t designs with small t, id ge 4300
# 4300: 5-(24,12,24600)
# 4301: 5-(24,12,24606)
# 4302: 5-(24,12,24612)
# 4303: 5-(24,12,24618)
# 4304: 5-(24,12,24624)
# 4305: 5-(24,12,24630)
# 4306: 5-(24,12,24636)
# 4307: 5-(24,12,24642)
# 4308: 5-(24,12,24648)
- clan: 13-(32,16,474), 4 times derived, 4 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,13272) (# 10334)
-
derived from 6-(25,13,24648) (# 10347)
-
residual design of supplementary of 6-(25,12,13860) (# 10349)
-
derived from supplementary of 6-(25,13,25740) (# 10350)
# 4309: 5-(24,12,24654)
# 4310: 5-(24,12,24660)
# 4311: 5-(24,12,24666)
# 4312: 5-(24,12,24672)
# 4313: 5-(24,12,24678)
# 4314: 5-(24,12,24684)
# 4315: 5-(24,12,24690)
# 4316: 5-(24,12,24696)
# 4317: 5-(24,12,24702)
# 4318: 5-(24,12,24708)
# 4319: 5-(24,12,24714)
# 4320: 5-(24,12,2472)
# 4321: 5-(24,12,24720)
# 4322: 5-(24,12,24726)
# 4323: 5-(24,12,24732)
# 4324: 5-(24,12,24738)
- clan: 7-(24,12,3038), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,9114) (# 9688)
-
design 6-(24,12,9114) (# 9690) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,15624) (# 9694) : der= 5-(23,11,9114) and res= 5-(23,12,15624) - the given design is the residual.
-
supplementary design of 6-(24,12,9450) (# 9698) with respect to smaller t
# 4325: 5-(24,12,24744)
# 4326: 5-(24,12,24750)
# 4327: 5-(24,12,24756)
# 4328: 5-(24,12,24762)
# 4329: 5-(24,12,24768)
# 4330: 5-(24,12,24774)
# 4331: 5-(24,12,24780)
# 4332: 5-(24,12,24786)
# 4333: 5-(24,12,24792)
# 4334: 5-(24,12,24798)
# 4335: 5-(24,12,24804)
# 4336: 5-(24,12,24810)
# 4337: 5-(24,12,24816)
# 4338: 5-(24,12,24822)
# 4339: 5-(24,12,24828)
# 4340: 5-(24,12,24834)
# 4341: 5-(24,12,24840)
# 4342: 5-(24,12,24846)
# 4343: 5-(24,12,24852)
# 4344: 5-(24,12,24858)
# 4345: 5-(24,12,24864)
# 4346: 5-(24,12,24870)
# 4347: 5-(24,12,24876)
# 4348: 5-(24,12,24882)
- clan: 11-(30,15,1914), 3 times derived, 3 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,13398) (# 10368)
-
derived from 6-(25,13,24882) (# 10381)
-
residual design of supplementary of 6-(25,12,13734) (# 10383)
-
derived from supplementary of 6-(25,13,25506) (# 10384)
# 4349: 5-(24,12,24888)
# 4350: 5-(24,12,24894)
# 4351: 5-(24,12,2490)
# 4352: 5-(24,12,24900)
# 4353: 5-(24,12,24906)
# 4354: 5-(24,12,24912)
# 4355: 5-(24,12,24918)
# 4356: 5-(24,12,24924)
# 4357: 5-(24,12,24930)
# 4358: 5-(24,12,24936)
# 4359: 5-(24,12,24942)
# 4360: 5-(24,12,24948)
# 4361: 5-(24,12,24954)
# 4362: 5-(24,12,24960)
# 4363: 5-(24,12,24966)
# 4364: 5-(24,12,24972)
# 4365: 5-(24,12,24978)
# 4366: 5-(24,12,24984)
# 4367: 5-(24,12,24990)
# 4368: 5-(24,12,24996)
# 4369: 5-(24,12,25002)
# 4370: 5-(24,12,25008)
# 4371: 5-(24,12,25014)
# 4372: 5-(24,12,25020)
# 4373: 5-(24,12,25026)
# 4374: 5-(24,12,25032)
# 4375: 5-(24,12,25038)
# 4376: 5-(24,12,25044)
# 4377: 5-(24,12,25050)
# 4378: 5-(24,12,25056)
# 4379: 5-(24,12,25062)
# 4380: 5-(24,12,25068)
# 4381: 5-(24,12,25074)
# 4382: 5-(24,12,25080)
- clan: 7-(24,12,3080), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,9240) (# 9705)
-
design 6-(24,12,9240) (# 9707) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,15840) (# 9711) : der= 5-(23,11,9240) and res= 5-(23,12,15840) - the given design is the residual.
-
supplementary design of 6-(24,12,9324) (# 9715) with respect to smaller t
# 4383: 5-(24,12,25086)
# 4384: 5-(24,12,25092)
# 4385: 5-(24,12,25098)
# 4386: 5-(24,12,25104)
# 4387: 5-(24,12,25110)
# 4388: 5-(24,12,25116)
- clan: 13-(32,16,483), 4 times derived, 4 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,13524) (# 13739)
-
residual design of supplementary of 6-(25,12,13608) (# 13742)
-
derived from 6-(25,13,25116) (# 13757)
-
derived from supplementary of 6-(25,13,25272) (# 13758)
# 4389: 5-(24,12,25122)
# 4390: 5-(24,12,25128)
# 4391: 5-(24,12,25134)
# 4392: 5-(24,12,25140)
# 4393: 5-(24,12,25146)
# 4394: 5-(24,12,25152)
# 4395: 5-(24,12,25158)
# 4396: 5-(24,12,25164)
# 4397: 5-(24,12,25170)
# 4398: 5-(24,12,25176)
# 4399: 5-(24,12,25182)
created: Fri Oct 23 11:10:02 CEST 2009