t designs with small t, id ge 4100
# 4100: 5-(24,12,23424)
# 4101: 5-(24,12,23430)
# 4102: 5-(24,12,23436)
# 4103: 5-(24,12,23442)
# 4104: 5-(24,12,23448)
# 4105: 5-(24,12,23454)
# 4106: 5-(24,12,23460)
# 4107: 5-(24,12,23466)
# 4108: 5-(24,12,23472)
# 4109: 5-(24,12,23478)
# 4110: 5-(24,12,23484)
# 4111: 5-(24,12,23490)
# 4112: 5-(24,12,23496)
# 4113: 5-(24,12,23502)
# 4114: 5-(24,12,23508)
# 4115: 5-(24,12,23514)
# 4116: 5-(24,12,23520)
# 4117: 5-(24,12,23526)
# 4118: 5-(24,12,23532)
# 4119: 5-(24,12,23538)
# 4120: 5-(24,12,23544)
# 4121: 5-(24,12,23550)
# 4122: 5-(24,12,23556)
# 4123: 5-(24,12,23562)
# 4124: 5-(24,12,23568)
# 4125: 5-(24,12,23574)
# 4126: 5-(24,12,2358)
# 4127: 5-(24,12,23580)
# 4128: 5-(24,12,23586)
# 4129: 5-(24,12,23592)
# 4130: 5-(24,12,23604)
# 4131: 5-(24,12,23610)
# 4132: 5-(24,12,23616)
# 4133: 5-(24,12,23622)
# 4134: 5-(24,12,23628)
# 4135: 5-(24,12,23634)
# 4136: 5-(24,12,23640)
# 4137: 5-(24,12,23646)
# 4138: 5-(24,12,23652)
# 4139: 5-(24,12,23658)
# 4140: 5-(24,12,23664)
# 4141: 5-(24,12,23670)
# 4142: 5-(24,12,23676)
# 4143: 5-(24,12,23682)
# 4144: 5-(24,12,23688)
# 4145: 5-(24,12,23694)
# 4146: 5-(24,12,23700)
# 4147: 5-(24,12,23706)
# 4148: 5-(24,12,23718)
# 4149: 5-(24,12,23724)
# 4150: 5-(24,12,23730)
# 4151: 5-(24,12,23736)
# 4152: 5-(24,12,23742)
# 4153: 5-(24,12,23748)
# 4154: 5-(24,12,23754)
# 4155: 5-(24,12,2376)
# 4156: 5-(24,12,23760)
# 4157: 5-(24,12,23766)
# 4158: 5-(24,12,23772)
# 4159: 5-(24,12,23778)
# 4160: 5-(24,12,23784)
# 4161: 5-(24,12,23790)
- clan: 11-(30,15,1830), 3 times derived, 3 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,12810) (# 10272)
-
derived from 6-(25,13,23790) (# 10285)
-
residual design of supplementary of 6-(25,12,14322) (# 10287)
-
derived from supplementary of 6-(25,13,26598) (# 10288)
# 4162: 5-(24,12,23796)
# 4163: 5-(24,12,23802)
# 4164: 5-(24,12,23808)
# 4165: 5-(24,12,23814)
# 4166: 5-(24,12,23820)
# 4167: 5-(24,12,23826)
- clan: 7-(24,12,2926), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
design 6-(24,12,8778) (# 9814) with respect to smaller t
-
Tran van Trung construction with complementary design for 5-(23,11,8778) (# 9815)
-
Tran van Trung construction (right) for 5-(23,11,8778) (# 9815) : der= 5-(23,11,8778) and res= 5-(23,12,15048) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(23,12,15048) (# 9816) : der= 5-(23,11,8778) and res= 5-(23,12,15048) - the given design is the residual.
# 4168: 5-(24,12,23832)
# 4169: 5-(24,12,23838)
# 4170: 5-(24,12,23844)
# 4171: 5-(24,12,23850)
# 4172: 5-(24,12,23856)
# 4173: 5-(24,12,23862)
# 4174: 5-(24,12,23868)
# 4175: 5-(24,12,23874)
# 4176: 5-(24,12,23880)
# 4177: 5-(24,12,23886)
# 4178: 5-(24,12,23892)
# 4179: 5-(24,12,23898)
# 4180: 5-(24,12,23904)
# 4181: 5-(24,12,23910)
# 4182: 5-(24,12,23916)
# 4183: 5-(24,12,23922)
# 4184: 5-(24,12,23928)
# 4185: 5-(24,12,23934)
# 4186: 5-(24,12,23940)
- clan: 7-(24,12,2940), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
design 6-(24,12,8820) (# 9820) with respect to smaller t
-
Tran van Trung construction with complementary design for 5-(23,11,8820) (# 9821)
-
Tran van Trung construction (right) for 5-(23,11,8820) (# 9821) : der= 5-(23,11,8820) and res= 5-(23,12,15120) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(23,12,15120) (# 9822) : der= 5-(23,11,8820) and res= 5-(23,12,15120) - the given design is the residual.
# 4187: 5-(24,12,23946)
# 4188: 5-(24,12,23952)
# 4189: 5-(24,12,23958)
# 4190: 5-(24,12,23964)
# 4191: 5-(24,12,23970)
# 4192: 5-(24,12,23976)
# 4193: 5-(24,12,23982)
# 4194: 5-(24,12,23988)
# 4195: 5-(24,12,23994)
# 4196: 5-(24,12,24000)
# 4197: 5-(24,12,24006)
# 4198: 5-(24,12,24012)
# 4199: 5-(24,12,24018)
created: Fri Oct 23 11:10:01 CEST 2009