828) 5-(26,12,38880) (#10829) 5-(25,12,25920) (#14766) 5-(24,12,16848) (#2928)
5-(27,11,24948) (#10687) 5-(26,11,18144) (#10688) 5-(25,11,12960) (#14028) 5-(24,11,9072) (#17567)
5-(26,10,6804) (#6428) 5-(25,10,5184) (#6427) 5-(24,10,3888) (#1448)
5-(25,9,1620) (#6426) 5-(24,9,1296) (#6425)
5-(24,8,324) (#5538)
- family 97, lambda = 327 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,327)
-
8-(28,12,1635) 8-(27,12,1308)
8-(27,11,327)
-
7-(28,12,6867) 7-(27,12,5232) 7-(26,12,3924)
7-(27,11,1635) 7-(26,11,1308)
7-(26,10,327)
-
6-(28,12,25179) 6-(27,12,18312) 6-(26,12,13080) 6-(25,12,9156)
6-(27,11,6867) 6-(26,11,5232) 6-(25,11,3924)
6-(26,10,1635) 6-(25,10,1308)
6-(25,9,327)
-
5-(28,12,82731) 5-(27,12,57552) 5-(26,12,39240) 5-(25,12,26160) 5-(24,12,17004) (#2959)
5-(27,11,25179) 5-(26,11,18312) 5-(25,11,13080) 5-(24,11,9156)
5-(26,10,6867) (#6439) 5-(25,10,5232) (#6438) 5-(24,10,3924) (#1450)
5-(25,9,1635) (#6437) 5-(24,9,1308) (#6436)
5-(24,8,327) (#5541)
- family 98, lambda = 330 containing 35 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,330)
-
12-(32,16,1650) 12-(31,16,1320)
12-(31,15,330)
-
11-(32,16,6930) 11-(31,16,5280) 11-(30,16,3960)
11-(31,15,1650) 11-(30,15,1320)
11-(30,14,330)
-
10-(32,16,25410) 10-(31,16,18480) 10-(30,16,13200) 10-(29,16,9240)
10-(31,15,6930) 10-(30,15,5280) 10-(29,15,3960)
10-(30,14,1650) 10-(29,14,1320)
10-(29,13,330)
-
9-(32,16,83490) 9-(31,16,58080) 9-(30,16,39600) 9-(29,16,26400) 9-(28,16,17160)
9-(31,15,25410) 9-(30,15,18480) 9-(29,15,13200) 9-(28,15,9240)
9-(30,14,6930) 9-(29,14,5280) 9-(28,14,3960)
9-(29,13,1650) 9-(28,13,1320)
9-(28,12,330)
-
8-(32,16,250470) 8-(31,16,166980) 8-(30,16,108900) 8-(29,16,69300) 8-(28,16,42900) 8-(27,16,25740)
8-(31,15,83490) 8-(30,15,58080) 8-(29,15,39600) 8-(28,15,26400) 8-(27,15,17160)
8-(30,14,25410) 8-(29,14,18480) 8-(28,14,13200) 8-(27,14,9240)
8-(29,13,6930) 8-(28,13,5280) 8-(27,13,3960)
8-(28,12,1650) 8-(27,12,1320)
8-(27,11,330)
-
7-(32,16,695750) 7-(31,16,445280) 7-(30,16,278300) 7-(29,16,169400) 7-(28,16,100100) 7-(27,16,57200) 7-(26,16,31460)
7-(31,15,250470) 7-(30,15,166980) 7-(29,15,108900) 7-(28,15,69300) 7-(27,15,42900) 7-(26,15,25740)
7-(30,14,83490) 7-(29,14,58080) 7-(28,14,39600) 7-(27,14,26400) 7-(26,14,17160)
7-(29,13,25410) 7-(28,13,18480) 7-(27,13,13200) 7-(26,13,9240) (#9966)
7-(28,12,6930) 7-(27,12,5280) 7-(26,12,3960)
7-(27,11,1650) (#14030) 7-(26,11,1320)
7-(26,10,330)
-
6-(32,16,1808950) 6-(31,16,1113200) 6-(30,16,667920) 6-(29,16,389620) 6-(28,16,220220) 6-(27,16,120120) 6-(26,16,62920) 6-(25,16,31460)
6-(31,15,695750) 6-(30,15,445280) 6-(29,15,278300) 6-(28,15,169400) 6-(27,15,100100) 6-(26,15,57200) 6-(25,15,31460)
6-(30,14,250470) 6-(29,14,166980) 6-(28,14,108900) 6-(27,14,69300) 6-(26,14,42900) 6-(25,14,25740)
6-(29,13,83490) 6-(28,13,58080) 6-(27,13,39600) 6-(26,13,26400) (#9965) 6-(25,13,17160) (#9973)
6-(28,12,25410) 6-(27,12,18480) 6-(26,12,13200) 6-(25,12,9240) (#9964)
6-(27,11,6930) (#14031) 6-(26,11,5280) (#14032) 6-(25,11,3960)
6-(26,10,1650) (#10507) 6-(25,10,1320)
6-(25,9,330)
-
5-(32,16,4440150) (#6471) 5-(31,16,2631200) 5-(30,16,1518000) 5-(29,16,850080) 5-(28,16,460460) 5-(27,16,240240) 5-(26,16,120120) 5-(25,16,57200) 5-(24,16,25740)
5-(31,15,1808950) (#6470) 5-(30,15,1113200) (#6469) 5-(29,15,667920) 5-(28,15,389620) 5-(27,15,220220) 5-(26,15,120120) 5-(25,15,62920) 5-(24,15,31460)
5-(30,14,695750) (#6468) 5-(29,14,445280) (#6467) 5-(28,14,278300) (#2995) 5-(27,14,169400) 5-(26,14,100100) 5-(25,14,57200) 5-(24,14,31460)
5-(29,13,250470) (#6466) 5-(28,13,166980) (#6465) 5-(27,13,108900) (#2994) 5-(26,13,69300) (#2992) 5-(25,13,42900) (#9970) 5-(24,13,25740) (#9977)
5-(28,12,83490) (#6464) 5-(27,12,58080) (#6463) 5-(26,12,39600) (#2993) 5-(25,12,26400) (#2991) 5-(24,12,17160) (#2990)
5-(27,11,25410) (#6462) 5-(26,11,18480) (#6461) 5-(25,11,13200) (#1678) 5-(24,11,9240) (#1677)
5-(26,10,6930) (#6460) 5-(25,10,5280) (#6459) 5-(24,10,3960) (#1453)
5-(25,9,1650) (#6458) 5-(24,9,1320) (#6457)
5-(24,8,330) (#5545)
- family 99, lambda = 333 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,333)
-
8-(28,12,1665) 8-(27,12,1332)
8-(27,11,333)
-
7-(28,12,6993) 7-(27,12,5328) 7-(26,12,3996)
7-(27,11,1665) 7-(26,11,1332)
7-(26,10,333)
-
6-(28,12,25641) 6-(27,12,18648) 6-(26,12,13320) 6-(25,12,9324)
6-(27,11,6993) 6-(26,11,5328) 6-(25,11,3996)
6-(26,10,1665) 6-(25,10,1332)
6-(25,9,333)
-
5-(28,12,84249) 5-(27,12,58608) 5-(26,12,39960) 5-(25,12,26640) 5-(24,12,17316) (#3021)
5-(27,11,25641) 5-(26,11,18648) 5-(25,11,13320) 5-(24,11,9324)
5-(26,10,6993) (#6477) 5-(25,10,5328) (#6476) 5-(24,10,3996) (#1455)
5-(25,9,1665) (#6475) 5-(24,9,1332) (#6474)
5-(24,8,333) (#5548)
- family 100, lambda = 336 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,336)
-
10-(30,14,1680) 10-(29,14,1344)
10-(29,13,336)
-
9-(30,14,7056) 9-(29,14,5376) 9-(28,14,4032)
9-(29,13,1680) 9-(28,13,1344)
9-(28,12,336)
-
8-(30,14,25872) 8-(29,14,18816) 8-(28,14,13440) 8-(27,14,9408)
8-(29,13,7056) 8-(28,13,5376) 8-(27,13,4032)
8-(28,12,1680) 8-(27,12,1344)
8-(27,11,336)
-
7-(30,14,85008) 7-(29,14,59136) 7-(28,14,40320) (#15630) 7-(27,14,26880) 7-(26,14,17472)
7-(29,13,25872) 7-(28,13,18816) 7-(27,13,13440) 7-(26,13,9408)
7-(28,12,7056) 7-(27,12,5376) 7-(26,12,4032)
7-(27,11,1680) 7-(26,11,1344)
7-(26,10,336)
-
6-(30,14,255024) 6-(29,14,170016) 6-(28,14,110880) (#15631) 6-(27,14,70560) (#15633) 6-(26,14,43680) 6-(25,14,26208)
6-(29,13,85008) 6-(28,13,59136) 6-(27,13,40320) (#15632) 6-(26,13,26880) 6-(25,13,17472)
6-(28,12,25872) 6-(27,12,18816) 6-(26,12,13440) 6-(25,12,9408)
6-(27,11,7056) 6-(26,11,5376) 6-(25,11,4032)
6-(26,10,1680) 6-(25,10,1344)
6-(25,9,336)
-
5-(30,14,708400) 5-(29,14,453376) 5-(28,14,283360) (#15637) 5-(27,14,172480) (#15639) 5-(26,14,101920) (#15647) 5-(25,14,58240) 5-(24,14,32032)
5-(29,13,255024) 5-(28,13,170016) 5-(27,13,110880) (#15638) 5-(26,13,70560) (#15644) 5-(25,13,43680) 5-(24,13,26208)
5-(28,12,85008) 5-(27,12,59136) 5-(26,12,40320) (#15643) 5-(25,12,26880) 5-(24,12,17472) (#3047)
5-(27,11,25872) 5-(26,11,18816) 5-(25,11,13440) 5-(24,11,9408)
5-(26,10,7056) (#6483) 5-(25,10,5376) (#6482) 5-(24,10,4032) (#1457)
5-(25,9,1680) (#6481) 5-(24,9,1344) (#6480)
5-(24,8,336) (#5551)
- family 101, lambda = 339 containing 56 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,339)
-
12-(32,16,1695) 12-(31,16,1356)
12-(31,15,339)
-
11-(32,16,7119) 11-(31,16,5424) 11-(30,16,4068)
11-(31,15,1695) 11-(30,15,1356)
11-(30,14,339)
-
10-(32,16,26103) 10-(31,16,18984) 10-(30,16,13560) 10-(29,16,9492)
10-(31,15,7119) 10-(30,15,5424) 10-(29,15,4068)
10-(30,14,1695) 10-(29,14,1356)
10-(29,13,339)
-
9-(32,16,85767) 9-(31,16,59664) 9-(30,16,40680) 9-(29,16,27120) 9-(28,16,17628)
9-(31,15,26103) 9-(30,15,18984) 9-(29,15,13560) 9-(28,15,9492)
9-(30,14,7119) 9-(29,14,5424) 9-(28,14,4068)
9-(29,13,1695) 9-(28,13,1356)
9-(28,12,339)
-
8-(32,16,257301) 8-(31,16,171534) 8-(30,16,111870) 8-(29,16,71190) 8-(28,16,44070) 8-(27,16,26442)
8-(31,15,85767) 8-(30,15,59664) 8-(29,15,40680) 8-(28,15,27120) 8-(27,15,17628)
8-(30,14,26103) 8-(29,14,18984) 8-(28,14,13560) 8-(27,14,9492)
8-(29,13,7119) 8-(28,13,5424) 8-(27,13,4068)
8-(28,12,1695) 8-(27,12,1356)
8-(27,11,339)
-
7-(32,16,714725) (#15329) 7-(31,16,457424) 7-(30,16,285890) 7-(29,16,174020) 7-(28,16,102830) 7-(27,16,58760) 7-(26,16,32318)
7-(31,15,257301) 7-(30,15,171534) (#15318) 7-(29,15,111870) 7-(28,15,71190) 7-(27,15,44070) 7-(26,15,26442)
7-(30,14,85767) 7-(29,14,59664) (#15314) 7-(28,14,40680) (#15304) 7-(27,14,27120) 7-(26,14,17628)
7-(29,13,26103) 7-(28,13,18984) (#15295) 7-(27,13,13560) 7-(26,13,9492)
7-(28,12,7119) 7-(27,12,5424) 7-(26,12,4068)
7-(27,11,1695) 7-(26,11,1356) (#13572)
7-(26,10,339)
-
6-(32,16,1858285) (#15328) 6-(31,16,1143560) (#15334) 6-(30,16,686136) 6-(29,16,400246) 6-(28,16,226226) 6-(27,16,123396) 6-(26,16,64636) 6-(25,16,32318)
6-(31,15,714725) (#15323) 6-(30,15,457424) (#15317) 6-(29,15,285890) (#15326) 6-(28,15,174020) 6-(27,15,102830) 6-(26,15,58760) 6-(25,15,32318)
6-(30,14,257301) (#15316) 6-(29,14,171534) (#15311) 6-(28,14,111870) (#15303) 6-(27,14,71190) (#15312) 6-(26,14,44070) 6-(25,14,26442)
6-(29,13,85767) (#15308) 6-(28,13,59664) (#11845) 6-(27,13,40680) (#15297) 6-(26,13,27120) 6-(25,13,17628)
6-(28,12,26103) (#15302) 6-(27,12,18984) (#15296) 6-(26,12,13560) 6-(25,12,9492)
6-(27,11,7119) (#13583) 6-(26,11,5424) (#13573) 6-(25,11,4068) (#13575)
6-(26,10,1695) (#10511) 6-(25,10,1356) (#13574)
6-(25,9,339)
-
5-(32,16,4561245) (#13601) 5-(31,16,2702960) (#15332) 5-(30,16,1559400) (#15338) 5-(29,16,873264) 5-(28,16,473018) 5-(27,16,246792) 5-(26,16,123396) 5-(25,16,58760) 5-(24,16,26442)
5-(31,15,1858285) (#13599) 5-(30,15,1143560) (#11856) 5-(29,15,686136) (#15324) 5-(28,15,400246) (#15330) 5-(27,15,226226) 5-(26,15,123396) 5-(25,15,64636) 5-(24,15,32318)
5-(30,14,714725) (#13597) 5-(29,14,457424) (#11854) 5-(28,14,285890) (#11852) 5-(27,14,174020) (#15309) 5-(26,14,102830) (#15319) 5-(25,14,58760) 5-(24,14,32318)
5-(29,13,257301) (#13595) 5-(28,13,171534) (#11846) 5-(27,13,111870) (#11848) 5-(26,13,71190) (#13593) 5-(25,13,44070) 5-(24,13,26442)
5-(28,12,85767) (#13591) 5-(27,12,59664) (#11847) 5-(26,12,40680) (#13594) 5-(25,12,27120) (#13590) 5-(24,12,17628) (#3072)
5-(27,11,26103) (#13588) 5-(26,11,18984) (#13579) 5-(25,11,13560) (#13580) 5-(24,11,9492) (#13586)
5-(26,10,7119) (#6489) 5-(25,10,5424) (#6488) 5-(24,10,4068) (#1459)
5-(25,9,1695) (#6487) 5-(24,9,1356) (#6486)
5-(24,8,339) (#5554)
- family 102, lambda = 345 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,345)
-
8-(28,12,1725) 8-(27,12,1380)
8-(27,11,345)
-
7-(28,12,7245) 7-(27,12,5520) 7-(26,12,4140)
7-(27,11,1725) 7-(26,11,1380)
7-(26,10,345)
-
6-(28,12,26565) 6-(27,12,19320) 6-(26,12,13800) 6-(25,12,9660)
6-(27,11,7245) 6-(26,11,5520) 6-(25,11,4140)
6-(26,10,1725) 6-(25,10,1380)
6-(25,9,345)
-
5-(28,12,87285) 5-(27,12,60720) 5-(26,12,41400) 5-(25,12,27600) 5-(24,12,17940) (#3131)
5-(27,11,26565) 5-(26,11,19320) 5-(25,11,13800) 5-(24,11,9660)
5-(26,10,7245) (#6514) 5-(25,10,5520) (#6513) 5-(24,10,4140) (#1464)
5-(25,9,1725) (#6512) 5-(24,9,1380) (#6511)
5-(24,8,345) (#5563)
- family 103, lambda = 348 containing 33 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,348)
-
12-(32,16,1740) 12-(31,16,1392)
12-(31,15,348)
-
11-(32,16,7308) 11-(31,16,5568) 11-(30,16,4176)
11-(31,15,1740) 11-(30,15,1392)
11-(30,14,348)
-
10-(32,16,26796) 10-(31,16,19488) 10-(30,16,13920) 10-(29,16,9744)
10-(31,15,7308) 10-(30,15,5568) 10-(29,15,4176)
10-(30,14,1740) 10-(29,14,1392)
10-(29,13,348)
-
9-(32,16,88044) 9-(31,16,61248) 9-(30,16,41760) 9-(29,16,27840) 9-(28,16,18096)
9-(31,15,26796) 9-(30,15,19488) 9-(29,15,13920) 9-(28,15,9744)
9-(30,14,7308) 9-(29,14,5568) 9-(28,14,4176)
