t designs with small t, id ge 3400
# 3400: 5-(24,12,19434)
# 3401: 5-(24,12,1944)
# 3402: 5-(24,12,19440)
# 3403: 5-(24,12,19446)
# 3404: 5-(24,12,19452)
# 3405: 5-(24,12,19458)
# 3406: 5-(24,12,19464)
# 3407: 5-(24,12,19470)
# 3408: 5-(24,12,19476)
# 3409: 5-(24,12,19482)
# 3410: 5-(24,12,19488)
# 3411: 5-(24,12,19494)
# 3412: 5-(24,12,19500)
- clan: 13-(32,16,375), 4 times derived, 4 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,10500) (# 10012)
-
derived from 6-(25,13,19500) (# 10021)
-
residual design of supplementary of 6-(25,12,16632) (# 10023)
-
derived from supplementary of 6-(25,13,30888) (# 10024)
# 3413: 5-(25,12,30000)
- clan: 13-(32,16,375), 1 times reduced t, 4 times derived, 3 times residual
-
Tran van Trung construction (left) for 5-(24,12,19500) (# 3412) : der= 5-(24,11,10500) and res= 5-(24,12,19500) - the given design is the residual.
-
design 6-(25,12,10500) (# 10012) with respect to smaller t
-
derived from 6-(26,13,30000) (# 10013)
-
derived from supplementary of 6-(26,13,47520) (# 10022)
-
supplementary design of 6-(25,12,16632) (# 10023) with respect to smaller t
# 3414: 5-(26,13,78750)
- clan: 13-(32,16,375), 2 times reduced t, 3 times derived, 3 times residual
-
Tran van Trung construction with complementary design for 5-(25,12,30000) (# 3413)
-
design 6-(26,13,30000) (# 10013) with respect to smaller t
-
Tran van Trung construction (left) for 5-(25,13,48750) (# 10018) : der= 5-(25,12,30000) and res= 5-(25,13,48750) - the given design is the residual.
-
supplementary design of 6-(26,13,47520) (# 10022) with respect to smaller t
# 3415: 5-(26,12,45000)
- clan: 13-(32,16,375), 2 times reduced t, 4 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(25,12,30000) (# 3413) : der= 5-(25,11,15000) and res= 5-(25,12,30000) - the given design is the residual.
# 3416: 5-(27,13,123750)
- clan: 13-(32,16,375), 3 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(26,13,78750) (# 3414) : der= 5-(26,12,45000) and res= 5-(26,13,78750) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,45000) (# 3415) : der= 5-(26,12,45000) and res= 5-(26,13,78750) - the given design is the derived.
# 3417: 5-(28,14,316250)
# 3418: 5-(24,12,19506)
# 3419: 5-(24,12,19512)
# 3420: 5-(24,12,19518)
# 3421: 5-(24,12,19524)
# 3422: 5-(24,12,19530)
# 3423: 5-(24,12,19536)
# 3424: 5-(24,12,19542)
# 3425: 5-(24,12,19548)
# 3426: 5-(24,12,19554)
# 3427: 5-(24,12,19560)
# 3428: 5-(24,12,19566)
# 3429: 5-(24,12,19572)
# 3430: 5-(24,12,19578)
# 3431: 5-(24,12,19584)
# 3432: 5-(24,12,19590)
# 3433: 5-(24,12,19596)
# 3434: 5-(24,12,19602)
# 3435: 5-(24,12,19608)
- clan: 7-(24,12,2408), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,7224) (# 9463)
-
design 6-(24,12,7224) (# 9465) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,12384) (# 9470) : der= 5-(23,11,7224) and res= 5-(23,12,12384) - the given design is the residual.
-
supplementary design of 6-(24,12,11340) (# 9474) with respect to smaller t
# 3436: 5-(24,12,19614)
# 3437: 5-(24,12,1962)
# 3438: 5-(24,12,19620)
# 3439: 5-(24,12,19626)
# 3440: 5-(24,12,19632)
# 3441: 5-(24,12,19638)
# 3442: 5-(24,12,19644)
# 3443: 5-(24,12,19650)
# 3444: 5-(24,12,19656)
# 3445: 5-(24,12,19662)
# 3446: 5-(24,12,19668)
# 3447: 5-(24,12,19674)
# 3448: 5-(24,12,19680)
# 3449: 5-(24,12,19686)
# 3450: 5-(24,12,19692)
# 3451: 5-(24,12,19698)
# 3452: 5-(24,12,19704)
# 3453: 5-(24,12,19710)
# 3454: 5-(24,12,19716)
# 3455: 5-(24,12,19722)
# 3456: 5-(24,12,19728)
# 3457: 5-(24,12,19734)
- clan: 11-(30,15,1518), 3 times derived, 3 times residual
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
residual design of 6-(25,12,10626) (# 10028)
-
derived from 6-(25,13,19734) (# 10037)
-
residual design of supplementary of 6-(25,12,16506) (# 10039)
-
derived from supplementary of 6-(25,13,30654) (# 10040)
# 3458: 5-(25,12,30360)
- clan: 11-(30,15,1518), 1 times reduced t, 3 times derived, 2 times residual
-
Tran van Trung construction (left) for 5-(24,12,19734) (# 3457) : der= 5-(24,11,10626) and res= 5-(24,12,19734) - the given design is the residual.
