t designs with small t, id ge 2500
# 2500: 5-(24,12,14496)
# 2501: 5-(24,12,14502)
# 2502: 5-(24,12,14508)
# 2503: 5-(24,12,14514)
# 2504: 5-(24,12,1452)
# 2505: 5-(24,12,14520)
# 2506: 5-(24,12,14526)
# 2507: 5-(24,12,14532)
# 2508: 5-(24,12,14538)
# 2509: 5-(24,12,14544)
# 2510: 5-(24,12,14550)
# 2511: 5-(24,12,14556)
# 2512: 5-(24,12,14562)
# 2513: 5-(24,12,14568)
# 2514: 5-(24,12,14574)
# 2515: 5-(24,12,14580)
# 2516: 5-(24,12,14586)
- clan: 11-(30,15,1122), 3 times derived, 3 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,7854) (# 9872)
-
derived from 6-(25,13,14586) (# 9881)
-
residual design of supplementary of 6-(25,12,19278) (# 9883)
-
derived from supplementary of 6-(25,13,35802) (# 9884)
# 2517: 5-(25,12,22440)
- clan: 11-(30,15,1122), 1 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,12,14586) (# 2516) : der= 5-(24,11,7854) and res= 5-(24,12,14586) - the given design is the residual.
-
design 6-(25,12,7854) (# 9872) with respect to smaller t
-
derived from 6-(26,13,22440) (# 9873)
-
derived from supplementary of 6-(26,13,55080) (# 9882)
-
supplementary design of 6-(25,12,19278) (# 9883) with respect to smaller t
# 2518: 5-(26,13,58905)
- clan: 11-(30,15,1122), 2 times reduced t, 2 times derived, 2 times residual
-
Tran van Trung construction with complementary design for 5-(25,12,22440) (# 2517)
-
design 6-(26,13,22440) (# 9873) with respect to smaller t
-
Tran van Trung construction (left) for 5-(25,13,36465) (# 9878) : der= 5-(25,12,22440) and res= 5-(25,13,36465) - the given design is the residual.
-
supplementary design of 6-(26,13,55080) (# 9882) with respect to smaller t
# 2519: 5-(26,12,33660)
- clan: 11-(30,15,1122), 2 times reduced t, 3 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(25,12,22440) (# 2517) : der= 5-(25,11,11220) and res= 5-(25,12,22440) - the given design is the residual.
-
residual design of 6-(27,12,15708) (# 10803)
# 2520: 5-(27,13,92565)
- clan: 11-(30,15,1122), 3 times reduced t, 2 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(26,13,58905) (# 2518) : der= 5-(26,12,33660) and res= 5-(26,13,58905) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,33660) (# 2519) : der= 5-(26,12,33660) and res= 5-(26,13,58905) - the given design is the derived.
# 2521: 5-(28,14,236555)
# 2522: 5-(24,12,14592)
# 2523: 5-(24,12,14598)
# 2524: 5-(24,12,14604)
# 2525: 5-(24,12,14610)
# 2526: 5-(24,12,14616)
# 2527: 5-(24,12,14622)
# 2528: 5-(24,12,14628)
# 2529: 5-(24,12,14634)
# 2530: 5-(24,12,14640)
# 2531: 5-(24,12,14646)
# 2532: 5-(24,12,14652)
# 2533: 5-(24,12,14658)
# 2534: 5-(24,12,14664)
# 2535: 5-(24,12,14670)
# 2536: 5-(24,12,14676)
# 2537: 5-(24,12,14682)
# 2538: 5-(24,12,14688)
# 2539: 5-(24,12,14694)
# 2540: 5-(24,12,14700)
# 2541: 5-(24,12,14712)
# 2542: 5-(24,12,14718)
# 2543: 5-(24,12,14724)
# 2544: 5-(24,12,14730)
# 2545: 5-(24,12,14736)
# 2546: 5-(24,12,14742)
# 2547: 5-(24,12,14748)
# 2548: 5-(24,12,14754)
# 2549: 5-(24,12,14760)
# 2550: 5-(24,12,14766)
# 2551: 5-(24,12,14772)
# 2552: 5-(24,12,14778)
# 2553: 5-(24,12,14784)
# 2554: 5-(24,12,14790)
# 2555: 5-(24,12,14796)
# 2556: 5-(24,12,14802)
# 2557: 5-(24,12,14808)
# 2558: 5-(24,12,14814)
# 2559: 5-(24,12,1482)
# 2560: 5-(25,12,2280)
- clan: 13-(30,15,4), 3 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,12,1482) (# 2559) : der= 5-(24,11,798) and res= 5-(24,12,1482) - the given design is the residual.