9-(29,13,1740) 9-(28,13,1392)
9-(28,12,348)
-
8-(32,16,264132) 8-(31,16,176088) 8-(30,16,114840) 8-(29,16,73080) 8-(28,16,45240) 8-(27,16,27144)
8-(31,15,88044) 8-(30,15,61248) 8-(29,15,41760) 8-(28,15,27840) 8-(27,15,18096)
8-(30,14,26796) 8-(29,14,19488) 8-(28,14,13920) 8-(27,14,9744)
8-(29,13,7308) 8-(28,13,5568) 8-(27,13,4176)
8-(28,12,1740) 8-(27,12,1392)
8-(27,11,348)
-
7-(32,16,733700) 7-(31,16,469568) 7-(30,16,293480) 7-(29,16,178640) 7-(28,16,105560) 7-(27,16,60320) 7-(26,16,33176)
7-(31,15,264132) 7-(30,15,176088) 7-(29,15,114840) 7-(28,15,73080) 7-(27,15,45240) 7-(26,15,27144)
7-(30,14,88044) 7-(29,14,61248) 7-(28,14,41760) (#11194) 7-(27,14,27840) 7-(26,14,18096)
7-(29,13,26796) 7-(28,13,19488) 7-(27,13,13920) 7-(26,13,9744)
7-(28,12,7308) 7-(27,12,5568) 7-(26,12,4176)
7-(27,11,1740) (#14051) 7-(26,11,1392)
7-(26,10,348)
-
6-(32,16,1907620) 6-(31,16,1173920) 6-(30,16,704352) 6-(29,16,410872) 6-(28,16,232232) 6-(27,16,126672) 6-(26,16,66352) 6-(25,16,33176)
6-(31,15,733700) 6-(30,15,469568) 6-(29,15,293480) 6-(28,15,178640) 6-(27,15,105560) 6-(26,15,60320) 6-(25,15,33176)
6-(30,14,264132) 6-(29,14,176088) 6-(28,14,114840) (#11193) 6-(27,14,73080) (#11203) 6-(26,14,45240) 6-(25,14,27144)
6-(29,13,88044) 6-(28,13,61248) 6-(27,13,41760) (#11189) 6-(26,13,27840) 6-(25,13,18096)
6-(28,12,26796) 6-(27,12,19488) 6-(26,12,13920) 6-(25,12,9744)
6-(27,11,7308) (#10695) 6-(26,11,5568) (#14053) 6-(25,11,4176)
6-(26,10,1740) (#14052) 6-(25,10,1392)
6-(25,9,348)
-
5-(32,16,4682340) (#11225) 5-(31,16,2774720) 5-(30,16,1600800) 5-(29,16,896448) 5-(28,16,485576) 5-(27,16,253344) 5-(26,16,126672) 5-(25,16,60320) 5-(24,16,27144)
5-(31,15,1907620) (#11223) 5-(30,15,1173920) (#11220) 5-(29,15,704352) 5-(28,15,410872) 5-(27,15,232232) 5-(26,15,126672) 5-(25,15,66352) 5-(24,15,33176)
5-(30,14,733700) (#11219) 5-(29,14,469568) (#11216) 5-(28,14,293480) (#11198) 5-(27,14,178640) (#11200) 5-(26,14,105560) (#11210) 5-(25,14,60320) 5-(24,14,33176)
5-(29,13,264132) (#11215) 5-(28,13,176088) (#11209) 5-(27,13,114840) (#11190) 5-(26,13,73080) (#11192) 5-(25,13,45240) 5-(24,13,27144)
5-(28,12,88044) (#11208) 5-(27,12,61248) (#11199) 5-(26,12,41760) (#11191) 5-(25,12,27840) 5-(24,12,18096) (#3163)
5-(27,11,26796) (#10696) 5-(26,11,19488) (#10697) 5-(25,11,13920) (#14059) 5-(24,11,9744)
5-(26,10,7308) (#6525) 5-(25,10,5568) (#6524) 5-(24,10,4176) (#1466)
5-(25,9,1740) (#6523) 5-(24,9,1392) (#6522)
5-(24,8,348) (#5566)
- family 104, lambda = 351 containing 59 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,351)
-
12-(32,16,1755) 12-(31,16,1404)
12-(31,15,351)
-
11-(32,16,7371) 11-(31,16,5616) 11-(30,16,4212)
11-(31,15,1755) 11-(30,15,1404)
11-(30,14,351)
-
10-(32,16,27027) 10-(31,16,19656) 10-(30,16,14040) 10-(29,16,9828)
10-(31,15,7371) 10-(30,15,5616) 10-(29,15,4212)
10-(30,14,1755) 10-(29,14,1404)
10-(29,13,351)
-
9-(32,16,88803) 9-(31,16,61776) 9-(30,16,42120) 9-(29,16,28080) 9-(28,16,18252)
9-(31,15,27027) 9-(30,15,19656) 9-(29,15,14040) 9-(28,15,9828)
9-(30,14,7371) 9-(29,14,5616) 9-(28,14,4212)
9-(29,13,1755) 9-(28,13,1404)
9-(28,12,351)
-
8-(32,16,266409) 8-(31,16,177606) 8-(30,16,115830) 8-(29,16,73710) 8-(28,16,45630) 8-(27,16,27378)
8-(31,15,88803) 8-(30,15,61776) 8-(29,15,42120) 8-(28,15,28080) 8-(27,15,18252)
8-(30,14,27027) 8-(29,14,19656) 8-(28,14,14040) (#17941) 8-(27,14,9828)
8-(29,13,7371) 8-(28,13,5616) 8-(27,13,4212)
8-(28,12,1755) 8-(27,12,1404)
8-(27,11,351)
-
7-(32,16,740025) (#17981) 7-(31,16,473616) 7-(30,16,296010) 7-(29,16,180180) 7-(28,16,106470) 7-(27,16,60840) 7-(26,16,33462)
7-(31,15,266409) 7-(30,15,177606) (#17970) 7-(29,15,115830) 7-(28,15,73710) 7-(27,15,45630) 7-(26,15,27378)
7-(30,14,88803) 7-(29,14,61776) 7-(28,14,42120) (#11232) 7-(27,14,28080) (#17943) 7-(26,14,18252)
7-(29,13,27027) 7-(28,13,19656) 7-(27,13,14040) (#17942) 7-(26,13,9828)
7-(28,12,7371) 7-(27,12,5616) 7-(26,12,4212)
7-(27,11,1755) (#14061) 7-(26,11,1404)
7-(26,10,351)
-
6-(32,16,1924065) (#17980) 6-(31,16,1184040) (#17988) 6-(30,16,710424) 6-(29,16,414414) 6-(28,16,234234) 6-(27,16,127764) 6-(26,16,66924) 6-(25,16,33462)
6-(31,15,740025) (#17974) 6-(30,15,473616) (#17969) 6-(29,15,296010) (#17977) 6-(28,15,180180) 6-(27,15,106470) 6-(26,15,60840) 6-(25,15,33462)
6-(30,14,266409) (#17968) 6-(29,14,177606) (#17965) 6-(28,14,115830) (#11231) 6-(27,14,73710) (#11240) 6-(26,14,45630) (#17950) 6-(25,14,27378)
6-(29,13,88803) (#17964) 6-(28,13,61776) (#17961) 6-(27,13,42120) (#11227) 6-(26,13,28080) (#17947) 6-(25,13,18252)
6-(28,12,27027) (#17960) 6-(27,12,19656) (#17954) 6-(26,12,14040) (#17946) 6-(25,12,9828)
6-(27,11,7371) (#14062) 6-(26,11,5616) (#14064) 6-(25,11,4212)
6-(26,10,1755) (#14063) 6-(25,10,1404)
6-(25,9,351)
-
5-(32,16,4722705) (#14093) 5-(31,16,2798640) (#17986) 5-(30,16,1614600) (#17990) 5-(29,16,904176) 5-(28,16,489762) 5-(27,16,255528) 5-(26,16,127764) 5-(25,16,60840) 5-(24,16,27378)
5-(31,15,1924065) (#14091) 5-(30,15,1184040) (#14088) 5-(29,15,710424) (#17975) 5-(28,15,414414) (#17982) 5-(27,15,234234) 5-(26,15,127764) 5-(25,15,66924) 5-(24,15,33462)
5-(30,14,740025) (#14087) 5-(29,14,473616) (#14084) 5-(28,14,296010) (#11236) 5-(27,14,180180) (#11237) 5-(26,14,106470) (#11244) 5-(25,14,60840) (#17958) 5-(24,14,33462)
5-(29,13,266409) (#14083) 5-(28,13,177606) (#14080) 5-(27,13,115830) (#11228) 5-(26,13,73710) (#11230) 5-(25,13,45630) (#17955) 5-(24,13,27378)
5-(28,12,88803) (#14079) 5-(27,12,61776) (#14077) 5-(26,12,42120) (#11229) 5-(25,12,28080) (#17952) 5-(24,12,18252) (#3190)
5-(27,11,27027) (#14068) 5-(26,11,19656) (#14069) 5-(25,11,14040) (#14075) 5-(24,11,9828)
5-(26,10,7371) (#6531) 5-(25,10,5616) (#6530) 5-(24,10,4212) (#1468)
5-(25,9,1755) (#6529) 5-(24,9,1404) (#6528)
5-(24,8,351) (#5570)
- family 105, lambda = 354 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,354)
-
8-(28,12,1770) 8-(27,12,1416)
8-(27,11,354)
-
7-(28,12,7434) 7-(27,12,5664) 7-(26,12,4248)
7-(27,11,1770) 7-(26,11,1416)
7-(26,10,354)
-
6-(28,12,27258) 6-(27,12,19824) 6-(26,12,14160) 6-(25,12,9912)
6-(27,11,7434) 6-(26,11,5664) 6-(25,11,4248)
6-(26,10,1770) 6-(25,10,1416)
6-(25,9,354)
-
5-(28,12,89562) 5-(27,12,62304) 5-(26,12,42480) 5-(25,12,28320) 5-(24,12,18408) (#3217)
5-(27,11,27258) 5-(26,11,19824) 5-(25,11,14160) 5-(24,11,9912)
5-(26,10,7434) (#6537) 5-(25,10,5664) (#6536) 5-(24,10,4248) (#1470)
5-(25,9,1770) (#6535) 5-(24,9,1416) (#6534)
5-(24,8,354) (#5573)
- family 106, lambda = 360 containing 40 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,360)
-
12-(32,16,1800) 12-(31,16,1440)
12-(31,15,360)
-
11-(32,16,7560) 11-(31,16,5760) 11-(30,16,4320)
11-(31,15,1800) 11-(30,15,1440)
11-(30,14,360)
-
10-(32,16,27720) 10-(31,16,20160) 10-(30,16,14400) 10-(29,16,10080)
10-(31,15,7560) 10-(30,15,5760) 10-(29,15,4320)
10-(30,14,1800) 10-(29,14,1440)
10-(29,13,360)
-
9-(32,16,91080) 9-(31,16,63360) 9-(30,16,43200) 9-(29,16,28800) 9-(28,16,18720)
9-(31,15,27720) 9-(30,15,20160) 9-(29,15,14400) 9-(28,15,10080)
9-(30,14,7560) 9-(29,14,5760) 9-(28,14,4320)
9-(29,13,1800) 9-(28,13,1440)
9-(28,12,360)
-
8-(32,16,273240) 8-(31,16,182160) 8-(30,16,118800) 8-(29,16,75600) 8-(28,16,46800) 8-(27,16,28080)
8-(31,15,91080) 8-(30,15,63360) 8-(29,15,43200) 8-(28,15,28800) 8-(27,15,18720)
8-(30,14,27720) 8-(29,14,20160) 8-(28,14,14400) 8-(27,14,10080)
8-(29,13,7560) 8-(28,13,5760) 8-(27,13,4320)
8-(28,12,1800) 8-(27,12,1440)
8-(27,11,360)
-
7-(32,16,759000) 7-(31,16,485760) 7-(30,16,303600) 7-(29,16,184800) 7-(28,16,109200) 7-(27,16,62400) 7-(26,16,34320)
7-(31,15,273240) 7-(30,15,182160) (#15369) 7-(29,15,118800) 7-(28,15,75600) 7-(27,15,46800) 7-(26,15,28080)
7-(30,14,91080) 7-(29,14,63360) (#15364) 7-(28,14,43200) (#15353) 7-(27,14,28800) 7-(26,14,18720)
7-(29,13,27720) 7-(28,13,20160) (#15341) 7-(27,13,14400) 7-(26,13,10080)
7-(28,12,7560) 7-(27,12,5760) 7-(26,12,4320)
7-(27,11,1800) 7-(26,11,1440)
7-(26,10,360)
-
6-(32,16,1973400) 6-(31,16,1214400) 6-(30,16,728640) 6-(29,16,425040) 6-(28,16,240240) 6-(27,16,131040) 6-(26,16,68640) 6-(25,16,34320)
6-(31,15,759000) 6-(30,15,485760) (#15368) 6-(29,15,303600) (#15378) 6-(28,15,184800) 6-(27,15,109200) 6-(26,15,62400) 6-(25,15,34320)
6-(30,14,273240) 6-(29,14,182160) (#15361) 6-(28,14,118800) (#15352) 6-(27,14,75600) (#15362) 6-(26,14,46800) 6-(25,14,28080)
6-(29,13,91080) 6-(28,13,63360) (#11858) 6-(27,13,43200) (#15343) 6-(26,13,28800) 6-(25,13,18720)
6-(28,12,27720) 6-(27,12,20160) (#15342) 6-(26,12,14400) 6-(25,12,10080)
6-(27,11,7560) 6-(26,11,5760) 6-(25,11,4320)
6-(26,10,1800) (#10515) 6-(25,10,1440)
6-(25,9,360) (#10446)
-
5-(32,16,4843800) (#15386) 5-(31,16,2870400) 5-(30,16,1656000) 5-(29,16,927360) 5-(28,16,502320) 5-(27,16,262080) 5-(26,16,131040) 5-(25,16,62400) 5-(24,16,28080)
5-(31,15,1973400) (#15384) 5-(30,15,1214400) (#11869) 5-(29,15,728640) (#15376) 5-(28,15,425040) (#15382) 5-(27,15,240240) 5-(26,15,131040) 5-(25,15,68640) 5-(24,15,34320)
5-(30,14,759000) (#15380) 5-(29,14,485760) (#11867) 5-(28,14,303600) (#11865) 5-(27,14,184800) (#15359) 5-(26,14,109200) (#15370) 5-(25,14,62400) 5-(24,14,34320)
5-(29,13,273240) (#15374) 5-(28,13,182160) (#11859) 5-(27,13,118800) (#11861) 5-(26,13,75600) (#15351) 5-(25,13,46800) 5-(24,13,28080)
5-(28,12,91080) (#15366) 5-(27,12,63360) (#11860) 5-(26,12,43200) (#15348) 5-(25,12,28800) 5-(24,12,18720) (#3275)
5-(27,11,27720) (#15357) 5-(26,11,20160) (#15347) 5-(25,11,14400) 5-(24,11,10080)
5-(26,10,7560) (#6562) 5-(25,10,5760) (#6561) 5-(24,10,4320) (#1475)
5-(25,9,1800) (#6560) 5-(24,9,1440) (#6559)
5-(24,8,360) (#5582)
- family 107, lambda = 363 containing 31 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,363)
-
12-(32,16,1815) 12-(31,16,1452)
12-(31,15,363)
-
11-(32,16,7623) 11-(31,16,5808) 11-(30,16,4356)
11-(31,15,1815) 11-(30,15,1452)
11-(30,14,363)
-
10-(32,16,27951) 10-(31,16,20328) 10-(30,16,14520) 10-(29,16,10164)
10-(31,15,7623) 10-(30,15,5808) 10-(29,15,4356)
10-(30,14,1815) 10-(29,14,1452)
10-(29,13,363)
-
9-(32,16,91839) 9-(31,16,63888) 9-(30,16,43560) 9-(29,16,29040) 9-(28,16,18876)
9-(31,15,27951) 9-(30,15,20328) 9-(29,15,14520) 9-(28,15,10164)
9-(30,14,7623) 9-(29,14,5808) 9-(28,14,4356)
9-(29,13,1815) 9-(28,13,1452)
9-(28,12,363)
-
8-(32,16,275517) 8-(31,16,183678) 8-(30,16,119790) 8-(29,16,76230) 8-(28,16,47190) 8-(27,16,28314)
8-(31,15,91839) 8-(30,15,63888) 8-(29,15,43560) 8-(28,15,29040) 8-(27,15,18876)
8-(30,14,27951) 8-(29,14,20328) 8-(28,14,14520) 8-(27,14,10164)
8-(29,13,7623) 8-(28,13,5808) 8-(27,13,4356)
8-(28,12,1815) 8-(27,12,1452)
8-(27,11,363)
-
7-(32,16,765325) 7-(31,16,489808) 7-(30,16,306130) 7-(29,16,186340) 7-(28,16,110110) 7-(27,16,62920) 7-(26,16,34606)
7-(31,15,275517) 7-(30,15,183678) 7-(29,15,119790) 7-(28,15,76230) 7-(27,15,47190) 7-(26,15,28314)
