t designs with small t, id ge 1500
# 1500: 5-(24,10,4752)
# 1501: 5-(24,10,4770)
# 1502: 5-(24,10,4788)
# 1503: 5-(24,10,4806)
# 1504: 5-(24,10,4824)
# 1505: 5-(24,10,4842)
# 1506: 5-(24,10,486)
# 1507: 5-(24,10,4860)
# 1508: 5-(24,10,4878)
# 1509: 5-(24,10,4896)
# 1510: 5-(24,10,4914)
# 1511: 5-(24,10,4932)
# 1512: 5-(24,10,4950)
# 1513: 5-(24,10,4968)
# 1514: 5-(24,10,4986)
# 1515: 5-(24,10,5004)
# 1516: 5-(24,10,5022)
# 1517: 5-(24,10,504)
# 1518: 5-(24,10,5040)
# 1519: 5-(24,10,5058)
# 1520: 5-(24,10,5076)
# 1521: 5-(24,10,5094)
# 1522: 5-(24,10,5112)
# 1523: 5-(24,10,5148)
- clan: 13-(32,16,429), 6 times derived, 2 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,10,1716) (# 13620)
-
derived from 6-(25,11,5148) (# 13621)
-
residual design of supplementary of 6-(25,10,2160) (# 13623)
-
derived from supplementary of 6-(25,11,6480) (# 13624)
# 1524: 5-(24,10,5166)
# 1525: 5-(24,10,5184)
- clan: 13-(32,16,432), 6 times derived, 2 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,10,1728) (# 17531)
-
residual design of supplementary of 6-(25,10,2148) (# 17533)
-
derived from 6-(25,11,5184) (# 17534)
-
derived from supplementary of 6-(25,11,6444) (# 17535)
# 1526: 5-(24,10,5202)
# 1527: 5-(24,10,522)
# 1528: 5-(24,10,5220)
# 1529: 5-(24,10,5238)
# 1530: 5-(24,10,5256)
# 1531: 5-(24,10,5274)
# 1532: 5-(24,10,5292)
# 1533: 5-(24,10,5310)
# 1534: 5-(24,10,5328)
# 1535: 5-(24,10,5346)
# 1536: 5-(24,10,5364)
# 1537: 5-(24,10,5382)
# 1538: 5-(24,10,540)
# 1539: 5-(24,10,5400)
# 1540: 5-(24,10,5418)
# 1541: 5-(24,10,5436)
# 1542: 5-(24,10,5454)
# 1543: 5-(24,10,5490)
# 1544: 5-(24,10,5508)
# 1545: 5-(24,10,5526)
# 1546: 5-(24,10,5544)
# 1547: 5-(24,10,5562)
# 1548: 5-(24,10,558)
# 1549: 5-(24,10,5580)
# 1550: 5-(24,10,5598)
# 1551: 5-(24,10,5616)
# 1552: 5-(24,10,5634)
# 1553: 5-(24,10,5652)
# 1554: 5-(24,10,5670)
# 1555: 5-(24,10,5688)
- clan: 13-(32,16,474), 6 times derived, 2 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,10,1896) (# 13664)
-
derived from 6-(25,11,5688) (# 13665)
-
residual design of supplementary of 6-(25,10,1980) (# 13667)
-
derived from supplementary of 6-(25,11,5940) (# 13668)
# 1556: 5-(24,10,5706)
# 1557: 5-(24,10,5724)
# 1558: 5-(24,10,5742)
# 1559: 5-(24,10,576)
# 1560: 5-(24,10,5760)
# 1561: 5-(24,10,5778)
- clan: 11-(30,15,1926), 5 times derived, 1 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,10,1926) (# 13713)
-
derived from 6-(25,11,5778) (# 13714)
-
residual design of supplementary of 6-(25,10,1950) (# 13716)
-
derived from supplementary of 6-(25,11,5850) (# 13717)
# 1562: 5-(24,10,5796)
- clan: 13-(32,16,483), 6 times derived, 2 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
derived from 6-(25,11,5796) (# 13738)
-
derived from supplementary of 6-(25,11,5832) (# 13741)
-
residual design of 6-(25,10,1932) (# 17636)
-
residual design of supplementary of 6-(25,10,1944) (# 17637)
# 1563: 5-(24,10,5814)
- clan: 14-(30,15,8), 3 times reduced t, 5 times derived, 1 times residual
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
$PSL(2,23)$ (many isomorphism types) halving of complete design!