# 2561: 5-(26,13,5985)
# 2562: 5-(26,12,3420)
- clan: 13-(30,15,4), 4 times reduced t, 3 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(25,12,2280) (# 2560) : der= 5-(25,11,1140) and res= 5-(25,12,2280) - the given design is the residual.
# 2563: 5-(27,13,9405)
- clan: 13-(30,15,4), 5 times reduced t, 2 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(26,13,5985) (# 2561) : der= 5-(26,12,3420) and res= 5-(26,13,5985) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,3420) (# 2562) : der= 5-(26,12,3420) and res= 5-(26,13,5985) - the given design is the derived.
# 2564: 5-(28,14,24035)
# 2565: 5-(24,12,14820)
- clan: 15-(32,16,5), 2 times reduced t, 4 times derived, 4 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,5460) (# 8802)
-
design 6-(24,12,5460) (# 9176) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,9360) (# 9181) : der= 5-(23,11,5460) and res= 5-(23,12,9360) - the given design is the residual.
-
residual design of 6-(25,12,7980) (# 9184)
-
supplementary design of 6-(24,12,13104) (# 9186) with respect to smaller t
-
derived from 6-(25,13,14820) (# 9199)
-
residual design of supplementary of 6-(25,12,19152) (# 9201)
-
derived from supplementary of 6-(25,13,35568) (# 9202)
# 2566: 5-(24,12,14826)
# 2567: 5-(24,12,14832)
# 2568: 5-(24,12,14838)
# 2569: 5-(24,12,14844)
# 2570: 5-(24,12,14850)
# 2571: 5-(24,12,14856)
# 2572: 5-(24,12,14862)
# 2573: 5-(24,12,14868)
# 2574: 5-(24,12,14874)
# 2575: 5-(24,12,14880)
# 2576: 5-(24,12,14886)
# 2577: 5-(24,12,14892)
# 2578: 5-(24,12,14898)
# 2579: 5-(24,12,14904)
# 2580: 5-(24,12,14910)
# 2581: 5-(24,12,14916)
# 2582: 5-(24,12,14922)
# 2583: 5-(24,12,14928)
# 2584: 5-(24,12,14934)
# 2585: 5-(24,12,14940)
# 2586: 5-(24,12,14946)
# 2587: 5-(24,12,14952)
# 2588: 5-(24,12,14958)
# 2589: 5-(24,12,14964)
- clan: 5-(24,12,14964)
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
\cite{Bluskov}
# 2590: 5-(24,12,14970)
# 2591: 5-(24,12,14976)
# 2592: 5-(24,12,14982)
# 2593: 5-(24,12,14988)
# 2594: 5-(24,12,14994)
# 2595: 5-(24,12,1500)
# 2596: 5-(24,12,1584)
- clan: 5-(24,12,1584)
-
\cite{Harada98} %
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
# 2597: 5-(24,12,1632)
- clan: 5-(24,12,1632)
-
\cite{Harada98} %
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
# 2598: 5-(24,12,15000)
# 2599: 5-(24,12,15006)
created: Fri Oct 23 11:09:51 CEST 2009