7-(30,14,91839) 7-(29,14,63888) 7-(28,14,43560) 7-(27,14,29040) 7-(26,14,18876)
7-(29,13,27951) 7-(28,13,20328) 7-(27,13,14520) 7-(26,13,10164) (#9998)
7-(28,12,7623) 7-(27,12,5808) 7-(26,12,4356)
7-(27,11,1815) 7-(26,11,1452)
7-(26,10,363)
-
6-(32,16,1989845) 6-(31,16,1224520) 6-(30,16,734712) 6-(29,16,428582) 6-(28,16,242242) 6-(27,16,132132) 6-(26,16,69212) 6-(25,16,34606)
6-(31,15,765325) 6-(30,15,489808) 6-(29,15,306130) 6-(28,15,186340) 6-(27,15,110110) 6-(26,15,62920) 6-(25,15,34606)
6-(30,14,275517) 6-(29,14,183678) 6-(28,14,119790) 6-(27,14,76230) 6-(26,14,47190) 6-(25,14,28314)
6-(29,13,91839) 6-(28,13,63888) 6-(27,13,43560) 6-(26,13,29040) (#9997) 6-(25,13,18876) (#10005)
6-(28,12,27951) 6-(27,12,20328) 6-(26,12,14520) 6-(25,12,10164) (#9996)
6-(27,11,7623) 6-(26,11,5808) 6-(25,11,4356)
6-(26,10,1815) 6-(25,10,1452)
6-(25,9,363)
-
5-(32,16,4884165) (#6579) 5-(31,16,2894320) 5-(30,16,1669800) 5-(29,16,935088) 5-(28,16,506506) 5-(27,16,264264) 5-(26,16,132132) 5-(25,16,62920) 5-(24,16,28314)
5-(31,15,1989845) (#6578) 5-(30,15,1224520) (#6577) 5-(29,15,734712) 5-(28,15,428582) 5-(27,15,242242) 5-(26,15,132132) 5-(25,15,69212) 5-(24,15,34606)
5-(30,14,765325) (#6576) 5-(29,14,489808) (#6575) 5-(28,14,306130) (#3307) 5-(27,14,186340) 5-(26,14,110110) 5-(25,14,62920) 5-(24,14,34606)
5-(29,13,275517) (#6574) 5-(28,13,183678) (#6573) 5-(27,13,119790) (#3306) 5-(26,13,76230) (#3304) 5-(25,13,47190) (#10002) 5-(24,13,28314) (#10009)
5-(28,12,91839) (#6572) 5-(27,12,63888) (#6571) 5-(26,12,43560) (#3305) 5-(25,12,29040) (#3303) 5-(24,12,18876) (#3302)
5-(27,11,27951) (#6570) 5-(26,11,20328) (#6569) 5-(25,11,14520) (#1592) 5-(24,11,10164) (#1591)
5-(26,10,7623) (#6568) 5-(25,10,5808) (#6567) 5-(24,10,4356) (#1477)
5-(25,9,1815) (#6566) 5-(24,9,1452) (#6565)
5-(24,8,363) (#5585)
- family 108, lambda = 366 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,366)
-
8-(28,12,1830) 8-(27,12,1464)
8-(27,11,366)
-
7-(28,12,7686) 7-(27,12,5856) 7-(26,12,4392)
7-(27,11,1830) 7-(26,11,1464)
7-(26,10,366)
-
6-(28,12,28182) 6-(27,12,20496) 6-(26,12,14640) 6-(25,12,10248)
6-(27,11,7686) 6-(26,11,5856) 6-(25,11,4392)
6-(26,10,1830) 6-(25,10,1464)
6-(25,9,366)
-
5-(28,12,92598) 5-(27,12,64416) 5-(26,12,43920) 5-(25,12,29280) 5-(24,12,19032) (#3334)
5-(27,11,28182) 5-(26,11,20496) 5-(25,11,14640) 5-(24,11,10248)
5-(26,10,7686) (#6585) 5-(25,10,5856) (#6584) 5-(24,10,4392) (#1479)
5-(25,9,1830) (#6583) 5-(24,9,1464) (#6582)
5-(24,8,366) (#5588)
- family 109, lambda = 369 containing 15 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,369)
-
8-(28,12,1845) 8-(27,12,1476)
8-(27,11,369)
-
7-(28,12,7749) 7-(27,12,5904) 7-(26,12,4428)
7-(27,11,1845) (#14103) 7-(26,11,1476)
7-(26,10,369)
-
6-(28,12,28413) 6-(27,12,20664) 6-(26,12,14760) 6-(25,12,10332)
6-(27,11,7749) (#10712) 6-(26,11,5904) (#14104) 6-(25,11,4428)
6-(26,10,1845) (#10518) 6-(25,10,1476)
6-(25,9,369) (#10449)
-
5-(28,12,93357) 5-(27,12,64944) 5-(26,12,44280) 5-(25,12,29520) 5-(24,12,19188) (#3360)
5-(27,11,28413) (#10713) 5-(26,11,20664) (#10714) 5-(25,11,14760) (#14108) 5-(24,11,10332)
5-(26,10,7749) (#6591) 5-(25,10,5904) (#6590) 5-(24,10,4428) (#1481)
5-(25,9,1845) (#6589) 5-(24,9,1476) (#6588)
5-(24,8,369) (#5591)
- family 110, lambda = 372 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,372)
-
8-(28,12,1860) 8-(27,12,1488)
8-(27,11,372)
-
7-(28,12,7812) 7-(27,12,5952) 7-(26,12,4464)
7-(27,11,1860) (#14110) 7-(26,11,1488)
7-(26,10,372)
-
6-(28,12,28644) 6-(27,12,20832) 6-(26,12,14880) 6-(25,12,10416)
6-(27,11,7812) (#14111) 6-(26,11,5952) (#14113) 6-(25,11,4464)
6-(26,10,1860) (#14112) 6-(25,10,1488)
6-(25,9,372)
-
5-(28,12,94116) 5-(27,12,65472) 5-(26,12,44640) 5-(25,12,29760) 5-(24,12,19344) (#3386)
5-(27,11,28644) (#14117) 5-(26,11,20832) (#14118) 5-(25,11,14880) (#14124) 5-(24,11,10416)
5-(26,10,7812) (#6597) 5-(25,10,5952) (#6596) 5-(24,10,4464) (#1482)
5-(25,9,1860) (#6595) 5-(24,9,1488) (#6594)
5-(24,8,372) (#5595)
- family 111, lambda = 375 containing 35 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,375)
-
12-(32,16,1875) 12-(31,16,1500)
12-(31,15,375)
-
11-(32,16,7875) 11-(31,16,6000) 11-(30,16,4500)
11-(31,15,1875) 11-(30,15,1500)
11-(30,14,375)
-
10-(32,16,28875) 10-(31,16,21000) 10-(30,16,15000) 10-(29,16,10500)
10-(31,15,7875) 10-(30,15,6000) 10-(29,15,4500)
10-(30,14,1875) 10-(29,14,1500)
10-(29,13,375)
-
9-(32,16,94875) 9-(31,16,66000) 9-(30,16,45000) 9-(29,16,30000) 9-(28,16,19500)
9-(31,15,28875) 9-(30,15,21000) 9-(29,15,15000) 9-(28,15,10500)
9-(30,14,7875) 9-(29,14,6000) 9-(28,14,4500)
9-(29,13,1875) 9-(28,13,1500)
9-(28,12,375)
-
8-(32,16,284625) 8-(31,16,189750) 8-(30,16,123750) 8-(29,16,78750) 8-(28,16,48750) 8-(27,16,29250)
8-(31,15,94875) 8-(30,15,66000) 8-(29,15,45000) 8-(28,15,30000) 8-(27,15,19500)
8-(30,14,28875) 8-(29,14,21000) 8-(28,14,15000) 8-(27,14,10500)
8-(29,13,7875) 8-(28,13,6000) 8-(27,13,4500)
8-(28,12,1875) 8-(27,12,1500)
8-(27,11,375)
-
7-(32,16,790625) 7-(31,16,506000) 7-(30,16,316250) 7-(29,16,192500) 7-(28,16,113750) 7-(27,16,65000) 7-(26,16,35750)
7-(31,15,284625) 7-(30,15,189750) 7-(29,15,123750) 7-(28,15,78750) 7-(27,15,48750) 7-(26,15,29250)
7-(30,14,94875) 7-(29,14,66000) 7-(28,14,45000) 7-(27,14,30000) 7-(26,14,19500)
7-(29,13,28875) 7-(28,13,21000) 7-(27,13,15000) 7-(26,13,10500) (#10014)
7-(28,12,7875) 7-(27,12,6000) 7-(26,12,4500)
7-(27,11,1875) (#14126) 7-(26,11,1500)
7-(26,10,375)
-
6-(32,16,2055625) 6-(31,16,1265000) 6-(30,16,759000) 6-(29,16,442750) 6-(28,16,250250) 6-(27,16,136500) 6-(26,16,71500) 6-(25,16,35750)
6-(31,15,790625) 6-(30,15,506000) 6-(29,15,316250) 6-(28,15,192500) 6-(27,15,113750) 6-(26,15,65000) 6-(25,15,35750)
6-(30,14,284625) 6-(29,14,189750) 6-(28,14,123750) 6-(27,14,78750) 6-(26,14,48750) 6-(25,14,29250)
6-(29,13,94875) 6-(28,13,66000) 6-(27,13,45000) 6-(26,13,30000) (#10013) 6-(25,13,19500) (#10021)
6-(28,12,28875) 6-(27,12,21000) 6-(26,12,15000) 6-(25,12,10500) (#10012)
6-(27,11,7875) (#14127) 6-(26,11,6000) (#14128) 6-(25,11,4500)
6-(26,10,1875) (#10521) 6-(25,10,1500)
6-(25,9,375)
-
5-(32,16,5045625) (#6616) 5-(31,16,2990000) 5-(30,16,1725000) 5-(29,16,966000) 5-(28,16,523250) 5-(27,16,273000) 5-(26,16,136500) 5-(25,16,65000) 5-(24,16,29250)
5-(31,15,2055625) (#6615) 5-(30,15,1265000) (#6614) 5-(29,15,759000) 5-(28,15,442750) 5-(27,15,250250) 5-(26,15,136500) 5-(25,15,71500) 5-(24,15,35750)
5-(30,14,790625) (#6613) 5-(29,14,506000) (#6612) 5-(28,14,316250) (#3417) 5-(27,14,192500) 5-(26,14,113750) 5-(25,14,65000) 5-(24,14,35750)
5-(29,13,284625) (#6611) 5-(28,13,189750) (#6610) 5-(27,13,123750) (#3416) 5-(26,13,78750) (#3414) 5-(25,13,48750) (#10018) 5-(24,13,29250) (#10025)
5-(28,12,94875) (#6609) 5-(27,12,66000) (#6608) 5-(26,12,45000) (#3415) 5-(25,12,30000) (#3413) 5-(24,12,19500) (#3412)
5-(27,11,28875) (#6607) 5-(26,11,21000) (#6606) 5-(25,11,15000) (#1594) 5-(24,11,10500) (#1593)
5-(26,10,7875) (#6605) 5-(25,10,6000) (#6604) 5-(24,10,4500) (#1485)
5-(25,9,1875) (#6603) 5-(24,9,1500) (#6602)
5-(24,8,375) (#5599)
- family 112, lambda = 378 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,378)
-
8-(28,12,1890) 8-(27,12,1512)
8-(27,11,378)
-
7-(28,12,7938) 7-(27,12,6048) 7-(26,12,4536)
7-(27,11,1890) (#14147) 7-(26,11,1512)
7-(26,10,378)
-
6-(28,12,29106) 6-(27,12,21168) 6-(26,12,15120) 6-(25,12,10584)
6-(27,11,7938) (#14148) 6-(26,11,6048) (#14150) 6-(25,11,4536)
6-(26,10,1890) (#14149) 6-(25,10,1512)
6-(25,9,378)
-
5-(28,12,95634) 5-(27,12,66528) 5-(26,12,45360) 5-(25,12,30240) 5-(24,12,19656) (#3444)
5-(27,11,29106) (#14154) 5-(26,11,21168) (#14155) 5-(25,11,15120) (#14161) 5-(24,11,10584)
5-(26,10,7938) (#6622) 5-(25,10,6048) (#6621) 5-(24,10,4536) (#1487)
5-(25,9,1890) (#6620) 5-(24,9,1512) (#6619)
5-(24,8,378) (#5602)
- family 113, lambda = 381 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,381)
-
10-(30,14,1905) 10-(29,14,1524)
10-(29,13,381)
-
9-(30,14,8001) 9-(29,14,6096) 9-(28,14,4572)
9-(29,13,1905) 9-(28,13,1524)
9-(28,12,381)
-
8-(30,14,29337) 8-(29,14,21336) 8-(28,14,15240) 8-(27,14,10668)
8-(29,13,8001) 8-(28,13,6096) 8-(27,13,4572)
8-(28,12,1905) 8-(27,12,1524)
8-(27,11,381)
-
7-(30,14,96393) 7-(29,14,67056) 7-(28,14,45720) (#15714) 7-(27,14,30480) 7-(26,14,19812)
7-(29,13,29337) 7-(28,13,21336) 7-(27,13,15240) 7-(26,13,10668)
7-(28,12,8001) 7-(27,12,6096) 7-(26,12,4572)
7-(27,11,1905) 7-(26,11,1524)
7-(26,10,381)
-
6-(30,14,289179) 6-(29,14,192786) 6-(28,14,125730) (#15715) 6-(27,14,80010) (#15717) 6-(26,14,49530) 6-(25,14,29718)
6-(29,13,96393) 6-(28,13,67056) 6-(27,13,45720) (#15716) 6-(26,13,30480) 6-(25,13,19812)
6-(28,12,29337) 6-(27,12,21336) 6-(26,12,15240) 6-(25,12,10668)
6-(27,11,8001) 6-(26,11,6096) 6-(25,11,4572)
6-(26,10,1905) 6-(25,10,1524)
6-(25,9,381)
-
5-(30,14,803275) 5-(29,14,514096) 5-(28,14,321310) (#15721) 5-(27,14,195580) (#15723) 5-(26,14,115570) (#15731) 5-(25,14,66040) 5-(24,14,36322)
5-(29,13,289179) 5-(28,13,192786) 5-(27,13,125730) (#15722) 5-(26,13,80010) (#15728) 5-(25,13,49530) 5-(24,13,29718)
5-(28,12,96393) 5-(27,12,67056) 5-(26,12,45720) (#15727) 5-(25,12,30480) 5-(24,12,19812) (#3477)
5-(27,11,29337) 5-(26,11,21336) 5-(25,11,15240) 5-(24,11,10668)
5-(26,10,8001) (#6633) 5-(25,10,6096) (#6632) 5-(24,10,4572) (#1489)
5-(25,9,1905) (#6631) 5-(24,9,1524) (#6630)
5-(24,8,381) (#5606)
- family 114, lambda = 384 containing 82 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,384)
-
12-(32,16,1920) 12-(31,16,1536)
12-(31,15,384)
-
11-(32,16,8064) 11-(31,16,6144) 11-(30,16,4608)
11-(31,15,1920) 11-(30,15,1536)
11-(30,14,384)
-
10-(32,16,29568) 10-(31,16,21504) 10-(30,16,15360) 10-(29,16,10752)
10-(31,15,8064) 10-(30,15,6144) 10-(29,15,4608)
10-(30,14,1920) 10-(29,14,1536)
10-(29,13,384)
-
9-(32,16,97152) 9-(31,16,67584) 9-(30,16,46080) 9-(29,16,30720) 9-(28,16,19968)
9-(31,15,29568) 9-(30,15,21504) 9-(29,15,15360) 9-(28,15,10752)
9-(30,14,8064) 9-(29,14,6144) 9-(28,14,4608) (#17810)
9-(29,13,1920) 9-(28,13,1536)
9-(28,12,384)
-
8-(32,16,291456) 8-(31,16,194304) 8-(30,16,126720) 8-(29,16,80640) 8-(28,16,49920) 8-(27,16,29952)
8-(31,15,97152) 8-(30,15,67584) 8-(29,15,46080) 8-(28,15,30720) 8-(27,15,19968)
8-(30,14,29568) 8-(29,14,21504) 8-(28,14,15360) (#17809) 8-(27,14,10752) (#17825)
8-(29,13,8064) 8-(28,13,6144) 8-(27,13,4608) (#17805)
8-(28,12,1920) 8-(27,12,1536)
8-(27,11,384)
-
7-(32,16,809600) (#15402) 7-(31,16,518144) 7-(30,16,323840) 7-(29,16,197120) 7-(28,16,116480) 7-(27,16,66560) 7-(26,16,36608)
7-(31,15,291456) (#17849) 7-(30,15,194304) (#11874) 7-(29,15,126720) 7-(28,15,80640) 7-(27,15,49920) 7-(26,15,29952)
7-(30,14,97152) (#17846) 7-(29,14,67584) (#15392) 7-(28,14,46080) (#11308) 7-(27,14,30720) (#17823) 7-(26,14,19968) (#17838)
