t designs with small t, id ge 300
# 300: 5-(22,11,6160)
- clan: 7-(24,12,3080), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6160) (# 299)
-
residual design of 6-(23,11,3080) (# 9704)
-
derived from 6-(23,12,6160) (# 9714)
-
residual design of supplementary of 6-(23,11,3108) (# 9716)
-
derived from supplementary of 6-(23,12,6216) (# 9717)
# 301: 4-(21,10,6188)
# 302: 5-(22,11,6188)
- clan: 14-(30,15,8), 1 times reduced t, 4 times derived, 4 times residual
-
Alltop construction for design 4-(21,10,6188) (# 301)
-
Tran van Trung construction with complementary design for 5-(21,10,2184) (# 955)
-
Tran van Trung construction (right) for 5-(21,10,2184) (# 955) : der= 5-(21,10,2184) and res= 5-(21,11,4004) - the given design is the derived.
-
design 6-(22,11,2184) (# 956) with respect to smaller t
-
supplementary design of 6-(22,11,2184) (# 956) with respect to smaller t
-
Tran van Trung construction (left) for 5-(21,11,4004) (# 957) : der= 5-(21,10,2184) and res= 5-(21,11,4004) - the given design is the residual.
# 303: 4-(21,10,6216)
# 304: 5-(22,11,6216)
- clan: 7-(24,12,3108), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6216) (# 303)
-
residual design of supplementary of 6-(23,11,3080) (# 9704)
-
derived from supplementary of 6-(23,12,6160) (# 9714)
-
residual design of 6-(23,11,3108) (# 9716)
-
derived from 6-(23,12,6216) (# 9717)
# 305: 4-(21,10,6244)
# 306: 5-(22,11,6244)
# 307: 4-(21,10,6272)
# 308: 5-(22,11,6272)
# 309: 4-(21,10,6300)
# 310: 5-(22,11,6300)
- clan: 7-(24,12,3150), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6300) (# 309)
-
residual design of supplementary of 6-(23,11,3038) (# 9687)
-
derived from supplementary of 6-(23,12,6076) (# 9697)
-
residual design of 6-(23,11,3150) (# 9699)
-
derived from 6-(23,12,6300) (# 9700)
# 311: 4-(21,10,6328)
# 312: 5-(22,11,6328)
# 313: 4-(21,10,6356)
# 314: 5-(22,11,6356)
# 315: 4-(21,10,6384)
# 316: 5-(22,11,6384)
# 317: 4-(21,10,6412)
# 318: 5-(22,11,6412)
- clan: 7-(24,12,3206), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6412) (# 317)
-
residual design of supplementary of 6-(23,11,2982) (# 9670)
-
derived from supplementary of 6-(23,12,5964) (# 9680)
-
residual design of 6-(23,11,3206) (# 9682)
-
derived from 6-(23,12,6412) (# 9683)
# 319: 4-(21,10,6496)
# 320: 5-(22,11,6496)
# 321: 4-(21,10,6552)
# 322: 5-(22,11,6552)
- clan: 15-(32,16,9), 5 times derived, 5 times residual
-
Alltop construction for design 4-(21,10,6552) (# 321)
-
$PSL(3,4)+$
-
residual design of supplementary of 6-(23,11,2912) (# 9645)
-
derived from supplementary of 6-(23,12,5824) (# 9652)
-
residual design of 6-(23,11,3276) (# 9654)
-
derived from 6-(23,12,6552) (# 9655)
# 323: 4-(21,10,6580)
# 324: 5-(22,11,6580)
- clan: 7-(24,12,3290), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6580) (# 323)
-
residual design of supplementary of 6-(23,11,2898) (# 9630)
-
derived from supplementary of 6-(23,12,5796) (# 9638)
-
residual design of 6-(23,11,3290) (# 9640)
-
derived from 6-(23,12,6580) (# 9641)
# 325: 4-(21,10,6636)
# 326: 5-(22,11,6636)
# 327: 4-(21,10,6664)
# 328: 5-(22,11,6664)
- clan: 11-(24,12,7), 4 times reduced t, 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6664) (# 327)
-
Tran van Trung construction with complementary design for 5-(21,10,2352) (# 958)
-
Tran van Trung construction (right) for 5-(21,10,2352) (# 958) : der= 5-(21,10,2352) and res= 5-(21,11,4312) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(21,11,4312) (# 959) : der= 5-(21,10,2352) and res= 5-(21,11,4312) - the given design is the residual.
