t designs with small t, id ge 5000
# 5000: 5-(24,12,8814)
# 5001: 5-(24,12,8820)
# 5002: 5-(24,12,8826)
# 5003: 5-(24,12,8832)
# 5004: 5-(24,12,8838)
# 5005: 5-(24,12,8844)
# 5006: 5-(24,12,8850)
# 5007: 5-(24,12,8856)
# 5008: 5-(24,12,8862)
# 5009: 5-(24,12,8868)
# 5010: 5-(24,12,8874)
# 5011: 5-(24,12,888)
# 5012: 5-(24,12,8880)
# 5013: 5-(24,12,8886)
# 5014: 5-(24,12,8898)
# 5015: 5-(24,12,8904)
# 5016: 5-(24,12,8910)
# 5017: 5-(24,12,8916)
# 5018: 5-(24,12,8922)
# 5019: 5-(24,12,8928)
# 5020: 5-(24,12,8934)
# 5021: 5-(24,12,8940)
# 5022: 5-(24,12,8946)
# 5023: 5-(24,12,8952)
# 5024: 5-(24,12,8958)
# 5025: 5-(24,12,8964)
# 5026: 5-(24,12,8970)
# 5027: 5-(24,12,8976)
# 5028: 5-(24,12,8982)
# 5029: 5-(24,12,8988)
# 5030: 5-(24,12,8994)
# 5031: 5-(24,12,9000)
# 5032: 5-(24,12,9006)
# 5033: 5-(24,12,9012)
# 5034: 5-(24,12,9018)
# 5035: 5-(24,12,9024)
# 5036: 5-(24,12,9030)
# 5037: 5-(24,12,9036)
# 5038: 5-(24,12,9042)
# 5039: 5-(24,12,9048)
# 5040: 5-(24,12,9054)
# 5041: 5-(24,12,906)
# 5042: 5-(24,12,9060)
# 5043: 5-(24,12,9066)
# 5044: 5-(24,12,9072)
# 5045: 5-(24,12,9078)
# 5046: 5-(24,12,9084)
# 5047: 5-(24,12,9090)
# 5048: 5-(24,12,9096)
# 5049: 5-(24,12,9102)
# 5050: 5-(24,12,9108)
# 5051: 5-(24,12,9114)
# 5052: 5-(24,12,9120)
# 5053: 5-(24,12,9126)
# 5054: 5-(24,12,9132)
# 5055: 5-(24,12,9138)
# 5056: 5-(24,12,9144)
# 5057: 5-(24,12,9150)
# 5058: 5-(24,12,9156)
# 5059: 5-(24,12,9162)
# 5060: 5-(24,12,9168)
# 5061: 5-(24,12,9174)
# 5062: 5-(24,12,9180)
# 5063: 5-(24,12,9186)
# 5064: 5-(24,12,9192)
# 5065: 5-(24,12,9198)
# 5066: 5-(24,12,9204)
# 5067: 5-(25,12,14160)
- clan: 13-(32,16,177), 1 times reduced t, 4 times derived, 3 times residual
-
Tran van Trung construction (left) for 5-(24,12,9204) (# 5066) : der= 5-(24,11,4956) and res= 5-(24,12,9204) - the given design is the residual.
# 5068: 5-(26,13,37170)
# 5069: 5-(26,12,21240)
- clan: 13-(32,16,177), 2 times reduced t, 4 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(25,12,14160) (# 5067) : der= 5-(25,11,7080) and res= 5-(25,12,14160) - the given design is the residual.
# 5070: 5-(27,13,58410)
- clan: 13-(32,16,177), 3 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(26,13,37170) (# 5068) : der= 5-(26,12,21240) and res= 5-(26,13,37170) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,21240) (# 5069) : der= 5-(26,12,21240) and res= 5-(26,13,37170) - the given design is the derived.
# 5071: 5-(28,14,149270)
# 5072: 5-(24,12,9210)
# 5073: 5-(24,12,9216)
# 5074: 5-(24,12,9222)
# 5075: 5-(24,12,9228)
# 5076: 5-(24,12,9234)
# 5077: 5-(24,12,924)
# 5078: 5-(24,12,9240)
# 5079: 5-(24,12,9246)
# 5080: 5-(24,12,9252)
# 5081: 5-(24,12,9258)
# 5082: 5-(24,12,9264)
# 5083: 5-(24,12,9270)
# 5084: 5-(24,12,9276)
# 5085: 5-(24,12,9282)
# 5086: 5-(24,12,9288)
# 5087: 5-(24,12,9294)
# 5088: 5-(24,12,9300)
# 5089: 5-(24,12,9306)
# 5090: 5-(24,12,9312)
# 5091: 5-(24,12,9318)
# 5092: 5-(24,12,9324)
# 5093: 5-(24,12,9330)
# 5094: 5-(24,12,9336)
# 5095: 5-(24,12,9342)
# 5096: 5-(24,12,9354)
# 5097: 5-(24,12,9360)
# 5098: 5-(24,12,9366)
# 5099: 5-(24,12,9372)
created: Fri Oct 23 11:10:06 CEST 2009