7-(29,13,29568) (#17841) 7-(28,13,21504) (#15388) 7-(27,13,15360) (#17806) 7-(26,13,10752) (#17808)
7-(28,12,8064) (#17833) 7-(27,12,6144) (#17820) 7-(26,12,4608) (#17807)
7-(27,11,1920) (#14163) 7-(26,11,1536) (#13603)
7-(26,10,384)
-
6-(32,16,2104960) (#15401) 6-(31,16,1295360) (#15407) 6-(30,16,777216) 6-(29,16,453376) 6-(28,16,256256) 6-(27,16,139776) 6-(26,16,73216) 6-(25,16,36608)
6-(31,15,809600) (#15399) 6-(30,15,518144) (#11873) 6-(29,15,323840) (#11877) 6-(28,15,197120) 6-(27,15,116480) 6-(26,15,66560) 6-(25,15,36608)
6-(30,14,291456) (#15397) 6-(29,14,194304) (#11872) 6-(28,14,126720) (#11307) 6-(27,14,80640) (#11317) 6-(26,14,49920) (#17836) 6-(25,14,29952) (#17844)
6-(29,13,97152) (#15395) 6-(28,13,67584) (#11871) 6-(27,13,46080) (#11303) 6-(26,13,30720) (#17815) 6-(25,13,19968) (#17821)
6-(28,12,29568) (#15393) 6-(27,12,21504) (#15389) 6-(26,12,15360) (#17814) 6-(25,12,10752) (#17818)
6-(27,11,8064) (#10717) 6-(26,11,6144) (#13604) 6-(25,11,4608) (#13606)
6-(26,10,1920) (#13614) 6-(25,10,1536) (#13605)
6-(25,9,384) (#10452)
-
5-(32,16,5166720) (#11339) 5-(31,16,3061760) (#15405) 5-(30,16,1766400) (#15409) 5-(29,16,989184) 5-(28,16,535808) 5-(27,16,279552) 5-(26,16,139776) 5-(25,16,66560) 5-(24,16,29952)
5-(31,15,2104960) (#11337) 5-(30,15,1295360) (#11334) 5-(29,15,777216) (#11875) 5-(28,15,453376) (#11881) 5-(27,15,256256) 5-(26,15,139776) 5-(25,15,73216) 5-(24,15,36608)
5-(30,14,809600) (#11333) 5-(29,14,518144) (#11330) 5-(28,14,323840) (#11312) 5-(27,14,197120) (#11314) 5-(26,14,116480) (#11324) 5-(25,14,66560) (#17842) 5-(24,14,36608) (#17847)
5-(29,13,291456) (#11329) 5-(28,13,194304) (#11323) 5-(27,13,126720) (#11304) 5-(26,13,80640) (#11306) 5-(25,13,49920) (#17830) 5-(24,13,29952) (#17834)
5-(28,12,97152) (#11322) 5-(27,12,67584) (#11313) 5-(26,12,46080) (#11305) 5-(25,12,30720) (#13617) 5-(24,12,19968) (#3502)
5-(27,11,29568) (#10718) 5-(26,11,21504) (#10719) 5-(25,11,15360) (#13610) 5-(24,11,10752) (#13615)
5-(26,10,8064) (#6639) 5-(25,10,6144) (#6638) 5-(24,10,4608) (#1491)
5-(25,9,1920) (#6637) 5-(24,9,1536) (#6636)
5-(24,8,384) (#5609)
- family 115, lambda = 387 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,387)
-
8-(28,12,1935) 8-(27,12,1548)
8-(27,11,387)
-
7-(28,12,8127) 7-(27,12,6192) 7-(26,12,4644)
7-(27,11,1935) 7-(26,11,1548)
7-(26,10,387)
-
6-(28,12,29799) 6-(27,12,21672) 6-(26,12,15480) 6-(25,12,10836)
6-(27,11,8127) 6-(26,11,6192) 6-(25,11,4644)
6-(26,10,1935) 6-(25,10,1548)
6-(25,9,387)
-
5-(28,12,97911) 5-(27,12,68112) 5-(26,12,46440) 5-(25,12,30960) 5-(24,12,20124) (#3529)
5-(27,11,29799) 5-(26,11,21672) 5-(25,11,15480) 5-(24,11,10836)
5-(26,10,8127) (#6645) 5-(25,10,6192) (#6644) 5-(24,10,4644) (#1493)
5-(25,9,1935) (#6643) 5-(24,9,1548) (#6642)
5-(24,8,387) (#5612)
- family 116, lambda = 390 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,390)
-
8-(28,12,1950) 8-(27,12,1560)
8-(27,11,390)
-
7-(28,12,8190) 7-(27,12,6240) 7-(26,12,4680)
7-(27,11,1950) 7-(26,11,1560)
7-(26,10,390)
-
6-(28,12,30030) 6-(27,12,21840) 6-(26,12,15600) 6-(25,12,10920)
6-(27,11,8190) 6-(26,11,6240) 6-(25,11,4680)
6-(26,10,1950) 6-(25,10,1560)
6-(25,9,390)
-
5-(28,12,98670) 5-(27,12,68640) 5-(26,12,46800) 5-(25,12,31200) 5-(24,12,20280) (#3556)
5-(27,11,30030) 5-(26,11,21840) 5-(25,11,15600) 5-(24,11,10920)
5-(26,10,8190) (#6655) 5-(25,10,6240) (#6654) 5-(24,10,4680) (#1496)
5-(25,9,1950) (#6653) 5-(24,9,1560) (#6652)
5-(24,8,390) (#5616)
- family 117, lambda = 393 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,393)
-
8-(28,12,1965) 8-(27,12,1572)
8-(27,11,393)
-
7-(28,12,8253) 7-(27,12,6288) 7-(26,12,4716)
7-(27,11,1965) 7-(26,11,1572)
7-(26,10,393)
-
6-(28,12,30261) 6-(27,12,22008) 6-(26,12,15720) 6-(25,12,11004)
6-(27,11,8253) 6-(26,11,6288) 6-(25,11,4716)
6-(26,10,1965) 6-(25,10,1572)
6-(25,9,393)
-
5-(28,12,99429) 5-(27,12,69168) 5-(26,12,47160) 5-(25,12,31440) 5-(24,12,20436) (#3582)
5-(27,11,30261) 5-(26,11,22008) 5-(25,11,15720) 5-(24,11,11004)
5-(26,10,8253) (#6661) 5-(25,10,6288) (#6660) 5-(24,10,4716) (#1498)
5-(25,9,1965) (#6659) 5-(24,9,1572) (#6658)
5-(24,8,393) (#5620)
- family 118, lambda = 396 containing 35 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,396)
-
12-(32,16,1980) 12-(31,16,1584)
12-(31,15,396)
-
11-(32,16,8316) 11-(31,16,6336) 11-(30,16,4752)
11-(31,15,1980) 11-(30,15,1584)
11-(30,14,396)
-
10-(32,16,30492) 10-(31,16,22176) 10-(30,16,15840) 10-(29,16,11088)
10-(31,15,8316) 10-(30,15,6336) 10-(29,15,4752)
10-(30,14,1980) 10-(29,14,1584)
10-(29,13,396)
-
9-(32,16,100188) 9-(31,16,69696) 9-(30,16,47520) 9-(29,16,31680) 9-(28,16,20592)
9-(31,15,30492) 9-(30,15,22176) 9-(29,15,15840) 9-(28,15,11088)
9-(30,14,8316) 9-(29,14,6336) 9-(28,14,4752)
9-(29,13,1980) 9-(28,13,1584)
9-(28,12,396)
-
8-(32,16,300564) 8-(31,16,200376) 8-(30,16,130680) 8-(29,16,83160) 8-(28,16,51480) 8-(27,16,30888)
8-(31,15,100188) 8-(30,15,69696) 8-(29,15,47520) 8-(28,15,31680) 8-(27,15,20592)
8-(30,14,30492) 8-(29,14,22176) 8-(28,14,15840) 8-(27,14,11088)
8-(29,13,8316) 8-(28,13,6336) 8-(27,13,4752)
8-(28,12,1980) 8-(27,12,1584)
8-(27,11,396)
-
7-(32,16,834900) 7-(31,16,534336) 7-(30,16,333960) 7-(29,16,203280) 7-(28,16,120120) 7-(27,16,68640) 7-(26,16,37752)
7-(31,15,300564) 7-(30,15,200376) 7-(29,15,130680) 7-(28,15,83160) 7-(27,15,51480) 7-(26,15,30888)
7-(30,14,100188) 7-(29,14,69696) 7-(28,14,47520) 7-(27,14,31680) 7-(26,14,20592)
7-(29,13,30492) 7-(28,13,22176) 7-(27,13,15840) 7-(26,13,11088) (#10076)
7-(28,12,8316) 7-(27,12,6336) 7-(26,12,4752)
7-(27,11,1980) (#14166) 7-(26,11,1584)
7-(26,10,396)
-
6-(32,16,2170740) 6-(31,16,1335840) 6-(30,16,801504) 6-(29,16,467544) 6-(28,16,264264) 6-(27,16,144144) 6-(26,16,75504) 6-(25,16,37752)
6-(31,15,834900) 6-(30,15,534336) 6-(29,15,333960) 6-(28,15,203280) 6-(27,15,120120) 6-(26,15,68640) 6-(25,15,37752)
6-(30,14,300564) 6-(29,14,200376) 6-(28,14,130680) 6-(27,14,83160) 6-(26,14,51480) 6-(25,14,30888)
6-(29,13,100188) 6-(28,13,69696) 6-(27,13,47520) 6-(26,13,31680) (#10075) 6-(25,13,20592) (#10085)
6-(28,12,30492) 6-(27,12,22176) 6-(26,12,15840) 6-(25,12,11088) (#10072)
6-(27,11,8316) (#10723) 6-(26,11,6336) (#14168) 6-(25,11,4752)
6-(26,10,1980) (#14167) 6-(25,10,1584)
6-(25,9,396)
-
5-(32,16,5328180) (#10105) 5-(31,16,3157440) 5-(30,16,1821600) 5-(29,16,1020096) 5-(28,16,552552) 5-(27,16,288288) 5-(26,16,144144) 5-(25,16,68640) 5-(24,16,30888)
5-(31,15,2170740) (#10104) 5-(30,15,1335840) (#10103) 5-(29,15,801504) 5-(28,15,467544) 5-(27,15,264264) 5-(26,15,144144) 5-(25,15,75504) 5-(24,15,37752)
5-(30,14,834900) (#10102) 5-(29,14,534336) (#10101) 5-(28,14,333960) (#10099) 5-(27,14,203280) 5-(26,14,120120) 5-(25,14,68640) 5-(24,14,37752)
5-(29,13,300564) (#10100) 5-(28,13,200376) (#10098) 5-(27,13,130680) (#10096) 5-(26,13,83160) (#10080) 5-(25,13,51480) (#10082) 5-(24,13,30888) (#10091)
5-(28,12,100188) (#10097) 5-(27,12,69696) (#10095) 5-(26,12,47520) (#10090) 5-(25,12,31680) (#10073) 5-(24,12,20592) (#3608)
5-(27,11,30492) (#10094) 5-(26,11,22176) (#10089) 5-(25,11,15840) (#10081) 5-(24,11,11088) (#10074)
5-(26,10,8316) (#6667) 5-(25,10,6336) (#6666) 5-(24,10,4752) (#1500)
5-(25,9,1980) (#6665) 5-(24,9,1584) (#6664)
5-(24,8,396) (#5623)
- family 119, lambda = 402 containing 54 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,402)
-
12-(32,16,2010) 12-(31,16,1608)
12-(31,15,402)
-
11-(32,16,8442) 11-(31,16,6432) 11-(30,16,4824)
11-(31,15,2010) 11-(30,15,1608)
11-(30,14,402)
-
10-(32,16,30954) 10-(31,16,22512) 10-(30,16,16080) 10-(29,16,11256)
10-(31,15,8442) 10-(30,15,6432) 10-(29,15,4824)
10-(30,14,2010) 10-(29,14,1608)
10-(29,13,402)
-
9-(32,16,101706) 9-(31,16,70752) 9-(30,16,48240) 9-(29,16,32160) 9-(28,16,20904)
9-(31,15,30954) 9-(30,15,22512) 9-(29,15,16080) 9-(28,15,11256)
9-(30,14,8442) 9-(29,14,6432) 9-(28,14,4824)
9-(29,13,2010) 9-(28,13,1608)
9-(28,12,402)
-
8-(32,16,305118) 8-(31,16,203412) 8-(30,16,132660) 8-(29,16,84420) 8-(28,16,52260) 8-(27,16,31356)
8-(31,15,101706) 8-(30,15,70752) 8-(29,15,48240) 8-(28,15,32160) 8-(27,15,20904)
8-(30,14,30954) 8-(29,14,22512) 8-(28,14,16080) 8-(27,14,11256)
8-(29,13,8442) 8-(28,13,6432) 8-(27,13,4824)
8-(28,12,2010) 8-(27,12,1608)
8-(27,11,402)
-
7-(32,16,847550) (#15765) 7-(31,16,542432) 7-(30,16,339020) 7-(29,16,206360) 7-(28,16,121940) 7-(27,16,69680) 7-(26,16,38324)
7-(31,15,305118) 7-(30,15,203412) (#15754) 7-(29,15,132660) 7-(28,15,84420) 7-(27,15,52260) 7-(26,15,31356)
7-(30,14,101706) 7-(29,14,70752) 7-(28,14,48240) (#15734) 7-(27,14,32160) 7-(26,14,20904)
7-(29,13,30954) 7-(28,13,22512) 7-(27,13,16080) 7-(26,13,11256)
7-(28,12,8442) (#14805) 7-(27,12,6432) (#14801) 7-(26,12,4824)
7-(27,11,2010) (#14187) 7-(26,11,1608)
7-(26,10,402)
-
6-(32,16,2203630) (#15764) 6-(31,16,1356080) (#15772) 6-(30,16,813648) 6-(29,16,474628) 6-(28,16,268268) 6-(27,16,146328) 6-(26,16,76648) 6-(25,16,38324)
6-(31,15,847550) (#15758) 6-(30,15,542432) (#15753) 6-(29,15,339020) (#15761) 6-(28,15,206360) 6-(27,15,121940) 6-(26,15,69680) 6-(25,15,38324)
6-(30,14,305118) (#15752) 6-(29,14,203412) (#15749) 6-(28,14,132660) (#15735) 6-(27,14,84420) (#15737) 6-(26,14,52260) 6-(25,14,31356)
6-(29,13,101706) (#15748) 6-(28,13,70752) (#15743) 6-(27,13,48240) (#15736) 6-(26,13,32160) 6-(25,13,20904)
6-(28,12,30954) (#14196) 6-(27,12,22512) (#10849) 6-(26,12,16080) (#14802) 6-(25,12,11256)
6-(27,11,8442) (#14188) 6-(26,11,6432) (#14190) 6-(25,11,4824)
6-(26,10,2010) (#14189) 6-(25,10,1608)
6-(25,9,402)
-
5-(32,16,5408910) (#14827) 5-(31,16,3205280) (#15770) 5-(30,16,1849200) (#15774) 5-(29,16,1035552) 5-(28,16,560924) 5-(27,16,292656) 5-(26,16,146328) 5-(25,16,69680) 5-(24,16,31356)
5-(31,15,2203630) (#14825) 5-(30,15,1356080) (#14821) 5-(29,15,813648) (#15759) 5-(28,15,474628) (#15766) 5-(27,15,268268) 5-(26,15,146328) 5-(25,15,76648) 5-(24,15,38324)
5-(30,14,847550) (#14822) 5-(29,14,542432) (#14817) 5-(28,14,339020) (#14813) 5-(27,14,206360) (#15741) 5-(26,14,121940) (#15744) 5-(25,14,69680) 5-(24,14,38324)
5-(29,13,305118) (#14818) 5-(28,13,203412) (#14814) 5-(27,13,132660) (#14811) 5-(26,13,84420) (#14809) 5-(25,13,52260) 5-(24,13,31356)
5-(28,12,101706) (#10857) 5-(27,12,70752) (#10850) 5-(26,12,48240) (#10852) 5-(25,12,32160) (#14806) 5-(24,12,20904) (#3660)
5-(27,11,30954) (#10856) 5-(26,11,22512) (#10851) 5-(25,11,16080) (#14199) 5-(24,11,11256)
5-(26,10,8442) (#6679) 5-(25,10,6432) (#6678) 5-(24,10,4824) (#1504)
5-(25,9,2010) (#6677) 5-(24,9,1608) (#6676)
5-(24,8,402) (#5631)
- family 120, lambda = 405 containing 60 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,405)
-
12-(32,16,2025) 12-(31,16,1620)
12-(31,15,405)
-
11-(32,16,8505) 11-(31,16,6480) 11-(30,16,4860)
11-(31,15,2025) 11-(30,15,1620)
11-(30,14,405)
-
10-(32,16,31185) 10-(31,16,22680) 10-(30,16,16200) 10-(29,16,11340)
