t designs with small t, id ge 2000
# 2000: 5-(24,12,11766)
# 2001: 5-(24,12,11772)
# 2002: 5-(24,12,11778)
# 2003: 5-(25,12,18120)
- clan: 11-(30,15,906), 1 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,12,11778) (# 2002) : der= 5-(24,11,6342) and res= 5-(24,12,11778) - the given design is the residual.
# 2004: 5-(26,13,47565)
# 2005: 5-(26,12,27180)
- clan: 11-(30,15,906), 2 times reduced t, 3 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(25,12,18120) (# 2003) : der= 5-(25,11,9060) and res= 5-(25,12,18120) - the given design is the residual.
# 2006: 5-(27,13,74745)
- clan: 11-(30,15,906), 3 times reduced t, 2 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(26,13,47565) (# 2004) : der= 5-(26,12,27180) and res= 5-(26,13,47565) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,27180) (# 2005) : der= 5-(26,12,27180) and res= 5-(26,13,47565) - the given design is the derived.
# 2007: 5-(28,14,191015)
# 2008: 5-(24,12,11784)
# 2009: 5-(24,12,11790)
# 2010: 5-(24,12,11796)
# 2011: 5-(24,12,11802)
# 2012: 5-(24,12,11808)
# 2013: 5-(24,12,11814)
# 2014: 5-(24,12,11820)
# 2015: 5-(24,12,11826)
# 2016: 5-(24,12,11832)
# 2017: 5-(24,12,11838)
# 2018: 5-(24,12,11844)
# 2019: 5-(24,12,11850)
# 2020: 5-(24,12,11856)
# 2021: 5-(24,12,11862)
# 2022: 5-(24,12,11868)
# 2023: 5-(24,12,11874)
# 2024: 5-(24,12,1188)
# 2025: 5-(24,12,11880)
# 2026: 5-(24,12,11886)
# 2027: 5-(24,12,11892)
# 2028: 5-(24,12,11898)
# 2029: 5-(24,12,11904)
# 2030: 5-(24,12,11910)
# 2031: 5-(24,12,11916)
# 2032: 5-(24,12,11922)
# 2033: 5-(24,12,11928)
# 2034: 5-(24,12,11934)
# 2035: 5-(24,12,11940)
# 2036: 5-(24,12,11946)
# 2037: 5-(24,12,11952)
# 2038: 5-(24,12,11958)
# 2039: 5-(24,12,11964)
# 2040: 5-(24,12,11970)
- clan: 7-(24,12,1470), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,4410) (# 9003)
-
design 6-(24,12,4410) (# 9005) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,7560) (# 9010) : der= 5-(23,11,4410) and res= 5-(23,12,7560) - the given design is the residual.
-
supplementary design of 6-(24,12,14154) (# 9014) with respect to smaller t
# 2041: 5-(24,12,11976)
# 2042: 5-(24,12,11982)
# 2043: 5-(24,12,11988)
# 2044: 5-(24,12,11994)
# 2045: 5-(24,12,12000)
# 2046: 5-(24,12,12006)
# 2047: 5-(24,12,12012)
# 2048: 5-(25,12,18480)
- clan: 13-(32,16,231), 1 times reduced t, 4 times derived, 3 times residual
-
Tran van Trung construction (left) for 5-(24,12,12012) (# 2047) : der= 5-(24,11,6468) and res= 5-(24,12,12012) - the given design is the residual.
# 2049: 5-(26,13,48510)
# 2050: 5-(26,12,27720)
- clan: 13-(32,16,231), 2 times reduced t, 4 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(25,12,18480) (# 2048) : der= 5-(25,11,9240) and res= 5-(25,12,18480) - the given design is the residual.
# 2051: 5-(27,13,76230)
- clan: 13-(32,16,231), 3 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(26,13,48510) (# 2049) : der= 5-(26,12,27720) and res= 5-(26,13,48510) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,27720) (# 2050) : der= 5-(26,12,27720) and res= 5-(26,13,48510) - the given design is the derived.
# 2052: 5-(28,14,194810)
# 2053: 5-(24,12,12018)
# 2054: 5-(24,12,12024)
# 2055: 5-(24,12,12030)
# 2056: 5-(24,12,12036)
# 2057: 5-(24,12,12042)
# 2058: 5-(24,12,12048)
# 2059: 5-(24,12,12054)
# 2060: 5-(24,12,12060)
# 2061: 5-(24,12,12066)
# 2062: 5-(24,12,12072)
# 2063: 5-(24,12,12078)
# 2064: 5-(24,12,12084)
# 2065: 5-(24,12,12090)
# 2066: 5-(24,12,12096)
# 2067: 5-(24,12,12102)
# 2068: 5-(24,12,12108)
# 2069: 5-(24,12,12114)
# 2070: 5-(24,12,12120)
# 2071: 5-(24,12,12126)
# 2072: 5-(24,12,12132)
# 2073: 5-(24,12,12138)
# 2074: 5-(24,12,12144)
# 2075: 5-(24,12,12150)
# 2076: 5-(24,12,12156)
# 2077: 5-(24,12,12162)
# 2078: 5-(24,12,12168)
# 2079: 5-(24,12,12174)
# 2080: 5-(24,12,1218)
# 2081: 5-(24,12,12180)
# 2082: 5-(24,12,12186)
# 2083: 5-(24,12,12192)
# 2084: 5-(24,12,12198)
# 2085: 5-(24,12,12204)
# 2086: 5-(24,12,12210)
# 2087: 5-(24,12,12216)
# 2088: 5-(24,12,12222)
# 2089: 5-(24,12,12228)
# 2090: 5-(24,12,12234)
# 2091: 5-(24,12,12240)
# 2092: 5-(24,12,12246)
# 2093: 5-(24,12,12252)
# 2094: 5-(24,12,12258)
# 2095: 5-(24,12,12264)
# 2096: 5-(24,12,12270)
# 2097: 5-(24,12,12276)
# 2098: 5-(24,12,12282)
# 2099: 5-(24,12,12288)
created: Fri Oct 23 11:09:48 CEST 2009