t designs with small t, id ge 5600
# 5600: 5-(24,8,376)
- clan: 5-(24,8,376)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5601: 5-(24,8,377)
- clan: 5-(24,8,377)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5602: 5-(24,8,378)
# 5603: 5-(24,8,379)
- clan: 5-(24,8,379)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5604: 5-(24,8,38)
# 5605: 5-(24,8,380)
# 5606: 5-(24,8,381)
# 5607: 5-(24,8,382)
- clan: 5-(24,8,382)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5608: 5-(24,8,383)
- clan: 5-(24,8,383)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5609: 5-(24,8,384)
# 5610: 5-(24,8,385)
- clan: 5-(24,8,385)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5611: 5-(24,8,386)
- clan: 5-(24,8,386)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5612: 5-(24,8,387)
# 5613: 5-(24,8,388)
- clan: 5-(24,8,388)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5614: 5-(24,8,389)
- clan: 5-(24,8,389)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5615: 5-(24,8,39)
# 5616: 5-(24,8,390)
# 5617: 5-(24,8,391)
# 5618: 5-(25,8,460)
# 5619: 5-(24,8,392)
- clan: 5-(24,8,392)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5620: 5-(24,8,393)
# 5621: 5-(24,8,394)
- clan: 5-(24,8,394)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5622: 5-(24,8,395)
- clan: 5-(24,8,395)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5623: 5-(24,8,396)
# 5624: 5-(24,8,397)
- clan: 5-(24,8,397)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5625: 5-(24,8,398)
- clan: 5-(24,8,398)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5626: 5-(24,8,399)
- clan: 15-(32,16,7), 2 times reduced t, 8 times derived
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
design 6-(24,8,63) (# 9846) with respect to smaller t
-
Tran van Trung construction (right) for 5-(23,7,63) (# 9847) : der= 5-(23,7,63) and res= 5-(23,8,336) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(23,8,336) (# 9848) : der= 5-(23,7,63) and res= 5-(23,8,336) - the given design is the residual.
-
supplementary design of 6-(24,8,90) (# 13371) with respect to smaller t
# 5627: 5-(24,8,4)
# 5628: 5-(24,8,40)
# 5629: 5-(24,8,400)
- clan: 5-(24,8,400)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5630: 5-(24,8,401)
- clan: 5-(24,8,401)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5631: 5-(24,8,402)
# 5632: 5-(24,8,403)
- clan: 5-(24,8,403)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5633: 5-(24,8,404)
- clan: 5-(24,8,404)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5634: 5-(24,8,405)
# 5635: 5-(24,8,406)
- clan: 5-(24,8,406)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5636: 5-(24,8,407)
- clan: 5-(24,8,407)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5637: 5-(24,8,408)
# 5638: 5-(25,8,480)
- clan: 17-(36,18,8), 1 times reduced t, 10 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,8,408) (# 5637) : der= 5-(24,7,72) and res= 5-(24,8,408) - the given design is the residual.
-
design 6-(25,8,72) (# 10408) with respect to smaller t
-
derived from 6-(26,9,480) (# 10585)
# 5639: 5-(26,8,560)
- clan: 17-(36,18,8), 2 times reduced t, 10 times derived
-
Tran van Trung construction (left) for 5-(25,8,480) (# 5638) : der= 5-(25,7,80) and res= 5-(25,8,480) - the given design is the residual.