10-(31,15,8505) 10-(30,15,6480) 10-(29,15,4860)
10-(30,14,2025) 10-(29,14,1620)
10-(29,13,405)
-
9-(32,16,102465) 9-(31,16,71280) 9-(30,16,48600) 9-(29,16,32400) 9-(28,16,21060)
9-(31,15,31185) 9-(30,15,22680) 9-(29,15,16200) 9-(28,15,11340)
9-(30,14,8505) 9-(29,14,6480) 9-(28,14,4860)
9-(29,13,2025) 9-(28,13,1620)
9-(28,12,405)
-
8-(32,16,307395) 8-(31,16,204930) 8-(30,16,133650) 8-(29,16,85050) 8-(28,16,52650) 8-(27,16,31590)
8-(31,15,102465) 8-(30,15,71280) 8-(29,15,48600) 8-(28,15,32400) 8-(27,15,21060)
8-(30,14,31185) 8-(29,14,22680) 8-(28,14,16200) 8-(27,14,11340)
8-(29,13,8505) 8-(28,13,6480) 8-(27,13,4860)
8-(28,12,2025) 8-(27,12,1620)
8-(27,11,405)
-
7-(32,16,853875) (#15445) 7-(31,16,546480) 7-(30,16,341550) 7-(29,16,207900) 7-(28,16,122850) 7-(27,16,70200) 7-(26,16,38610)
7-(31,15,307395) (#15442) 7-(30,15,204930) (#15429) 7-(29,15,133650) 7-(28,15,85050) 7-(27,15,52650) 7-(26,15,31590)
7-(30,14,102465) (#15433) 7-(29,14,71280) (#15426) 7-(28,14,48600) (#15417) 7-(27,14,32400) 7-(26,14,21060)
7-(29,13,31185) (#15415) 7-(28,13,22680) (#15411) 7-(27,13,16200) 7-(26,13,11340)
7-(28,12,8505) (#14833) 7-(27,12,6480) (#14829) 7-(26,12,4860)
7-(27,11,2025) (#14202) 7-(26,11,1620)
7-(26,10,405)
-
6-(32,16,2220075) (#15444) 6-(31,16,1366200) (#15452) 6-(30,16,819720) 6-(29,16,478170) 6-(28,16,270270) 6-(27,16,147420) 6-(26,16,77220) 6-(25,16,38610)
6-(31,15,853875) (#15439) 6-(30,15,546480) (#15428) 6-(29,15,341550) (#15440) 6-(28,15,207900) 6-(27,15,122850) 6-(26,15,70200) 6-(25,15,38610)
6-(30,14,307395) (#15430) 6-(29,14,204930) (#15423) 6-(28,14,133650) (#15416) 6-(27,14,85050) (#15424) 6-(26,14,52650) 6-(25,14,31590)
6-(29,13,102465) (#11889) 6-(28,13,71280) (#11884) 6-(27,13,48600) (#15412) 6-(26,13,32400) 6-(25,13,21060)
6-(28,12,31185) (#10863) 6-(27,12,22680) (#10858) 6-(26,12,16200) (#14830) 6-(25,12,11340)
6-(27,11,8505) (#10727) 6-(26,11,6480) (#14204) 6-(25,11,4860)
6-(26,10,2025) (#14203) 6-(25,10,1620)
6-(25,9,405) (#10455)
-
5-(32,16,5449275) (#11902) 5-(31,16,3229200) (#15450) 5-(30,16,1863000) (#15454) 5-(29,16,1043280) 5-(28,16,565110) 5-(27,16,294840) 5-(26,16,147420) 5-(25,16,70200) 5-(24,16,31590)
5-(31,15,2220075) (#11900) 5-(30,15,1366200) (#11896) 5-(29,15,819720) (#15437) 5-(28,15,478170) (#15446) 5-(27,15,270270) 5-(26,15,147420) 5-(25,15,77220) 5-(24,15,38610)
5-(30,14,853875) (#11897) 5-(29,14,546480) (#11894) 5-(28,14,341550) (#11891) 5-(27,14,207900) (#15421) 5-(26,14,122850) (#15431) 5-(25,14,70200) 5-(24,14,38610)
5-(29,13,307395) (#11890) 5-(28,13,204930) (#11885) 5-(27,13,133650) (#11886) 5-(26,13,85050) (#14837) 5-(25,13,52650) 5-(24,13,31590)
5-(28,12,102465) (#10864) 5-(27,12,71280) (#10859) 5-(26,12,48600) (#10860) 5-(25,12,32400) (#14834) 5-(24,12,21060) (#3687)
5-(27,11,31185) (#10728) 5-(26,11,22680) (#10729) 5-(25,11,16200) (#14209) 5-(24,11,11340)
5-(26,10,8505) (#6687) 5-(25,10,6480) (#6686) 5-(24,10,4860) (#1507)
5-(25,9,2025) (#6685) 5-(24,9,1620) (#6684)
5-(24,8,405) (#5634)
- family 121, lambda = 411 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,411)
-
8-(28,12,2055) 8-(27,12,1644)
8-(27,11,411)
-
7-(28,12,8631) 7-(27,12,6576) 7-(26,12,4932)
7-(27,11,2055) (#14211) 7-(26,11,1644)
7-(26,10,411)
-
6-(28,12,31647) 6-(27,12,23016) 6-(26,12,16440) 6-(25,12,11508)
6-(27,11,8631) (#10733) 6-(26,11,6576) (#14213) 6-(25,11,4932)
6-(26,10,2055) (#14212) 6-(25,10,1644)
6-(25,9,411)
-
5-(28,12,103983) 5-(27,12,72336) 5-(26,12,49320) 5-(25,12,32880) 5-(24,12,21372) (#3745)
5-(27,11,31647) (#10734) 5-(26,11,23016) (#10735) 5-(25,11,16440) (#14219) 5-(24,11,11508)
5-(26,10,8631) (#6729) 5-(25,10,6576) (#6728) 5-(24,10,4932) (#1511)
5-(25,9,2055) (#6727) 5-(24,9,1644) (#6726)
5-(24,8,411) (#5643)
- family 122, lambda = 414 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,414)
-
8-(28,12,2070) 8-(27,12,1656)
8-(27,11,414)
-
7-(28,12,8694) 7-(27,12,6624) 7-(26,12,4968)
7-(27,11,2070) 7-(26,11,1656)
7-(26,10,414)
-
6-(28,12,31878) 6-(27,12,23184) 6-(26,12,16560) 6-(25,12,11592)
6-(27,11,8694) 6-(26,11,6624) 6-(25,11,4968)
6-(26,10,2070) 6-(25,10,1656)
6-(25,9,414)
-
5-(28,12,104742) 5-(27,12,72864) 5-(26,12,49680) 5-(25,12,33120) 5-(24,12,21528) (#3772)
5-(27,11,31878) 5-(26,11,23184) 5-(25,11,16560) 5-(24,11,11592)
5-(26,10,8694) (#6735) 5-(25,10,6624) (#6734) 5-(24,10,4968) (#1513)
5-(25,9,2070) (#6733) 5-(24,9,1656) (#6732)
5-(24,8,414) (#5646)
- family 123, lambda = 417 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,417)
-
8-(28,12,2085) 8-(27,12,1668)
8-(27,11,417)
-
7-(28,12,8757) 7-(27,12,6672) 7-(26,12,5004)
7-(27,11,2085) 7-(26,11,1668)
7-(26,10,417)
-
6-(28,12,32109) 6-(27,12,23352) 6-(26,12,16680) 6-(25,12,11676)
6-(27,11,8757) 6-(26,11,6672) 6-(25,11,5004)
6-(26,10,2085) 6-(25,10,1668)
6-(25,9,417)
-
5-(28,12,105501) 5-(27,12,73392) 5-(26,12,50040) 5-(25,12,33360) 5-(24,12,21684) (#3799)
5-(27,11,32109) 5-(26,11,23352) 5-(25,11,16680) 5-(24,11,11676)
5-(26,10,8757) (#6741) 5-(25,10,6672) (#6740) 5-(24,10,5004) (#1515)
5-(25,9,2085) (#6739) 5-(24,9,1668) (#6738)
5-(24,8,417) (#5649)
- family 124, lambda = 420 containing 8 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,420)
-
8-(28,12,2100) 8-(27,12,1680)
8-(27,11,420)
-
7-(28,12,8820) 7-(27,12,6720) 7-(26,12,5040)
7-(27,11,2100) 7-(26,11,1680)
7-(26,10,420)
-
6-(28,12,32340) 6-(27,12,23520) 6-(26,12,16800) 6-(25,12,11760)
6-(27,11,8820) 6-(26,11,6720) 6-(25,11,5040)
6-(26,10,2100) 6-(25,10,1680)
6-(25,9,420) (#10458)
-
5-(28,12,106260) 5-(27,12,73920) 5-(26,12,50400) 5-(25,12,33600) 5-(24,12,21840) (#3826)
5-(27,11,32340) 5-(26,11,23520) 5-(25,11,16800) 5-(24,11,11760)
5-(26,10,8820) (#6751) 5-(25,10,6720) (#6750) 5-(24,10,5040) (#1518)
5-(25,9,2100) (#6749) 5-(24,9,1680) (#6748)
5-(24,8,420) (#5653)
- family 125, lambda = 423 containing 72 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,423)
-
12-(32,16,2115) 12-(31,16,1692)
12-(31,15,423)
-
11-(32,16,8883) 11-(31,16,6768) 11-(30,16,5076)
11-(31,15,2115) 11-(30,15,1692)
11-(30,14,423)
-
10-(32,16,32571) 10-(31,16,23688) 10-(30,16,16920) 10-(29,16,11844)
10-(31,15,8883) 10-(30,15,6768) 10-(29,15,5076)
10-(30,14,2115) 10-(29,14,1692)
10-(29,13,423)
-
9-(32,16,107019) 9-(31,16,74448) 9-(30,16,50760) 9-(29,16,33840) 9-(28,16,21996)
9-(31,15,32571) 9-(30,15,23688) 9-(29,15,16920) 9-(28,15,11844)
9-(30,14,8883) 9-(29,14,6768) 9-(28,14,5076) (#17854)
9-(29,13,2115) 9-(28,13,1692)
9-(28,12,423)
-
8-(32,16,321057) 8-(31,16,214038) 8-(30,16,139590) 8-(29,16,88830) 8-(28,16,54990) 8-(27,16,32994)
8-(31,15,107019) 8-(30,15,74448) 8-(29,15,50760) 8-(28,15,33840) 8-(27,15,21996)
8-(30,14,32571) 8-(29,14,23688) 8-(28,14,16920) (#17853) 8-(27,14,11844) (#17866)
8-(29,13,8883) 8-(28,13,6768) 8-(27,13,5076) (#17850)
8-(28,12,2115) 8-(27,12,1692)
8-(27,11,423)
-
7-(32,16,891825) (#14948) 7-(31,16,570768) 7-(30,16,356730) 7-(29,16,217140) 7-(28,16,128310) 7-(27,16,73320) 7-(26,16,40326)
7-(31,15,321057) 7-(30,15,214038) (#14937) 7-(29,15,139590) 7-(28,15,88830) 7-(27,15,54990) 7-(26,15,32994)
7-(30,14,107019) 7-(29,14,74448) 7-(28,14,50760) (#11366) 7-(27,14,33840) (#17864) 7-(26,14,21996) (#17878)
7-(29,13,32571) 7-(28,13,23688) 7-(27,13,16920) (#14916) 7-(26,13,11844) (#17852)
7-(28,12,8883) 7-(27,12,6768) 7-(26,12,5076) (#17851)
7-(27,11,2115) (#14221) 7-(26,11,1692)
7-(26,10,423)
-
6-(32,16,2318745) (#14947) 6-(31,16,1426920) (#14955) 6-(30,16,856152) 6-(29,16,499422) 6-(28,16,282282) 6-(27,16,153972) 6-(26,16,80652) 6-(25,16,40326)
6-(31,15,891825) (#14941) 6-(30,15,570768) (#14936) 6-(29,15,356730) (#14944) 6-(28,15,217140) 6-(27,15,128310) 6-(26,15,73320) 6-(25,15,40326)
6-(30,14,321057) (#14935) 6-(29,14,214038) (#14932) 6-(28,14,139590) (#11365) 6-(27,14,88830) (#11374) 6-(26,14,54990) (#17876) 6-(25,14,32994) (#17883)
6-(29,13,107019) (#14931) 6-(28,13,74448) (#14928) 6-(27,13,50760) (#11361) 6-(26,13,33840) (#14918) 6-(25,13,21996) (#17862)
6-(28,12,32571) (#14927) 6-(27,12,23688) (#14923) 6-(26,12,16920) (#14917) 6-(25,12,11844) (#17859)
6-(27,11,8883) (#14222) 6-(26,11,6768) (#14224) 6-(25,11,5076) (#17858)
6-(26,10,2115) (#14223) 6-(25,10,1692)
6-(25,9,423)
-
5-(32,16,5691465) (#14253) 5-(31,16,3372720) (#14953) 5-(30,16,1945800) (#14957) 5-(29,16,1089648) 5-(28,16,590226) 5-(27,16,307944) 5-(26,16,153972) 5-(25,16,73320) 5-(24,16,32994)
5-(31,15,2318745) (#14251) 5-(30,15,1426920) (#14248) 5-(29,15,856152) (#14942) 5-(28,15,499422) (#14949) 5-(27,15,282282) 5-(26,15,153972) 5-(25,15,80652) 5-(24,15,40326)
5-(30,14,891825) (#14247) 5-(29,14,570768) (#14244) 5-(28,14,356730) (#11370) 5-(27,14,217140) (#11371) 5-(26,14,128310) (#11378) 5-(25,14,73320) (#17881) 5-(24,14,40326) (#17885)
5-(29,13,321057) (#14243) 5-(28,13,214038) (#14240) 5-(27,13,139590) (#11362) 5-(26,13,88830) (#11364) 5-(25,13,54990) (#14924) 5-(24,13,32994) (#17874)
5-(28,12,107019) (#14239) 5-(27,12,74448) (#14237) 5-(26,12,50760) (#11363) 5-(25,12,33840) (#14921) 5-(24,12,21996) (#3852)
5-(27,11,32571) (#14228) 5-(26,11,23688) (#14229) 5-(25,11,16920) (#14235) 5-(24,11,11844) (#17870)
5-(26,10,8883) (#6757) 5-(25,10,6768) (#6756) 5-(24,10,5076) (#1520)
5-(25,9,2115) (#6755) 5-(24,9,1692) (#6754)
5-(24,8,423) (#5656)
- family 126, lambda = 426 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,426)
-
8-(28,12,2130) 8-(27,12,1704)
8-(27,11,426)
-
7-(28,12,8946) 7-(27,12,6816) 7-(26,12,5112)
7-(27,11,2130) 7-(26,11,1704)
7-(26,10,426)
-
6-(28,12,32802) 6-(27,12,23856) 6-(26,12,17040) 6-(25,12,11928)
6-(27,11,8946) 6-(26,11,6816) 6-(25,11,5112)
6-(26,10,2130) 6-(25,10,1704)
6-(25,9,426)
-
5-(28,12,107778) 5-(27,12,74976) 5-(26,12,51120) 5-(25,12,34080) 5-(24,12,22152) (#3879)
5-(27,11,32802) 5-(26,11,23856) 5-(25,11,17040) 5-(24,11,11928)
5-(26,10,8946) (#6763) 5-(25,10,6816) (#6762) 5-(24,10,5112) (#1522)
5-(25,9,2130) (#6761) 5-(24,9,1704) (#6760)
5-(24,8,426) (#5660)
- family 127, lambda = 429 containing 82 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,429)
-
12-(32,16,2145) 12-(31,16,1716)
12-(31,15,429)
-
11-(32,16,9009) 11-(31,16,6864) 11-(30,16,5148)
11-(31,15,2145) 11-(30,15,1716)
11-(30,14,429)
-
10-(32,16,33033) 10-(31,16,24024) 10-(30,16,17160) 10-(29,16,12012)
10-(31,15,9009) 10-(30,15,6864) 10-(29,15,5148)
10-(30,14,2145) 10-(29,14,1716)
10-(29,13,429)
-
9-(32,16,108537) 9-(31,16,75504) 9-(30,16,51480) 9-(29,16,34320) 9-(28,16,22308)
9-(31,15,33033) 9-(30,15,24024) 9-(29,15,17160) 9-(28,15,12012)
9-(30,14,9009) 9-(29,14,6864) 9-(28,14,5148) (#17890)
9-(29,13,2145) 9-(28,13,1716)
9-(28,12,429)
-
8-(32,16,325611) 8-(31,16,217074) 8-(30,16,141570) 8-(29,16,90090) 8-(28,16,55770) 8-(27,16,33462)
8-(31,15,108537) 8-(30,15,75504) 8-(29,15,51480) 8-(28,15,34320) 8-(27,15,22308)
8-(30,14,33033) 8-(29,14,24024) 8-(28,14,17160) (#17889) 8-(27,14,12012) (#17896)