-
Tran van Trung construction (right) for 5-(23,9,1530) (# 8746) : der= 5-(23,9,1530) and res= 5-(23,10,4284) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(23,10,4284) (# 8747) : der= 5-(23,9,1530) and res= 5-(23,10,4284) - the given design is the residual.
-
design 6-(24,10,1530) (# 9785) with respect to smaller t
-
supplementary design of 6-(24,10,1530) (# 9785) with respect to smaller t
-
residual design of 6-(25,10,1938) (# 9786)
-
residual design of supplementary of 6-(25,10,1938) (# 9786)
# 1564: 5-(24,10,594)
# 1565: 5-(24,10,612)
# 1566: 5-(24,10,630)
# 1567: 5-(24,10,648)
# 1568: 5-(24,10,666)
# 1569: 5-(24,10,684)
# 1570: 5-(24,10,702)
# 1571: 5-(24,10,72)
# 1572: 5-(24,10,720)
# 1573: 5-(24,10,738)
# 1574: 5-(24,10,756)
# 1575: 5-(24,10,774)
# 1576: 5-(24,10,792)
# 1577: 5-(24,10,810)
# 1578: 5-(24,10,828)
# 1579: 5-(24,10,846)
# 1580: 5-(24,10,864)
# 1581: 5-(24,10,882)
# 1582: 5-(24,10,90)
# 1583: 5-(24,10,900)
# 1584: 5-(24,10,918)
# 1585: 5-(24,10,936)
# 1586: 5-(24,10,954)
# 1587: 5-(24,10,972)
# 1588: 5-(24,10,990)
# 1589: 5-(24,11,10038)
# 1590: 5-(25,11,14340)
- clan: 11-(30,15,1434), 1 times reduced t, 4 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,11,10038) (# 1589) : der= 5-(24,10,4302) and res= 5-(24,11,10038) - the given design is the residual.
# 1591: 5-(24,11,10164)
# 1592: 5-(25,11,14520)
- clan: 13-(32,16,363), 1 times reduced t, 5 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,11,10164) (# 1591) : der= 5-(24,10,4356) and res= 5-(24,11,10164) - the given design is the residual.
# 1593: 5-(24,11,10500)
# 1594: 5-(25,11,15000)
- clan: 13-(32,16,375), 1 times reduced t, 5 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,11,10500) (# 1593) : der= 5-(24,10,4500) and res= 5-(24,11,10500) - the given design is the residual.
-
residual design of 6-(26,11,6000) (# 14128)
-
residual design of supplementary of 6-(26,11,9504) (# 14131)
# 1595: 5-(24,11,10626)
# 1596: 5-(25,11,15180)
- clan: 11-(30,15,1518), 1 times reduced t, 4 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,11,10626) (# 1595) : der= 5-(24,10,4554) and res= 5-(24,11,10626) - the given design is the residual.
# 1597: 5-(24,11,11424)
# 1598: 5-(25,11,16320)
- clan: 17-(36,18,8), 1 times reduced t, 7 times derived, 4 times residual
-
Tran van Trung construction (left) for 5-(24,11,11424) (# 1597) : der= 5-(24,10,4896) and res= 5-(24,11,11424) - the given design is the residual.
# 1599: 5-(24,11,1260)
created: Fri Oct 23 11:09:44 CEST 2009