t designs with small t, id ge 1700
# 1700: 5-(24,12,10080)
# 1701: 5-(24,12,10086)
# 1702: 5-(24,12,10092)
# 1703: 5-(24,12,10098)
# 1704: 5-(24,12,10104)
# 1705: 5-(24,12,10110)
# 1706: 5-(24,12,10116)
# 1707: 5-(24,12,10122)
# 1708: 5-(24,12,10128)
# 1709: 5-(24,12,10134)
# 1710: 5-(24,12,10140)
# 1711: 5-(24,12,10146)
# 1712: 5-(24,12,10152)
# 1713: 5-(24,12,10158)
# 1714: 5-(24,12,10164)
# 1715: 5-(24,12,10170)
# 1716: 5-(24,12,10176)
# 1717: 5-(24,12,10182)
# 1718: 5-(24,12,10188)
# 1719: 5-(24,12,10194)
# 1720: 5-(24,12,1020)
# 1721: 5-(24,12,10200)
# 1722: 5-(24,12,10206)
# 1723: 5-(24,12,10212)
# 1724: 5-(24,12,10218)
# 1725: 5-(24,12,10224)
# 1726: 5-(24,12,10230)
# 1727: 5-(24,12,10236)
# 1728: 5-(24,12,10242)
# 1729: 5-(24,12,10248)
# 1730: 5-(24,12,10254)
# 1731: 5-(24,12,10266)
# 1732: 5-(24,12,10272)
# 1733: 5-(24,12,10278)
# 1734: 5-(24,12,10284)
# 1735: 5-(24,12,10290)
# 1736: 5-(24,12,10296)
# 1737: 5-(25,12,15840)
- clan: 13-(32,16,198), 1 times reduced t, 4 times derived, 3 times residual
-
Tran van Trung construction (left) for 5-(24,12,10296) (# 1736) : der= 5-(24,11,5544) and res= 5-(24,12,10296) - the given design is the residual.
# 1738: 5-(26,13,41580)
# 1739: 5-(26,12,23760)
- clan: 13-(32,16,198), 2 times reduced t, 4 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(25,12,15840) (# 1737) : der= 5-(25,11,7920) and res= 5-(25,12,15840) - the given design is the residual.
# 1740: 5-(27,13,65340)
- clan: 13-(32,16,198), 3 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(26,13,41580) (# 1738) : der= 5-(26,12,23760) and res= 5-(26,13,41580) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,23760) (# 1739) : der= 5-(26,12,23760) and res= 5-(26,13,41580) - the given design is the derived.
# 1741: 5-(28,14,166980)
# 1742: 5-(24,12,10302)
# 1743: 5-(24,12,10308)
# 1744: 5-(24,12,10314)
# 1745: 5-(24,12,10320)
# 1746: 5-(24,12,10326)
# 1747: 5-(24,12,10332)
# 1748: 5-(24,12,10338)
# 1749: 5-(24,12,10344)
# 1750: 5-(24,12,10350)
# 1751: 5-(24,12,10356)
# 1752: 5-(24,12,10362)
# 1753: 5-(24,12,10368)
# 1754: 5-(24,12,10374)
# 1755: 5-(24,12,1038)
# 1756: 5-(24,12,10380)
# 1757: 5-(24,12,10386)
# 1758: 5-(24,12,10392)
# 1759: 5-(24,12,10398)
# 1760: 5-(24,12,10404)
# 1761: 5-(24,12,10410)
# 1762: 5-(24,12,10416)
# 1763: 5-(24,12,10422)
# 1764: 5-(24,12,10428)
# 1765: 5-(24,12,10434)
# 1766: 5-(24,12,10440)
# 1767: 5-(24,12,10446)
# 1768: 5-(24,12,10452)
# 1769: 5-(24,12,10458)
# 1770: 5-(24,12,10464)
# 1771: 5-(24,12,10470)
# 1772: 5-(24,12,10476)
# 1773: 5-(24,12,10482)
# 1774: 5-(24,12,10488)
# 1775: 5-(24,12,10494)
# 1776: 5-(24,12,10500)
# 1777: 5-(24,12,10506)
# 1778: 5-(24,12,10512)
# 1779: 5-(24,12,10518)
# 1780: 5-(24,12,10524)
# 1781: 5-(24,12,10530)
# 1782: 5-(24,12,10536)
# 1783: 5-(24,12,10542)
# 1784: 5-(24,12,10548)
# 1785: 5-(24,12,10554)
# 1786: 5-(24,12,1056)
# 1787: 5-(24,12,10560)
# 1788: 5-(24,12,10566)
# 1789: 5-(24,12,10572)
# 1790: 5-(24,12,10578)
# 1791: 5-(24,12,10584)
# 1792: 5-(24,12,10590)
# 1793: 5-(24,12,10596)
# 1794: 5-(24,12,10608)
# 1795: 5-(24,12,10614)
# 1796: 5-(24,12,10620)
# 1797: 5-(24,12,10626)
# 1798: 5-(24,12,10632)
# 1799: 5-(24,12,10638)
created: Fri Oct 23 11:09:46 CEST 2009