8-(29,13,9009) 8-(28,13,6864) 8-(27,13,5148) (#17887)
8-(28,12,2145) 8-(27,12,1716)
8-(27,11,429)
-
7-(32,16,904475) (#13650) 7-(31,16,578864) 7-(30,16,361790) 7-(29,16,220220) 7-(28,16,130130) 7-(27,16,74360) 7-(26,16,40898)
7-(31,15,325611) (#17914) 7-(30,15,217074) (#13641) 7-(29,15,141570) 7-(28,15,90090) 7-(27,15,55770) 7-(26,15,33462)
7-(30,14,108537) (#17911) 7-(29,14,75504) (#15457) 7-(28,14,51480) (#11383) 7-(27,14,34320) (#17894) 7-(26,14,22308) (#17903)
7-(29,13,33033) (#17906) 7-(28,13,24024) (#15456) 7-(27,13,17160) (#14959) 7-(26,13,12012) (#10182)
7-(28,12,9009) (#17900) 7-(27,12,6864) (#17893) 7-(26,12,5148) (#17888)
7-(27,11,2145) (#14255) 7-(26,11,1716) (#13618)
7-(26,10,429)
-
6-(32,16,2351635) (#13649) 6-(31,16,1447160) (#13655) 6-(30,16,868296) 6-(29,16,506506) 6-(28,16,286286) 6-(27,16,156156) 6-(26,16,81796) 6-(25,16,40898)
6-(31,15,904475) (#13644) 6-(30,15,578864) (#13640) 6-(29,15,361790) (#13647) 6-(28,15,220220) 6-(27,15,130130) 6-(26,15,74360) 6-(25,15,40898)
6-(30,14,325611) (#13639) 6-(29,14,217074) (#13637) 6-(28,14,141570) (#11382) 6-(27,14,90090) (#11389) 6-(26,14,55770) (#17901) 6-(25,14,33462) (#17909)
6-(29,13,108537) (#13636) 6-(28,13,75504) (#13634) 6-(27,13,51480) (#11381) 6-(26,13,34320) (#10181) 6-(25,13,22308) (#10191)
6-(28,12,33033) (#13633) 6-(27,12,24024) (#13631) 6-(26,12,17160) (#13629) 6-(25,12,12012) (#10178)
6-(27,11,9009) (#10739) 6-(26,11,6864) (#13619) 6-(25,11,5148) (#13621)
6-(26,10,2145) (#13628) 6-(25,10,1716) (#13620)
6-(25,9,429) (#10461)
-
5-(32,16,5772195) (#10209) 5-(31,16,3420560) (#13653) 5-(30,16,1973400) (#13659) 5-(29,16,1105104) 5-(28,16,598598) 5-(27,16,312312) 5-(26,16,156156) 5-(25,16,74360) 5-(24,16,33462)
5-(31,15,2351635) (#10208) 5-(30,15,1447160) (#10207) 5-(29,15,868296) (#13645) 5-(28,15,506506) (#13651) 5-(27,15,286286) 5-(26,15,156156) 5-(25,15,81796) 5-(24,15,40898)
5-(30,14,904475) (#10206) 5-(29,14,578864) (#10205) 5-(28,14,361790) (#7707) 5-(27,14,220220) (#11386) 5-(26,14,130130) (#11394) 5-(25,14,74360) (#17907) 5-(24,14,40898) (#17912)
5-(29,13,325611) (#10204) 5-(28,13,217074) (#10203) 5-(27,13,141570) (#10202) 5-(26,13,90090) (#10186) 5-(25,13,55770) (#10188) 5-(24,13,33462) (#10197)
5-(28,12,108537) (#7698) 5-(27,12,75504) (#10201) 5-(26,12,51480) (#10196) 5-(25,12,34320) (#10179) 5-(24,12,22308) (#3905)
5-(27,11,33033) (#10200) 5-(26,11,24024) (#10195) 5-(25,11,17160) (#10187) 5-(24,11,12012) (#10180)
5-(26,10,9009) (#6767) 5-(25,10,6864) (#6766) 5-(24,10,5148) (#1523)
5-(25,9,2145) (#6765) 5-(24,9,1716) (#6764)
5-(24,8,429) (#5663)
- family 128, lambda = 432 containing 35 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,432)
-
12-(32,16,2160) 12-(31,16,1728)
12-(31,15,432)
-
11-(32,16,9072) 11-(31,16,6912) 11-(30,16,5184)
11-(31,15,2160) 11-(30,15,1728)
11-(30,14,432)
-
10-(32,16,33264) 10-(31,16,24192) 10-(30,16,17280) 10-(29,16,12096)
10-(31,15,9072) 10-(30,15,6912) 10-(29,15,5184)
10-(30,14,2160) 10-(29,14,1728)
10-(29,13,432)
-
9-(32,16,109296) 9-(31,16,76032) 9-(30,16,51840) 9-(29,16,34560) 9-(28,16,22464)
9-(31,15,33264) 9-(30,15,24192) 9-(29,15,17280) 9-(28,15,12096)
9-(30,14,9072) 9-(29,14,6912) 9-(28,14,5184)
9-(29,13,2160) 9-(28,13,1728)
9-(28,12,432)
-
8-(32,16,327888) 8-(31,16,218592) 8-(30,16,142560) 8-(29,16,90720) 8-(28,16,56160) 8-(27,16,33696)
8-(31,15,109296) 8-(30,15,76032) 8-(29,15,51840) 8-(28,15,34560) 8-(27,15,22464)
8-(30,14,33264) 8-(29,14,24192) 8-(28,14,17280) 8-(27,14,12096)
8-(29,13,9072) 8-(28,13,6912) 8-(27,13,5184)
8-(28,12,2160) 8-(27,12,1728)
8-(27,11,432) (#17524)
-
7-(32,16,910800) 7-(31,16,582912) 7-(30,16,364320) 7-(29,16,221760) 7-(28,16,131040) 7-(27,16,74880) 7-(26,16,41184)
7-(31,15,327888) 7-(30,15,218592) 7-(29,15,142560) 7-(28,15,90720) 7-(27,15,56160) 7-(26,15,33696)
7-(30,14,109296) 7-(29,14,76032) 7-(28,14,51840) 7-(27,14,34560) 7-(26,14,22464)
7-(29,13,33264) 7-(28,13,24192) 7-(27,13,17280) 7-(26,13,12096)
7-(28,12,9072) 7-(27,12,6912) 7-(26,12,5184)
7-(27,11,2160) (#14261) 7-(26,11,1728) (#17526)
7-(26,10,432) (#17525)
-
6-(32,16,2368080) 6-(31,16,1457280) 6-(30,16,874368) 6-(29,16,510048) 6-(28,16,288288) 6-(27,16,157248) 6-(26,16,82368) 6-(25,16,41184)
6-(31,15,910800) 6-(30,15,582912) 6-(29,15,364320) 6-(28,15,221760) 6-(27,15,131040) 6-(26,15,74880) 6-(25,15,41184)
6-(30,14,327888) 6-(29,14,218592) 6-(28,14,142560) 6-(27,14,90720) 6-(26,14,56160) 6-(25,14,33696)
6-(29,13,109296) 6-(28,13,76032) 6-(27,13,51840) 6-(26,13,34560) 6-(25,13,22464)
6-(28,12,33264) 6-(27,12,24192) 6-(26,12,17280) 6-(25,12,12096)
6-(27,11,9072) (#10743) 6-(26,11,6912) (#14263) 6-(25,11,5184) (#17534)
6-(26,10,2160) (#14262) 6-(25,10,1728) (#17531)
6-(25,9,432) (#17530)
-
5-(32,16,5812560) (#17553) 5-(31,16,3444480) 5-(30,16,1987200) 5-(29,16,1112832) 5-(28,16,602784) 5-(27,16,314496) 5-(26,16,157248) 5-(25,16,74880) 5-(24,16,33696)
5-(31,15,2368080) (#17552) 5-(30,15,1457280) (#17550) 5-(29,15,874368) 5-(28,15,510048) 5-(27,15,288288) 5-(26,15,157248) 5-(25,15,82368) 5-(24,15,41184)
5-(30,14,910800) (#17551) 5-(29,14,582912) (#17548) 5-(28,14,364320) (#17545) 5-(27,14,221760) 5-(26,14,131040) 5-(25,14,74880) 5-(24,14,41184)
5-(29,13,327888) (#17549) 5-(28,13,218592) (#17546) 5-(27,13,142560) (#17543) 5-(26,13,90720) (#17541) 5-(25,13,56160) 5-(24,13,33696)
5-(28,12,109296) (#17547) 5-(27,12,76032) (#17544) 5-(26,12,51840) (#17542) 5-(25,12,34560) (#17540) 5-(24,12,22464) (#3932)
5-(27,11,33264) (#10744) 5-(26,11,24192) (#10745) 5-(25,11,17280) (#14269) 5-(24,11,12096) (#17538)
5-(26,10,9072) (#6773) 5-(25,10,6912) (#6772) 5-(24,10,5184) (#1525)
5-(25,9,2160) (#6771) 5-(24,9,1728) (#6770)
5-(24,8,432) (#5667)
- family 129, lambda = 435 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,435)
-
8-(28,12,2175) 8-(27,12,1740)
8-(27,11,435)
-
7-(28,12,9135) 7-(27,12,6960) 7-(26,12,5220)
7-(27,11,2175) 7-(26,11,1740)
7-(26,10,435)
-
6-(28,12,33495) 6-(27,12,24360) 6-(26,12,17400) 6-(25,12,12180)
6-(27,11,9135) 6-(26,11,6960) 6-(25,11,5220)
6-(26,10,2175) 6-(25,10,1740)
6-(25,9,435)
-
5-(28,12,110055) 5-(27,12,76560) 5-(26,12,52200) 5-(25,12,34800) 5-(24,12,22620) (#3957)
5-(27,11,33495) 5-(26,11,24360) 5-(25,11,17400) 5-(24,11,12180)
5-(26,10,9135) (#6781) 5-(25,10,6960) (#6780) 5-(24,10,5220) (#1528)
5-(25,9,2175) (#6779) 5-(24,9,1740) (#6778)
5-(24,8,435) (#5670)
- family 130, lambda = 438 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,438)
-
8-(28,12,2190) 8-(27,12,1752)
8-(27,11,438)
-
7-(28,12,9198) 7-(27,12,7008) 7-(26,12,5256)
7-(27,11,2190) (#14271) 7-(26,11,1752)
7-(26,10,438)
-
6-(28,12,33726) 6-(27,12,24528) 6-(26,12,17520) 6-(25,12,12264)
6-(27,11,9198) (#10749) 6-(26,11,7008) (#14273) 6-(25,11,5256)
6-(26,10,2190) (#14272) 6-(25,10,1752)
6-(25,9,438)
-
5-(28,12,110814) 5-(27,12,77088) 5-(26,12,52560) 5-(25,12,35040) 5-(24,12,22776) (#3984)
5-(27,11,33726) (#10750) 5-(26,11,24528) (#10751) 5-(25,11,17520) (#14279) 5-(24,11,12264)
5-(26,10,9198) (#6787) 5-(25,10,7008) (#6786) 5-(24,10,5256) (#1530)
5-(25,9,2190) (#6785) 5-(24,9,1752) (#6784)
5-(24,8,438) (#5673)
- family 131, lambda = 441 containing 37 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,441)
-
12-(32,16,2205) 12-(31,16,1764)
12-(31,15,441)
-
11-(32,16,9261) 11-(31,16,7056) 11-(30,16,5292)
11-(31,15,2205) 11-(30,15,1764)
11-(30,14,441)
-
10-(32,16,33957) 10-(31,16,24696) 10-(30,16,17640) 10-(29,16,12348)
10-(31,15,9261) 10-(30,15,7056) 10-(29,15,5292)
10-(30,14,2205) 10-(29,14,1764)
10-(29,13,441)
-
9-(32,16,111573) 9-(31,16,77616) 9-(30,16,52920) 9-(29,16,35280) 9-(28,16,22932)
9-(31,15,33957) 9-(30,15,24696) 9-(29,15,17640) 9-(28,15,12348)
9-(30,14,9261) 9-(29,14,7056) 9-(28,14,5292)
9-(29,13,2205) 9-(28,13,1764)
9-(28,12,441)
-
8-(32,16,334719) 8-(31,16,223146) 8-(30,16,145530) 8-(29,16,92610) 8-(28,16,57330) 8-(27,16,34398)
8-(31,15,111573) 8-(30,15,77616) 8-(29,15,52920) 8-(28,15,35280) 8-(27,15,22932)
8-(30,14,33957) 8-(29,14,24696) 8-(28,14,17640) 8-(27,14,12348)
8-(29,13,9261) 8-(28,13,7056) 8-(27,13,5292)
8-(28,12,2205) 8-(27,12,1764)
8-(27,11,441)
-
7-(32,16,929775) 7-(31,16,595056) 7-(30,16,371910) 7-(29,16,226380) 7-(28,16,133770) 7-(27,16,76440) 7-(26,16,42042)
7-(31,15,334719) 7-(30,15,223146) 7-(29,15,145530) 7-(28,15,92610) 7-(27,15,57330) 7-(26,15,34398)
7-(30,14,111573) 7-(29,14,77616) 7-(28,14,52920) (#15776) 7-(27,14,35280) 7-(26,14,22932)
7-(29,13,33957) 7-(28,13,24696) 7-(27,13,17640) 7-(26,13,12348) (#10214)
7-(28,12,9261) 7-(27,12,7056) 7-(26,12,5292)
7-(27,11,2205) 7-(26,11,1764)
7-(26,10,441)
-
6-(32,16,2417415) 6-(31,16,1487640) 6-(30,16,892584) 6-(29,16,520674) 6-(28,16,294294) 6-(27,16,160524) 6-(26,16,84084) 6-(25,16,42042)
6-(31,15,929775) 6-(30,15,595056) 6-(29,15,371910) 6-(28,15,226380) 6-(27,15,133770) 6-(26,15,76440) 6-(25,15,42042)
6-(30,14,334719) 6-(29,14,223146) 6-(28,14,145530) (#15777) 6-(27,14,92610) (#15779) 6-(26,14,57330) 6-(25,14,34398)
6-(29,13,111573) 6-(28,13,77616) 6-(27,13,52920) (#15778) 6-(26,13,35280) (#10213) 6-(25,13,22932) (#10223)
6-(28,12,33957) 6-(27,12,24696) 6-(26,12,17640) 6-(25,12,12348) (#10210)
6-(27,11,9261) 6-(26,11,7056) 6-(25,11,5292)
6-(26,10,2205) 6-(25,10,1764)
6-(25,9,441)
-
5-(32,16,5933655) (#10243) 5-(31,16,3516240) 5-(30,16,2028600) 5-(29,16,1136016) 5-(28,16,615342) 5-(27,16,321048) 5-(26,16,160524) 5-(25,16,76440) 5-(24,16,34398)
5-(31,15,2417415) (#10242) 5-(30,15,1487640) (#10241) 5-(29,15,892584) 5-(28,15,520674) 5-(27,15,294294) 5-(26,15,160524) 5-(25,15,84084) 5-(24,15,42042)
5-(30,14,929775) (#10240) 5-(29,14,595056) (#10239) 5-(28,14,371910) (#10237) 5-(27,14,226380) (#15783) 5-(26,14,133770) (#15788) 5-(25,14,76440) 5-(24,14,42042)
5-(29,13,334719) (#10238) 5-(28,13,223146) (#10236) 5-(27,13,145530) (#10234) 5-(26,13,92610) (#10218) 5-(25,13,57330) (#10220) 5-(24,13,34398) (#10229)
5-(28,12,111573) (#10235) 5-(27,12,77616) (#10233) 5-(26,12,52920) (#10228) 5-(25,12,35280) (#10211) 5-(24,12,22932) (#4012)
5-(27,11,33957) (#10232) 5-(26,11,24696) (#10227) 5-(25,11,17640) (#10219) 5-(24,11,12348) (#10212)
5-(26,10,9261) (#6793) 5-(25,10,7056) (#6792) 5-(24,10,5292) (#1532)
5-(25,9,2205) (#6791) 5-(24,9,1764) (#6790)
5-(24,8,441) (#5677)
- family 132, lambda = 444 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
11-(30,14,444)
-
10-(30,14,2220) 10-(29,14,1776)
10-(29,13,444)
-
9-(30,14,9324) 9-(29,14,7104) 9-(28,14,5328)
9-(29,13,2220) 9-(28,13,1776)
9-(28,12,444)
-
8-(30,14,34188) 8-(29,14,24864) 8-(28,14,17760) 8-(27,14,12432)
8-(29,13,9324) 8-(28,13,7104) 8-(27,13,5328)
8-(28,12,2220) 8-(27,12,1776)
8-(27,11,444)
-
7-(30,14,112332) 7-(29,14,78144) 7-(28,14,53280) (#15791) 7-(27,14,35520) 7-(26,14,23088)
7-(29,13,34188) 7-(28,13,24864) 7-(27,13,17760) 7-(26,13,12432)
7-(28,12,9324) 7-(27,12,7104) 7-(26,12,5328)