-
design 6-(25,12,10626) (# 10028) with respect to smaller t
-
derived from 6-(26,13,30360) (# 10029)
-
derived from supplementary of 6-(26,13,47160) (# 10038)
-
supplementary design of 6-(25,12,16506) (# 10039) with respect to smaller t
# 3459: 5-(26,13,79695)
- clan: 11-(30,15,1518), 2 times reduced t, 2 times derived, 2 times residual
-
Tran van Trung construction with complementary design for 5-(25,12,30360) (# 3458)
-
design 6-(26,13,30360) (# 10029) with respect to smaller t
-
Tran van Trung construction (left) for 5-(25,13,49335) (# 10034) : der= 5-(25,12,30360) and res= 5-(25,13,49335) - the given design is the residual.
-
supplementary design of 6-(26,13,47160) (# 10038) with respect to smaller t
# 3460: 5-(26,12,45540)
- clan: 11-(30,15,1518), 2 times reduced t, 3 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(25,12,30360) (# 3458) : der= 5-(25,11,15180) and res= 5-(25,12,30360) - the given design is the residual.
# 3461: 5-(27,13,125235)
- clan: 11-(30,15,1518), 3 times reduced t, 2 times derived, 1 times residual
-
Tran van Trung construction (left) for 5-(26,13,79695) (# 3459) : der= 5-(26,12,45540) and res= 5-(26,13,79695) - the given design is the residual.
-
Tran van Trung construction (right) for 5-(26,12,45540) (# 3460) : der= 5-(26,12,45540) and res= 5-(26,13,79695) - the given design is the derived.
# 3462: 5-(28,14,320045)
# 3463: 5-(24,12,19740)
# 3464: 5-(24,12,19746)
# 3465: 5-(24,12,19752)
# 3466: 5-(24,12,19758)
# 3467: 5-(24,12,19764)
# 3468: 5-(24,12,19770)
# 3469: 5-(24,12,19776)
# 3470: 5-(24,12,19782)
# 3471: 5-(24,12,19788)
# 3472: 5-(24,12,19794)
# 3473: 5-(24,12,198)
# 3474: 5-(24,12,1980)
# 3475: 5-(24,12,19800)
# 3476: 5-(24,12,19806)
# 3477: 5-(24,12,19812)
# 3478: 5-(24,12,19818)
# 3479: 5-(24,12,19824)
# 3480: 5-(24,12,19830)
# 3481: 5-(24,12,19842)
# 3482: 5-(24,12,19848)
# 3483: 5-(24,12,19854)
# 3484: 5-(24,12,19860)
# 3485: 5-(24,12,19866)
# 3486: 5-(24,12,19872)
# 3487: 5-(24,12,19878)
# 3488: 5-(24,12,19884)
# 3489: 5-(24,12,19890)
# 3490: 5-(24,12,19896)
# 3491: 5-(24,12,19902)
# 3492: 5-(24,12,19908)
# 3493: 5-(24,12,19914)
# 3494: 5-(24,12,19920)
# 3495: 5-(24,12,19926)
# 3496: 5-(24,12,19932)
# 3497: 5-(24,12,19938)
# 3498: 5-(24,12,19944)
# 3499: 5-(24,12,19950)
- clan: 7-(24,12,2450), 2 times reduced t
-
$ PSL(2,23) $ % -group 3 PSL 2 23 PSL_2_23
-
Tran van Trung construction with complementary design for 5-(23,11,7350) (# 9481)
-
design 6-(24,12,7350) (# 9483) with respect to smaller t
-
Tran van Trung construction (left) for 5-(23,12,12600) (# 9488) : der= 5-(23,11,7350) and res= 5-(23,12,12600) - the given design is the residual.
-
supplementary design of 6-(24,12,11214) (# 9492) with respect to smaller t
created: Fri Oct 23 11:09:56 CEST 2009