-
$PSL(2,25)$
# 5640: 5-(24,8,409)
- clan: 5-(24,8,409)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5641: 5-(24,8,41)
# 5642: 5-(24,8,410)
- clan: 5-(24,8,410)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5643: 5-(24,8,411)
# 5644: 5-(24,8,412)
- clan: 5-(24,8,412)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5645: 5-(24,8,413)
- clan: 5-(24,8,413)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5646: 5-(24,8,414)
# 5647: 5-(24,8,415)
- clan: 5-(24,8,415)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5648: 5-(24,8,416)
- clan: 5-(24,8,416)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5649: 5-(24,8,417)
# 5650: 5-(24,8,418)
# 5651: 5-(24,8,419)
- clan: 5-(24,8,419)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5652: 5-(24,8,42)
# 5653: 5-(24,8,420)
# 5654: 5-(24,8,421)
- clan: 5-(24,8,421)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5655: 5-(24,8,422)
- clan: 5-(24,8,422)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5656: 5-(24,8,423)
# 5657: 5-(24,8,424)
- clan: 5-(24,8,424)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5658: 5-(24,8,425)
# 5659: 5-(25,8,500)
# 5660: 5-(24,8,426)
# 5661: 5-(24,8,427)
- clan: 5-(24,8,427)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5662: 5-(24,8,428)
- clan: 5-(24,8,428)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5663: 5-(24,8,429)
# 5664: 5-(24,8,43)
# 5665: 5-(24,8,430)
- clan: 5-(24,8,430)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5666: 5-(24,8,431)
- clan: 5-(24,8,431)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5667: 5-(24,8,432)
# 5668: 5-(24,8,433)
- clan: 5-(24,8,433)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5669: 5-(24,8,434)
- clan: 5-(24,8,434)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5670: 5-(24,8,435)
# 5671: 5-(24,8,436)
- clan: 5-(24,8,436)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5672: 5-(24,8,437)
# 5673: 5-(24,8,438)
# 5674: 5-(24,8,439)
- clan: 5-(24,8,439)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5675: 5-(24,8,44)
# 5676: 5-(24,8,440)
- clan: 5-(24,8,440)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5677: 5-(24,8,441)
# 5678: 5-(24,8,442)
# 5679: 5-(25,8,520)
# 5680: 5-(24,8,443)
- clan: 5-(24,8,443)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5681: 5-(24,8,444)
# 5682: 5-(24,8,445)
- clan: 5-(24,8,445)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5683: 5-(24,8,446)
- clan: 5-(24,8,446)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5684: 5-(24,8,447)
# 5685: 5-(24,8,448)
- clan: 5-(24,8,448)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5686: 5-(24,8,449)
- clan: 5-(24,8,449)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5687: 5-(24,8,45)
# 5688: 5-(24,8,450)
# 5689: 5-(24,8,451)
- clan: 5-(24,8,451)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5690: 5-(24,8,452)
- clan: 5-(24,8,452)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5691: 5-(24,8,453)
# 5692: 5-(24,8,454)
- clan: 5-(24,8,454)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5693: 5-(24,8,455)
- clan: 5-(24,8,455)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5694: 5-(24,8,456)
- clan: 15-(32,16,8), 2 times reduced t, 8 times derived
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
design 6-(24,8,72) (# 9851) with respect to smaller t
-
Tran van Trung construction (right) for 5-(23,7,72) (# 9852) : der= 5-(23,7,72) and res= 5-(23,8,384) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(23,8,384) (# 9853) : der= 5-(23,7,72) and res= 5-(23,8,384) - the given design is the residual.
-
supplementary design of 6-(24,8,81) (# 13382) with respect to smaller t
-
derived from 6-(25,9,456) (# 13391)
-
derived from supplementary of 6-(25,9,513) (# 13393)
# 5695: 5-(24,8,457)
- clan: 5-(24,8,457)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5696: 5-(24,8,458)
- clan: 5-(24,8,458)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5697: 5-(24,8,459)
- clan: 17-(36,18,9), 10 times derived, 2 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,8,81) (# 10411)
-
derived from 6-(25,9,459) (# 13782)
-
residual design of supplementary of 6-(25,8,90) (# 13783)
-
derived from supplementary of 6-(25,9,510) (# 13784)
# 5698: 5-(25,8,540)
- clan: 17-(36,18,9), 1 times reduced t, 10 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,8,459) (# 5697) : der= 5-(24,7,81) and res= 5-(24,8,459) - the given design is the residual.
-
design 6-(25,8,81) (# 10411) with respect to smaller t
-
derived from 6-(26,9,540) (# 10588)
-
derived from supplementary of 6-(26,9,600) (# 10594)
-
supplementary design of 6-(25,8,90) (# 13783) with respect to smaller t
# 5699: 5-(26,8,630)
- clan: 17-(36,18,9), 2 times reduced t, 10 times derived
-
Tran van Trung construction (left) for 5-(25,8,540) (# 5698) : der= 5-(25,7,90) and res= 5-(25,8,540) - the given design is the residual.
-
$PSL(2,25)$
-
derived from 6-(27,9,630) (# 15114)
-
derived from supplementary of 6-(27,9,700) (# 15116)
created: Fri Oct 23 11:10:11 CEST 2009