7-(27,11,2220) 7-(26,11,1776)
7-(26,10,444)
-
6-(30,14,336996) 6-(29,14,224664) 6-(28,14,146520) (#15792) 6-(27,14,93240) (#15794) 6-(26,14,57720) 6-(25,14,34632)
6-(29,13,112332) 6-(28,13,78144) 6-(27,13,53280) (#15793) 6-(26,13,35520) 6-(25,13,23088)
6-(28,12,34188) 6-(27,12,24864) 6-(26,12,17760) 6-(25,12,12432)
6-(27,11,9324) 6-(26,11,7104) 6-(25,11,5328)
6-(26,10,2220) 6-(25,10,1776)
6-(25,9,444)
-
5-(30,14,936100) 5-(29,14,599104) 5-(28,14,374440) (#15798) 5-(27,14,227920) (#15800) 5-(26,14,134680) (#15808) 5-(25,14,76960) 5-(24,14,42328)
5-(29,13,336996) 5-(28,13,224664) 5-(27,13,146520) (#15799) 5-(26,13,93240) (#15805) 5-(25,13,57720) 5-(24,13,34632)
5-(28,12,112332) 5-(27,12,78144) 5-(26,12,53280) (#15804) 5-(25,12,35520) 5-(24,12,23088) (#4038)
5-(27,11,34188) 5-(26,11,24864) 5-(25,11,17760) 5-(24,11,12432)
5-(26,10,9324) (#6799) 5-(25,10,7104) (#6798) 5-(24,10,5328) (#1534)
5-(25,9,2220) (#6797) 5-(24,9,1776) (#6796)
5-(24,8,444) (#5681)
- family 133, lambda = 447 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,447)
-
8-(28,12,2235) 8-(27,12,1788)
8-(27,11,447)
-
7-(28,12,9387) 7-(27,12,7152) 7-(26,12,5364)
7-(27,11,2235) 7-(26,11,1788)
7-(26,10,447)
-
6-(28,12,34419) 6-(27,12,25032) 6-(26,12,17880) 6-(25,12,12516)
6-(27,11,9387) 6-(26,11,7152) 6-(25,11,5364)
6-(26,10,2235) 6-(25,10,1788)
6-(25,9,447)
-
5-(28,12,113091) 5-(27,12,78672) 5-(26,12,53640) 5-(25,12,35760) 5-(24,12,23244) (#4065)
5-(27,11,34419) 5-(26,11,25032) 5-(25,11,17880) 5-(24,11,12516)
5-(26,10,9387) (#6805) 5-(25,10,7152) (#6804) 5-(24,10,5364) (#1536)
5-(25,9,2235) (#6803) 5-(24,9,1788) (#6802)
5-(24,8,447) (#5684)
- family 134, lambda = 450 containing 52 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,450)
-
12-(32,16,2250) 12-(31,16,1800)
12-(31,15,450)
-
11-(32,16,9450) 11-(31,16,7200) 11-(30,16,5400)
11-(31,15,2250) 11-(30,15,1800)
11-(30,14,450)
-
10-(32,16,34650) 10-(31,16,25200) 10-(30,16,18000) 10-(29,16,12600)
10-(31,15,9450) 10-(30,15,7200) 10-(29,15,5400)
10-(30,14,2250) 10-(29,14,1800)
10-(29,13,450)
-
9-(32,16,113850) 9-(31,16,79200) 9-(30,16,54000) 9-(29,16,36000) 9-(28,16,23400)
9-(31,15,34650) 9-(30,15,25200) 9-(29,15,18000) 9-(28,15,12600)
9-(30,14,9450) 9-(29,14,7200) 9-(28,14,5400)
9-(29,13,2250) 9-(28,13,1800)
9-(28,12,450)
-
8-(32,16,341550) 8-(31,16,227700) 8-(30,16,148500) 8-(29,16,94500) 8-(28,16,58500) 8-(27,16,35100)
8-(31,15,113850) 8-(30,15,79200) 8-(29,15,54000) 8-(28,15,36000) 8-(27,15,23400)
8-(30,14,34650) 8-(29,14,25200) 8-(28,14,18000) 8-(27,14,12600)
8-(29,13,9450) 8-(28,13,7200) 8-(27,13,5400)
8-(28,12,2250) 8-(27,12,1800)
8-(27,11,450)
-
7-(32,16,948750) (#15500) 7-(31,16,607200) 7-(30,16,379500) 7-(29,16,231000) 7-(28,16,136500) 7-(27,16,78000) 7-(26,16,42900)
7-(31,15,341550) 7-(30,15,227700) (#15487) 7-(29,15,148500) 7-(28,15,94500) 7-(27,15,58500) 7-(26,15,35100)
7-(30,14,113850) 7-(29,14,79200) (#15482) 7-(28,14,54000) (#15471) 7-(27,14,36000) 7-(26,14,23400)
7-(29,13,34650) 7-(28,13,25200) (#15460) 7-(27,13,18000) 7-(26,13,12600)
7-(28,12,9450) 7-(27,12,7200) 7-(26,12,5400)
7-(27,11,2250) (#14281) 7-(26,11,1800)
7-(26,10,450)
-
6-(32,16,2466750) (#15499) 6-(31,16,1518000) (#15507) 6-(30,16,910800) 6-(29,16,531300) 6-(28,16,300300) 6-(27,16,163800) 6-(26,16,85800) 6-(25,16,42900)
6-(31,15,948750) (#15493) 6-(30,15,607200) (#15486) 6-(29,15,379500) (#15496) 6-(28,15,231000) 6-(27,15,136500) 6-(26,15,78000) 6-(25,15,42900)
6-(30,14,341550) (#15485) 6-(29,14,227700) (#15479) 6-(28,14,148500) (#15470) 6-(27,14,94500) (#15480) 6-(26,14,58500) 6-(25,14,35100)
6-(29,13,113850) (#15476) 6-(28,13,79200) (#11904) 6-(27,13,54000) (#15462) 6-(26,13,36000) 6-(25,13,23400)
6-(28,12,34650) (#15468) 6-(27,12,25200) (#15461) 6-(26,12,18000) 6-(25,12,12600)
6-(27,11,9450) (#14282) 6-(26,11,7200) (#14284) 6-(25,11,5400)
6-(26,10,2250) (#14283) 6-(25,10,1800)
6-(25,9,450)
-
5-(32,16,6054750) (#14305) 5-(31,16,3588000) (#15505) 5-(30,16,2070000) (#15509) 5-(29,16,1159200) 5-(28,16,627900) 5-(27,16,327600) 5-(26,16,163800) 5-(25,16,78000) 5-(24,16,35100)
5-(31,15,2466750) (#14303) 5-(30,15,1518000) (#11915) 5-(29,15,910800) (#15494) 5-(28,15,531300) (#15501) 5-(27,15,300300) 5-(26,15,163800) 5-(25,15,85800) 5-(24,15,42900)
5-(30,14,948750) (#14301) 5-(29,14,607200) (#11913) 5-(28,14,379500) (#11911) 5-(27,14,231000) (#15477) 5-(26,14,136500) (#15488) 5-(25,14,78000) 5-(24,14,42900)
5-(29,13,341550) (#14299) 5-(28,13,227700) (#11905) 5-(27,13,148500) (#11907) 5-(26,13,94500) (#15469) 5-(25,13,58500) 5-(24,13,35100)
5-(28,12,113850) (#14297) 5-(27,12,79200) (#11906) 5-(26,12,54000) (#15466) 5-(25,12,36000) 5-(24,12,23400) (#4096)
5-(27,11,34650) (#14288) 5-(26,11,25200) (#14289) 5-(25,11,18000) (#14295) 5-(24,11,12600)
5-(26,10,9450) (#6826) 5-(25,10,7200) (#6825) 5-(24,10,5400) (#1539)
5-(25,9,2250) (#6824) 5-(24,9,1800) (#6823)
5-(24,8,450) (#5688)
- family 135, lambda = 453 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,453)
-
8-(28,12,2265) 8-(27,12,1812)
8-(27,11,453)
-
7-(28,12,9513) 7-(27,12,7248) 7-(26,12,5436)
7-(27,11,2265) 7-(26,11,1812)
7-(26,10,453)
-
6-(28,12,34881) 6-(27,12,25368) 6-(26,12,18120) 6-(25,12,12684)
6-(27,11,9513) 6-(26,11,7248) 6-(25,11,5436)
6-(26,10,2265) 6-(25,10,1812)
6-(25,9,453)
-
5-(28,12,114609) 5-(27,12,79728) 5-(26,12,54360) 5-(25,12,36240) 5-(24,12,23556) (#4122)
5-(27,11,34881) 5-(26,11,25368) 5-(25,11,18120) 5-(24,11,12684)
5-(26,10,9513) (#6832) 5-(25,10,7248) (#6831) 5-(24,10,5436) (#1541)
5-(25,9,2265) (#6830) 5-(24,9,1812) (#6829)
5-(24,8,453) (#5691)
- family 136, lambda = 462 containing 37 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,462)
-
12-(32,16,2310) 12-(31,16,1848)
12-(31,15,462)
-
11-(32,16,9702) 11-(31,16,7392) 11-(30,16,5544)
11-(31,15,2310) 11-(30,15,1848)
11-(30,14,462)
-
10-(32,16,35574) 10-(31,16,25872) 10-(30,16,18480) 10-(29,16,12936)
10-(31,15,9702) 10-(30,15,7392) 10-(29,15,5544)
10-(30,14,2310) 10-(29,14,1848)
10-(29,13,462)
-
9-(32,16,116886) 9-(31,16,81312) 9-(30,16,55440) 9-(29,16,36960) 9-(28,16,24024)
9-(31,15,35574) 9-(30,15,25872) 9-(29,15,18480) 9-(28,15,12936)
9-(30,14,9702) 9-(29,14,7392) 9-(28,14,5544)
9-(29,13,2310) 9-(28,13,1848)
9-(28,12,462)
-
8-(32,16,350658) 8-(31,16,233772) 8-(30,16,152460) 8-(29,16,97020) 8-(28,16,60060) 8-(27,16,36036)
8-(31,15,116886) 8-(30,15,81312) 8-(29,15,55440) 8-(28,15,36960) 8-(27,15,24024)
8-(30,14,35574) 8-(29,14,25872) 8-(28,14,18480) 8-(27,14,12936)
8-(29,13,9702) 8-(28,13,7392) 8-(27,13,5544)
8-(28,12,2310) 8-(27,12,1848)
8-(27,11,462)
-
7-(32,16,974050) 7-(31,16,623392) 7-(30,16,389620) 7-(29,16,237160) 7-(28,16,140140) 7-(27,16,80080) 7-(26,16,44044)
7-(31,15,350658) 7-(30,15,233772) 7-(29,15,152460) 7-(28,15,97020) 7-(27,15,60060) 7-(26,15,36036)
7-(30,14,116886) 7-(29,14,81312) 7-(28,14,55440) (#15811) 7-(27,14,36960) 7-(26,14,24024)
7-(29,13,35574) 7-(28,13,25872) 7-(27,13,18480) 7-(26,13,12936) (#10304)
7-(28,12,9702) 7-(27,12,7392) 7-(26,12,5544)
7-(27,11,2310) 7-(26,11,1848)
7-(26,10,462)
-
6-(32,16,2532530) 6-(31,16,1558480) 6-(30,16,935088) 6-(29,16,545468) 6-(28,16,308308) 6-(27,16,168168) 6-(26,16,88088) 6-(25,16,44044)
6-(31,15,974050) 6-(30,15,623392) 6-(29,15,389620) 6-(28,15,237160) 6-(27,15,140140) 6-(26,15,80080) 6-(25,15,44044)
6-(30,14,350658) 6-(29,14,233772) 6-(28,14,152460) (#15812) 6-(27,14,97020) (#15814) 6-(26,14,60060) 6-(25,14,36036)
6-(29,13,116886) 6-(28,13,81312) 6-(27,13,55440) (#15813) 6-(26,13,36960) (#10303) 6-(25,13,24024) (#10313)
6-(28,12,35574) 6-(27,12,25872) 6-(26,12,18480) 6-(25,12,12936) (#10300)
6-(27,11,9702) 6-(26,11,7392) 6-(25,11,5544)
6-(26,10,2310) 6-(25,10,1848)
6-(25,9,462)
-
5-(32,16,6216210) (#10333) 5-(31,16,3683680) 5-(30,16,2125200) 5-(29,16,1190112) 5-(28,16,644644) 5-(27,16,336336) 5-(26,16,168168) 5-(25,16,80080) 5-(24,16,36036)
5-(31,15,2532530) (#10332) 5-(30,15,1558480) (#10331) 5-(29,15,935088) 5-(28,15,545468) 5-(27,15,308308) 5-(26,15,168168) 5-(25,15,88088) 5-(24,15,44044)
5-(30,14,974050) (#10330) 5-(29,14,623392) (#10329) 5-(28,14,389620) (#10327) 5-(27,14,237160) (#15818) 5-(26,14,140140) (#15823) 5-(25,14,80080) 5-(24,14,44044)
5-(29,13,350658) (#10328) 5-(28,13,233772) (#10326) 5-(27,13,152460) (#10324) 5-(26,13,97020) (#10308) 5-(25,13,60060) (#10310) 5-(24,13,36036) (#10319)
5-(28,12,116886) (#10325) 5-(27,12,81312) (#10323) 5-(26,12,55440) (#10318) 5-(25,12,36960) (#10301) 5-(24,12,24024) (#4200)
5-(27,11,35574) (#10322) 5-(26,11,25872) (#10317) 5-(25,11,18480) (#10309) 5-(24,11,12936) (#10302)
5-(26,10,9702) (#6865) 5-(25,10,7392) (#6864) 5-(24,10,5544) (#1546)
5-(25,9,2310) (#6863) 5-(24,9,1848) (#6862)
5-(24,8,462) (#5703)
- family 137, lambda = 465 containing 60 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,465)
-
12-(32,16,2325) 12-(31,16,1860)
12-(31,15,465)
-
11-(32,16,9765) 11-(31,16,7440) 11-(30,16,5580)
11-(31,15,2325) 11-(30,15,1860)
11-(30,14,465)
-
10-(32,16,35805) 10-(31,16,26040) 10-(30,16,18600) 10-(29,16,13020)
10-(31,15,9765) 10-(30,15,7440) 10-(29,15,5580)
10-(30,14,2325) 10-(29,14,1860)
10-(29,13,465)
-
9-(32,16,117645) 9-(31,16,81840) 9-(30,16,55800) 9-(29,16,37200) 9-(28,16,24180)
9-(31,15,35805) 9-(30,15,26040) 9-(29,15,18600) 9-(28,15,13020)
9-(30,14,9765) 9-(29,14,7440) 9-(28,14,5580)
9-(29,13,2325) 9-(28,13,1860)
9-(28,12,465)
-
8-(32,16,352935) 8-(31,16,235290) 8-(30,16,153450) 8-(29,16,97650) 8-(28,16,60450) 8-(27,16,36270)
8-(31,15,117645) 8-(30,15,81840) 8-(29,15,55800) 8-(28,15,37200) 8-(27,15,24180)
8-(30,14,35805) 8-(29,14,26040) 8-(28,14,18600) (#17992) 8-(27,14,13020)
8-(29,13,9765) 8-(28,13,7440) 8-(27,13,5580)
8-(28,12,2325) 8-(27,12,1860)
8-(27,11,465)
-
7-(32,16,980375) (#14995) 7-(31,16,627440) 7-(30,16,392150) 7-(29,16,238700) 7-(28,16,141050) 7-(27,16,80600) 7-(26,16,44330)
7-(31,15,352935) 7-(30,15,235290) (#14984) 7-(29,15,153450) 7-(28,15,97650) 7-(27,15,60450) 7-(26,15,36270)
7-(30,14,117645) 7-(29,14,81840) 7-(28,14,55800) (#11471) 7-(27,14,37200) (#17993) 7-(26,14,24180)
7-(29,13,35805) 7-(28,13,26040) 7-(27,13,18600) (#14963) 7-(26,13,13020)
7-(28,12,9765) 7-(27,12,7440) 7-(26,12,5580)
7-(27,11,2325) (#14316) 7-(26,11,1860)
7-(26,10,465)
-
6-(32,16,2548975) (#14994) 6-(31,16,1568600) (#15002) 6-(30,16,941160) 6-(29,16,549010) 6-(28,16,310310) 6-(27,16,169260) 6-(26,16,88660) 6-(25,16,44330)
6-(31,15,980375) (#14988) 6-(30,15,627440) (#14983) 6-(29,15,392150) (#14991) 6-(28,15,238700) 6-(27,15,141050) 6-(26,15,80600) 6-(25,15,44330)
6-(30,14,352935) (#14982) 6-(29,14,235290) (#14979) 6-(28,14,153450) (#11470) 6-(27,14,97650) (#11480) 6-(26,14,60450) (#17996) 6-(25,14,36270)
6-(29,13,117645) (#14978) 6-(28,13,81840) (#14975) 6-(27,13,55800) (#11466) 6-(26,13,37200) (#14965) 6-(25,13,24180)