-
supplementary design of 6-(22,11,2016) (# 8713) with respect to smaller t
-
residual design of supplementary of 6-(23,11,2856) (# 8714)
-
derived from supplementary of 6-(23,12,5712) (# 8719)
-
residual design of 6-(23,11,3332) (# 8721)
-
derived from 6-(23,12,6664) (# 8722)
-
design 6-(22,11,2352) (# 13140) with respect to smaller t
# 329: 4-(21,10,672)
# 330: 5-(22,11,672)
- clan: 7-(24,12,336), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,672) (# 329)
-
$PSL(3,4)+$ 9 isomorphism types, Alltop construction from 4-(21,10,672)
-
\cite{Kreher95} $PGL(2,19)++$ 1 isomorphism type
# 331: 4-(21,10,6720)
# 332: 5-(22,11,6720)
# 333: 4-(21,10,6804)
# 334: 5-(22,11,6804)
- clan: 7-(24,12,3402), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6804) (# 333)
-
residual design of supplementary of 6-(23,11,2786) (# 9613)
-
derived from supplementary of 6-(23,12,5572) (# 9623)
-
residual design of 6-(23,11,3402) (# 9625)
-
derived from 6-(23,12,6804) (# 9626)
# 335: 4-(21,10,6832)
# 336: 5-(22,11,6832)
- clan: 7-(24,12,3416), 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,6832) (# 335)
-
$PSL(3,4)+$
-
residual design of supplementary of 6-(23,11,2772) (# 9598)
-
derived from supplementary of 6-(23,12,5544) (# 9606)
-
residual design of 6-(23,11,3416) (# 9608)
-
derived from 6-(23,12,6832) (# 9609)
# 337: 4-(21,10,700)
# 338: 5-(22,11,700)
# 339: 4-(21,10,756)
# 340: 5-(22,11,756)
# 341: 4-(21,10,784)
# 342: 5-(22,11,784)
# 343: 4-(21,10,840)
# 344: 5-(22,11,840)
# 345: 4-(21,10,924)
# 346: 5-(22,11,924)
# 347: 4-(21,10,952)
# 348: 5-(22,11,952)
- clan: 11-(24,12,1), 4 times reduced t, 1 times derived, 1 times residual
-
Alltop construction for design 4-(21,10,952) (# 347)
-
Tran van Trung construction with complementary design for 5-(21,10,336) (# 946)
-
Tran van Trung construction (right) for 5-(21,10,336) (# 946) : der= 5-(21,10,336) and res= 5-(21,11,616) - the given design is the derived.
-
Tran van Trung construction (left) for 5-(21,11,616) (# 948) : der= 5-(21,10,336) and res= 5-(21,11,616) - the given design is the residual.
-
$PGL(2,19)++$ 439 solutions
-
$PSL(3,4)+$ 9 isomorphism types
-
\cite{Kreher95}
# 349: 4-(21,5,2)
# 350: 4-(21,5,3)
# 351: 4-(21,5,4)
# 352: 4-(21,5,5)
# 353: 4-(21,5,6)
# 354: 4-(21,5,8)
# 355: 4-(21,6,10)
# 356: 4-(21,6,12)
# 357: 4-(21,6,16)
# 358: 4-(21,6,18)
# 359: 4-(21,6,22)
# 360: 4-(21,6,24)
# 361: 4-(21,6,28)
# 362: 4-(21,6,30)
# 363: 4-(21,6,34)
# 364: 4-(21,6,36)
# 365: 4-(21,6,40)
# 366: 4-(21,6,42)
# 367: 4-(21,6,46)
# 368: 4-(21,6,54)
# 369: 4-(21,6,60)
# 370: 4-(21,6,64)
# 371: 4-(21,6,66)
# 372: 4-(21,9,1820)
# 373: 4-(21,9,2156)
# 374: 4-(21,9,2688)
# 375: 4-(21,9,3024)
# 376: 4-(21,9,3164)
# 377: 4-(21,9,4032)
# 378: 4-(22,6,24)
# 379: 4-(22,6,27)
# 380: 4-(22,6,36)
# 381: 4-(22,6,39)
# 382: 4-(22,6,42)
# 383: 4-(22,6,45)
# 384: 4-(22,6,48)
# 385: 4-(22,6,54)
# 386: 4-(22,6,57)
# 387: 4-(22,6,63)
# 388: 4-(22,6,66)
# 389: 4-(22,6,72)
# 390: 4-(25,6,30)
# 391: 4-(25,6,60)
# 392: 4-(25,7,140)
# 393: 4-(25,7,210)
# 394: 4-(26,5,10)
# 395: 4-(26,5,12)
# 396: 4-(26,5,4)
# 397: 4-(30,5,8)
# 398: 4-(30,6,15)
# 399: 4-(33,8,10500)
created: Fri Oct 23 11:09:29 CEST 2009