t designs with small t, id ge 5300
# 5300: 5-(24,8,124)
- clan: 5-(24,8,124)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5301: 5-(24,8,125)
- clan: 5-(24,8,125)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5302: 5-(24,8,126)
# 5303: 5-(24,8,127)
- clan: 5-(24,8,127)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5304: 5-(24,8,128)
- clan: 5-(24,8,128)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
-
\cite{Driessen78} $M_{24}$ 1 isomorphism type
# 5305: 5-(24,8,129)
# 5306: 5-(24,8,130)
- clan: 5-(24,8,130)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5307: 5-(24,8,131)
- clan: 5-(24,8,131)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5308: 5-(24,8,132)
# 5309: 5-(24,8,133)
# 5310: 5-(24,8,134)
- clan: 5-(24,8,134)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5311: 5-(24,8,135)
# 5312: 5-(24,8,136)
# 5313: 5-(25,8,160)
# 5314: 5-(24,8,137)
- clan: 5-(24,8,137)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5315: 5-(24,8,138)
# 5316: 5-(24,8,139)
- clan: 5-(24,8,139)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5317: 5-(24,8,140)
# 5318: 5-(24,8,141)
# 5319: 5-(24,8,142)
- clan: 5-(24,8,142)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5320: 5-(24,8,143)
- clan: 5-(24,8,143)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5321: 5-(24,8,144)
# 5322: 5-(24,8,145)
- clan: 5-(24,8,145)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5323: 5-(24,8,146)
- clan: 5-(24,8,146)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5324: 5-(24,8,147)
# 5325: 5-(24,8,148)
- clan: 5-(24,8,148)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5326: 5-(24,8,149)
- clan: 5-(24,8,149)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5327: 5-(24,8,150)
# 5328: 5-(24,8,151)
- clan: 5-(24,8,151)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5329: 5-(24,8,152)
# 5330: 5-(24,8,153)
# 5331: 5-(25,8,180)
- clan: 17-(36,18,3), 1 times reduced t, 10 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,8,153) (# 5330) : der= 5-(24,7,27) and res= 5-(24,8,153) - the given design is the residual.
-
derived from 6-(26,9,180) (# 10568)
# 5332: 5-(26,8,210)
- clan: 17-(36,18,3), 2 times reduced t, 10 times derived
-
Tran van Trung construction (left) for 5-(25,8,180) (# 5331) : der= 5-(25,7,30) and res= 5-(25,8,180) - the given design is the residual.
-
$PSL(2,25)$
# 5333: 5-(24,8,154)
- clan: 5-(24,8,154)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5334: 5-(24,8,155)
- clan: 5-(24,8,155)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5335: 5-(24,8,156)
# 5336: 5-(24,8,157)
- clan: 5-(24,8,157)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5337: 5-(24,8,158)
- clan: 5-(24,8,158)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5338: 5-(24,8,159)
# 5339: 5-(24,8,16)
# 5340: 5-(24,8,160)
# 5341: 5-(24,8,161)
- clan: 5-(24,8,161)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5342: 5-(24,8,162)
# 5343: 5-(24,8,163)
- clan: 5-(24,8,163)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5344: 5-(24,8,164)
# 5345: 5-(24,8,165)
# 5346: 5-(24,8,166)
- clan: 5-(24,8,166)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5347: 5-(24,8,167)
- clan: 5-(24,8,167)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5348: 5-(24,8,168)
# 5349: 5-(24,8,169)
- clan: 5-(24,8,169)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5350: 5-(24,8,17)
# 5351: 5-(25,8,20)
# 5352: 5-(24,8,170)
# 5353: 5-(25,8,200)
# 5354: 5-(24,8,171)
# 5355: 5-(24,8,172)
- clan: 5-(24,8,172)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5356: 5-(24,8,173)
- clan: 5-(24,8,173)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5357: 5-(24,8,174)
# 5358: 5-(24,8,175)
- clan: 5-(24,8,175)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5359: 5-(24,8,176)
# 5360: 5-(24,8,177)
# 5361: 5-(24,8,178)
- clan: 5-(24,8,178)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5362: 5-(24,8,179)
- clan: 5-(24,8,179)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5363: 5-(24,8,18)
# 5364: 5-(24,8,180)
# 5365: 5-(24,8,181)
- clan: 5-(24,8,181)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5366: 5-(24,8,182)
- clan: 5-(24,8,182)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5367: 5-(24,8,183)
# 5368: 5-(24,8,184)
# 5369: 5-(24,8,185)
- clan: 5-(24,8,185)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5370: 5-(24,8,186)
# 5371: 5-(24,8,187)
# 5372: 5-(25,8,220)
# 5373: 5-(24,8,188)
- clan: 5-(24,8,188)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5374: 5-(24,8,189)
# 5375: 5-(24,8,19)
# 5376: 5-(24,8,190)
# 5377: 5-(24,8,191)
- clan: 5-(24,8,191)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5378: 5-(24,8,192)
# 5379: 5-(24,8,193)
- clan: 5-(24,8,193)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5380: 5-(24,8,194)
- clan: 5-(24,8,194)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5381: 5-(24,8,195)
# 5382: 5-(24,8,196)
- clan: 5-(24,8,196)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5383: 5-(24,8,197)
- clan: 5-(24,8,197)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5384: 5-(24,8,198)
# 5385: 5-(24,8,199)
- clan: 5-(24,8,199)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5386: 5-(24,8,2)
- clan: 5-(24,8,2)
-
\cite{KramerMagliveras74}
-
\cite{AssmusMattson66a} $PGL(2,23))$
# 5387: 5-(24,8,20)
# 5388: 5-(24,8,200)
# 5389: 5-(24,8,201)
# 5390: 5-(24,8,202)
- clan: 5-(24,8,202)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5391: 5-(24,8,203)
- clan: 5-(24,8,203)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5392: 5-(24,8,204)
# 5393: 5-(25,8,240)
- clan: 17-(36,18,4), 1 times reduced t, 10 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(24,8,204) (# 5392) : der= 5-(24,7,36) and res= 5-(24,8,204) - the given design is the residual.
-
design 6-(25,8,36) (# 10396) with respect to smaller t
-
derived from 6-(26,9,240) (# 10429)
-
derived from supplementary of 6-(26,9,900) (# 13788)
# 5394: 5-(26,8,280)
- clan: 17-(36,18,4), 2 times reduced t, 10 times derived
-
Tran van Trung construction (left) for 5-(25,8,240) (# 5393) : der= 5-(25,7,40) and res= 5-(25,8,240) - the given design is the residual.
-
derived from 6-(27,9,280) (# 11614)
# 5395: 5-(24,8,205)
- clan: 5-(24,8,205)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5396: 5-(24,8,206)
- clan: 5-(24,8,206)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5397: 5-(24,8,207)
# 5398: 5-(24,8,208)
- clan: 5-(24,8,208)
-
$ {\bf PSL(2,23)} \geq 1$ % -group 3 PSL 2 23 PSL_2_23
# 5399: 5-(24,8,209)
created: Fri Oct 23 11:10:08 CEST 2009