6-(28,12,35805) (#14974) 6-(27,12,26040) (#14970) 6-(26,12,18600) (#14964) 6-(25,12,13020)
6-(27,11,9765) (#10768) 6-(26,11,7440) (#14317) 6-(25,11,5580)
6-(26,10,2325) (#10530) 6-(25,10,1860)
6-(25,9,465) (#10464)
-
5-(32,16,6256575) (#11502) 5-(31,16,3707600) (#15000) 5-(30,16,2139000) (#15004) 5-(29,16,1197840) 5-(28,16,648830) 5-(27,16,338520) 5-(26,16,169260) 5-(25,16,80600) 5-(24,16,36270)
5-(31,15,2548975) (#11500) 5-(30,15,1568600) (#11497) 5-(29,15,941160) (#14989) 5-(28,15,549010) (#14996) 5-(27,15,310310) 5-(26,15,169260) 5-(25,15,88660) 5-(24,15,44330)
5-(30,14,980375) (#11496) 5-(29,14,627440) (#11493) 5-(28,14,392150) (#11475) 5-(27,14,238700) (#11477) 5-(26,14,141050) (#11487) 5-(25,14,80600) (#17998) 5-(24,14,44330)
5-(29,13,352935) (#11492) 5-(28,13,235290) (#11486) 5-(27,13,153450) (#11467) 5-(26,13,97650) (#11469) 5-(25,13,60450) (#14971) 5-(24,13,36270)
5-(28,12,117645) (#11485) 5-(27,12,81840) (#11476) 5-(26,12,55800) (#11468) 5-(25,12,37200) (#14968) 5-(24,12,24180) (#4227)
5-(27,11,35805) (#10769) 5-(26,11,26040) (#10770) 5-(25,11,18600) (#14321) 5-(24,11,13020)
5-(26,10,9765) (#6873) 5-(25,10,7440) (#6872) 5-(24,10,5580) (#1549)
5-(25,9,2325) (#6871) 5-(24,9,1860) (#6870)
5-(24,8,465) (#5706)
- family 138, lambda = 468 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,468)
-
8-(28,12,2340) 8-(27,12,1872)
8-(27,11,468)
-
7-(28,12,9828) 7-(27,12,7488) 7-(26,12,5616)
7-(27,11,2340) 7-(26,11,1872)
7-(26,10,468)
-
6-(28,12,36036) 6-(27,12,26208) 6-(26,12,18720) 6-(25,12,13104)
6-(27,11,9828) 6-(26,11,7488) 6-(25,11,5616)
6-(26,10,2340) 6-(25,10,1872)
6-(25,9,468)
-
5-(28,12,118404) 5-(27,12,82368) 5-(26,12,56160) 5-(25,12,37440) 5-(24,12,24336) (#4254)
5-(27,11,36036) 5-(26,11,26208) 5-(25,11,18720) 5-(24,11,13104)
5-(26,10,9828) (#6879) 5-(25,10,7488) (#6878) 5-(24,10,5616) (#1551)
5-(25,9,2340) (#6877) 5-(24,9,1872) (#6876)
5-(24,8,468) (#5709)
- family 139, lambda = 471 containing 7 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,471)
-
8-(28,12,2355) 8-(27,12,1884)
8-(27,11,471)
-
7-(28,12,9891) 7-(27,12,7536) 7-(26,12,5652)
7-(27,11,2355) 7-(26,11,1884)
7-(26,10,471)
-
6-(28,12,36267) 6-(27,12,26376) 6-(26,12,18840) 6-(25,12,13188)
6-(27,11,9891) 6-(26,11,7536) 6-(25,11,5652)
6-(26,10,2355) 6-(25,10,1884)
6-(25,9,471)
-
5-(28,12,119163) 5-(27,12,82896) 5-(26,12,56520) 5-(25,12,37680) 5-(24,12,24492) (#4281)
5-(27,11,36267) 5-(26,11,26376) 5-(25,11,18840) 5-(24,11,13188)
5-(26,10,9891) (#6885) 5-(25,10,7536) (#6884) 5-(24,10,5652) (#1553)
5-(25,9,2355) (#6883) 5-(24,9,1884) (#6882)
5-(24,8,471) (#5713)
- family 140, lambda = 474 containing 52 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,474)
-
12-(32,16,2370) 12-(31,16,1896)
12-(31,15,474)
-
11-(32,16,9954) 11-(31,16,7584) 11-(30,16,5688)
11-(31,15,2370) 11-(30,15,1896)
11-(30,14,474)
-
10-(32,16,36498) 10-(31,16,26544) 10-(30,16,18960) 10-(29,16,13272)
10-(31,15,9954) 10-(30,15,7584) 10-(29,15,5688)
10-(30,14,2370) 10-(29,14,1896)
10-(29,13,474)
-
9-(32,16,119922) 9-(31,16,83424) 9-(30,16,56880) 9-(29,16,37920) 9-(28,16,24648)
9-(31,15,36498) 9-(30,15,26544) 9-(29,15,18960) 9-(28,15,13272)
9-(30,14,9954) 9-(29,14,7584) 9-(28,14,5688)
9-(29,13,2370) 9-(28,13,1896)
9-(28,12,474)
-
8-(32,16,359766) 8-(31,16,239844) 8-(30,16,156420) 8-(29,16,99540) 8-(28,16,61620) 8-(27,16,36972)
8-(31,15,119922) 8-(30,15,83424) 8-(29,15,56880) 8-(28,15,37920) 8-(27,15,24648)
8-(30,14,36498) 8-(29,14,26544) 8-(28,14,18960) 8-(27,14,13272)
8-(29,13,9954) 8-(28,13,7584) 8-(27,13,5688)
8-(28,12,2370) 8-(27,12,1896)
8-(27,11,474)
-
7-(32,16,999350) 7-(31,16,639584) 7-(30,16,399740) 7-(29,16,243320) 7-(28,16,143780) 7-(27,16,82160) 7-(26,16,45188)
7-(31,15,359766) 7-(30,15,239844) (#13696) 7-(29,15,156420) 7-(28,15,99540) 7-(27,15,61620) 7-(26,15,36972)
7-(30,14,119922) 7-(29,14,83424) (#15512) 7-(28,14,56880) (#13684) 7-(27,14,37920) 7-(26,14,24648)
7-(29,13,36498) 7-(28,13,26544) (#15511) 7-(27,13,18960) 7-(26,13,13272) (#10338)
7-(28,12,9954) 7-(27,12,7584) 7-(26,12,5688)
7-(27,11,2370) 7-(26,11,1896) (#13662)
7-(26,10,474)
-
6-(32,16,2598310) 6-(31,16,1598960) 6-(30,16,959376) 6-(29,16,559636) 6-(28,16,316316) 6-(27,16,172536) 6-(26,16,90376) 6-(25,16,45188)
6-(31,15,999350) 6-(30,15,639584) (#13695) 6-(29,15,399740) (#13704) 6-(28,15,243320) 6-(27,15,143780) 6-(26,15,82160) 6-(25,15,45188)
6-(30,14,359766) 6-(29,14,239844) (#13690) 6-(28,14,156420) (#13683) 6-(27,14,99540) (#13691) 6-(26,14,61620) 6-(25,14,36972)
6-(29,13,119922) 6-(28,13,83424) (#11917) 6-(27,13,56880) (#13679) 6-(26,13,37920) (#10337) 6-(25,13,24648) (#10347)
6-(28,12,36498) 6-(27,12,26544) (#13678) 6-(26,12,18960) (#13674) 6-(25,12,13272) (#10334)
6-(27,11,9954) 6-(26,11,7584) (#13663) 6-(25,11,5688) (#13665)
6-(26,10,2370) 6-(25,10,1896) (#13664)
6-(25,9,474)
-
5-(32,16,6377670) (#10367) 5-(31,16,3779360) 5-(30,16,2180400) 5-(29,16,1221024) 5-(28,16,661388) 5-(27,16,345072) 5-(26,16,172536) 5-(25,16,82160) 5-(24,16,36972)
5-(31,15,2598310) (#10366) 5-(30,15,1598960) (#10365) 5-(29,15,959376) (#13702) 5-(28,15,559636) (#13707) 5-(27,15,316316) 5-(26,15,172536) 5-(25,15,90376) 5-(24,15,45188)
5-(30,14,999350) (#10364) 5-(29,14,639584) (#10363) 5-(28,14,399740) (#10361) 5-(27,14,243320) (#13688) 5-(26,14,143780) (#13697) 5-(25,14,82160) 5-(24,14,45188)
5-(29,13,359766) (#10362) 5-(28,13,239844) (#10360) 5-(27,13,156420) (#10358) 5-(26,13,99540) (#10342) 5-(25,13,61620) (#10344) 5-(24,13,36972) (#10353)
5-(28,12,119922) (#10359) 5-(27,12,83424) (#10357) 5-(26,12,56880) (#10352) 5-(25,12,37920) (#10335) 5-(24,12,24648) (#4308)
5-(27,11,36498) (#10356) 5-(26,11,26544) (#10351) 5-(25,11,18960) (#10343) 5-(24,11,13272) (#10336)
5-(26,10,9954) (#6891) 5-(25,10,7584) (#6890) 5-(24,10,5688) (#1555)
5-(25,9,2370) (#6889) 5-(24,9,1896) (#6888)
5-(24,8,474) (#5716)
- family 141, lambda = 477 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,477)
-
8-(28,12,2385) 8-(27,12,1908)
8-(27,11,477)
-
7-(28,12,10017) 7-(27,12,7632) 7-(26,12,5724)
7-(27,11,2385) (#14323) 7-(26,11,1908)
7-(26,10,477)
-
6-(28,12,36729) 6-(27,12,26712) 6-(26,12,19080) 6-(25,12,13356)
6-(27,11,10017) (#10605) 6-(26,11,7632) (#14325) 6-(25,11,5724)
6-(26,10,2385) (#14324) 6-(25,10,1908)
6-(25,9,477)
-
5-(28,12,120681) 5-(27,12,83952) 5-(26,12,57240) 5-(25,12,38160) 5-(24,12,24804) (#4335)
5-(27,11,36729) (#10606) 5-(26,11,26712) (#10607) 5-(25,11,19080) (#14331) 5-(24,11,13356)
5-(26,10,10017) (#6897) 5-(25,10,7632) (#6896) 5-(24,10,5724) (#1557)
5-(25,9,2385) (#6895) 5-(24,9,1908) (#6894)
5-(24,8,477) (#5720)
- family 142, lambda = 480 containing 14 designs:
minpath=(0, 4, 0) minimal_t=5
-
9-(28,12,480)
-
8-(28,12,2400) 8-(27,12,1920)
8-(27,11,480)
-
7-(28,12,10080) 7-(27,12,7680) 7-(26,12,5760)
7-(27,11,2400) (#14333) 7-(26,11,1920)
7-(26,10,480)
-
6-(28,12,36960) 6-(27,12,26880) 6-(26,12,19200) 6-(25,12,13440)
6-(27,11,10080) (#14334) 6-(26,11,7680) (#14336) 6-(25,11,5760)
6-(26,10,2400) (#14335) 6-(25,10,1920)
6-(25,9,480)
-
5-(28,12,121440) 5-(27,12,84480) 5-(26,12,57600) 5-(25,12,38400) 5-(24,12,24960) (#4362)
5-(27,11,36960) (#14340) 5-(26,11,26880) (#14341) 5-(25,11,19200) (#14347) 5-(24,11,13440)
5-(26,10,10080) (#6907) 5-(25,10,7680) (#6906) 5-(24,10,5760) (#1560)
5-(25,9,2400) (#6905) 5-(24,9,1920) (#6904)
5-(24,8,480) (#5724)
- family 143, lambda = 483 containing 72 designs:
minpath=(0, 0, 0) minimal_t=5
-
13-(32,16,483)
-
12-(32,16,2415) 12-(31,16,1932)
12-(31,15,483)
-
11-(32,16,10143) 11-(31,16,7728) 11-(30,16,5796)
11-(31,15,2415) 11-(30,15,1932)
11-(30,14,483)
-
10-(32,16,37191) 10-(31,16,27048) 10-(30,16,19320) 10-(29,16,13524)
10-(31,15,10143) 10-(30,15,7728) 10-(29,15,5796)
10-(30,14,2415) 10-(29,14,1932)
10-(29,13,483)
-
9-(32,16,122199) 9-(31,16,85008) 9-(30,16,57960) 9-(29,16,38640) 9-(28,16,25116)
9-(31,15,37191) 9-(30,15,27048) 9-(29,15,19320) 9-(28,15,13524)
9-(30,14,10143) 9-(29,14,7728) 9-(28,14,5796)
9-(29,13,2415) 9-(28,13,1932)
9-(28,12,483)
-
8-(32,16,366597) 8-(31,16,244398) 8-(30,16,159390) 8-(29,16,101430) 8-(28,16,62790) 8-(27,16,37674)
8-(31,15,122199) 8-(30,15,85008) 8-(29,15,57960) 8-(28,15,38640) 8-(27,15,25116)
8-(30,14,37191) 8-(29,14,27048) 8-(28,14,19320) 8-(27,14,13524)
8-(29,13,10143) 8-(28,13,7728) 8-(27,13,5796)
8-(28,12,2415) 8-(27,12,1932) (#17631)
8-(27,11,483)
-
7-(32,16,1018325) (#11548) 7-(31,16,651728) 7-(30,16,407330) 7-(29,16,247940) 7-(28,16,146510) 7-(27,16,83720) 7-(26,16,46046)
7-(31,15,366597) (#14866) 7-(30,15,244398) (#11528) 7-(29,15,159390) 7-(28,15,101430) 7-(27,15,62790) 7-(26,15,37674)
7-(30,14,122199) (#14865) 7-(29,14,85008) (#14864) 7-(28,14,57960) (#11508) 7-(27,14,38640) 7-(26,14,25116)
7-(29,13,37191) (#14863) 7-(28,13,27048) (#14862) 7-(27,13,19320) (#13759) 7-(26,13,13524) (#13751)
7-(28,12,10143) (#14861) 7-(27,12,7728) (#14860) 7-(26,12,5796) (#13736)
7-(27,11,2415) (#14349) 7-(26,11,1932) (#17632)
7-(26,10,483)
-
6-(32,16,2647645) (#11547) 6-(31,16,1629320) (#11556) 6-(30,16,977592) 6-(29,16,570262) 6-(28,16,322322) 6-(27,16,175812) 6-(26,16,92092) 6-(25,16,46046)
6-(31,15,1018325) (#11540) 6-(30,15,651728) (#11527) 6-(29,15,407330) (#11541) 6-(28,15,247940) 6-(27,15,146510) 6-(26,15,83720) 6-(25,15,46046)
6-(30,14,366597) (#11529) 6-(29,14,244398) (#11517) 6-(28,14,159390) (#11507) 6-(27,14,101430) (#11518) 6-(26,14,62790) 6-(25,14,37674)
6-(29,13,122199) (#11523) 6-(28,13,85008) (#11511) 6-(27,13,57960) (#11504) 6-(26,13,38640) (#13750) 6-(25,13,25116) (#13757)
6-(28,12,37191) (#10887) 6-(27,12,27048) (#10882) 6-(26,12,19320) (#13737) 6-(25,12,13524) (#13739)
6-(27,11,10143) (#10611) 6-(26,11,7728) (#14351) 6-(25,11,5796) (#13738)
6-(26,10,2415) (#14350) 6-(25,10,1932) (#17636)
6-(25,9,483)
-
5-(32,16,6498765) (#11552) 5-(31,16,3851120) (#11554) 5-(30,16,2221800) (#11560) 5-(29,16,1244208) 5-(28,16,673946) 5-(27,16,351624) 5-(26,16,175812) 5-(25,16,83720) 5-(24,16,37674)
5-(31,15,2647645) (#11545) 5-(30,15,1629320) (#11534) 5-(29,15,977592) (#11538) 5-(28,15,570262) (#11549) 5-(27,15,322322) 5-(26,15,175812) 5-(25,15,92092) 5-(24,15,46046)
5-(30,14,1018325) (#11535) 5-(29,14,651728) (#11524) 5-(28,14,407330) (#11512) 5-(27,14,247940) (#11514) 5-(26,14,146510) (#11530) 5-(25,14,83720) 5-(24,14,46046)
5-(29,13,366597) (#11525) 5-(28,13,244398) (#11513) 5-(27,13,159390) (#11505) 5-(26,13,101430) (#11506) 5-(25,13,62790) (#13755) 5-(24,13,37674) (#13760)
5-(28,12,122199) (#10888) 5-(27,12,85008) (#10883) 5-(26,12,57960) (#10884) 5-(25,12,38640) (#13744) 5-(24,12,25116) (#4388)
5-(27,11,37191) (#10612) 5-(26,11,27048) (#10613) 5-(25,11,19320) (#13743) 5-(24,11,13524) (#13747)
5-(26,10,10143) (#6913) 5-(25,10,7728) (#6912) 5-(24,10,5796) (#1562)
5-(25,9,2415) (#6911) 5-(24,9,1932) (#6910)
5-(24,8,483) (#5727)
created: Fri Oct 23 11:21:21 CEST 2009