design clan: 10_36_12
10-(36,12,m*5), 1 <= m <= 32; (24/182) lambda_max=325, lambda_max_half=162
the clan contains 24 families:
- family 0, lambda = 5 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 1, lambda = 10 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 2, lambda = 15 containing 1 designs:
minpath=(0, 6, 0) minimal_t=4
- family 3, lambda = 20 containing 4 designs:
minpath=(1, 3, 0) minimal_t=5
- family 4, lambda = 30 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 5, lambda = 35 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 6, lambda = 40 containing 7 designs:
minpath=(1, 2, 0) minimal_t=5
-
7-(34,10,360)
-
6-(34,10,2520) (#12719) 6-(33,10,2160)
6-(33,9,360) (#12571)
-
5-(34,10,14616) (#12720) 5-(33,10,12096) (#12721) 5-(32,10,9936)
5-(33,9,2520) (#12572) 5-(32,9,2160) (#12573)
5-(32,8,360) (#8261)
- family 7, lambda = 45 containing 7 designs:
minpath=(1, 2, 0) minimal_t=5
-
7-(34,10,405)
-
6-(34,10,2835) (#12724) 6-(33,10,2430)
6-(33,9,405) (#12577)
-
5-(34,10,16443) (#12725) 5-(33,10,13608) (#12726) 5-(32,10,11178)
5-(33,9,2835) (#12578) 5-(32,9,2430) (#12579)
5-(32,8,405) (#8271)
- family 8, lambda = 55 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 9, lambda = 60 containing 13 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,60)
-
7-(34,10,540) 7-(33,10,480)
7-(33,9,60) (#16283)
-
6-(34,10,3780) (#12747) 6-(33,10,3240) 6-(32,10,2760)
6-(33,9,540) (#12601) 6-(32,9,480) (#16285)
6-(32,8,60) (#16284)
-
5-(34,10,21924) (#12748) 5-(33,10,18144) (#12749) 5-(32,10,14904) 5-(31,10,12144)
5-(33,9,3780) (#12602) 5-(32,9,3240) (#12603) 5-(31,9,2760) (#16293)
5-(32,8,540) (#8299) 5-(31,8,480) (#16290)
5-(31,7,60) (#16289)
- family 10, lambda = 70 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 11, lambda = 80 containing 16 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,80)
-
7-(34,10,720) (#16374) 7-(33,10,640)
7-(33,9,80) (#16307)
-
6-(34,10,5040) (#12772) 6-(33,10,4320) (#16375) 6-(32,10,3680)
6-(33,9,720) (#12636) 6-(32,9,640) (#16309)
6-(32,8,80) (#16308)
-
5-(34,10,29232) (#12773) 5-(33,10,24192) (#12774) 5-(32,10,19872) (#16378) 5-(31,10,16192)
5-(33,9,5040) (#12637) 5-(32,9,4320) (#12638) 5-(31,9,3680) (#16317)
5-(32,8,720) (#8341) 5-(31,8,640) (#16314)
5-(31,7,80) (#16313)
- family 12, lambda = 85 containing 13 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,85)
-
7-(34,10,765) 7-(33,10,680)
7-(33,9,85) (#16319)
-
6-(34,10,5355) (#12793) 6-(33,10,4590) 6-(32,10,3910)
6-(33,9,765) (#12642) 6-(32,9,680) (#16321)
6-(32,8,85) (#16320)
-
5-(34,10,31059) (#12794) 5-(33,10,25704) (#12795) 5-(32,10,21114) 5-(31,10,17204)
5-(33,9,5355) (#12643) 5-(32,9,4590) (#12644) 5-(31,9,3910) (#16329)
5-(32,8,765) (#8351) 5-(31,8,680) (#16326)
5-(31,7,85) (#16325)
- family 13, lambda = 90 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,90)
-
7-(34,10,810) 7-(33,10,720) (#16137)
7-(33,9,90)
-
6-(34,10,5670) (#12810) 6-(33,10,4860) (#16138) 6-(32,10,4140) (#16140)
6-(33,9,810) 6-(32,9,720) (#16139)
6-(32,8,90)
-
5-(34,10,32886) (#12811) 5-(33,10,27216) (#12813) 5-(32,10,22356) (#16145) 5-(31,10,18216) (#16152)
5-(33,9,5670) (#12812) 5-(32,9,4860) (#16144) 5-(31,9,4140) (#16149)
5-(32,8,810) (#8361) 5-(31,8,720) (#16148)
5-(31,7,90)
- family 14, lambda = 95 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 15, lambda = 105 containing 19 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,105)
-
7-(34,10,945) (#16223) 7-(33,10,840) (#16154)
7-(33,9,105) (#16219)
-
6-(34,10,6615) (#12822) 6-(33,10,5670) (#16155) 6-(32,10,4830) (#16157)
6-(33,9,945) (#12679) 6-(32,9,840) (#16156)
6-(32,8,105) (#16220)
-
5-(34,10,38367) (#12823) 5-(33,10,31752) (#12824) 5-(32,10,26082) (#16161) 5-(31,10,21252) (#16167)
5-(33,9,6615) (#12680) 5-(32,9,5670) (#12681) 5-(31,9,4830) (#16164)
5-(32,8,945) (#8391) 5-(31,8,840) (#16163)
5-(31,7,105) (#16224)
- family 16, lambda = 110 containing 13 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,110)
-
7-(34,10,990) 7-(33,10,880) (#16169)
7-(33,9,110)
-
6-(34,10,6930) 6-(33,10,5940) (#16170) 6-(32,10,5060) (#16172)
6-(33,9,990) 6-(32,9,880) (#16171)
6-(32,8,110)
-
5-(34,10,40194) (#16189) 5-(33,10,33264) (#16176) 5-(32,10,27324) (#16178) 5-(31,10,22264) (#16186)
5-(33,9,6930) (#16188) 5-(32,9,5940) (#16177) 5-(31,9,5060) (#16183)
5-(32,8,990) (#8400) 5-(31,8,880) (#16182)
5-(31,7,110)
- family 17, lambda = 115 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 18, lambda = 120 containing 16 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,120)
-
7-(34,10,1080) (#16495) 7-(33,10,960)
7-(33,9,120) (#16227)
-
6-(34,10,7560) (#12827) 6-(33,10,6480) (#16496) 6-(32,10,5520)
6-(33,9,1080) (#12437) 6-(32,9,960) (#16229)
6-(32,8,120) (#16228)
-
5-(34,10,43848) (#12828) 5-(33,10,36288) (#12829) 5-(32,10,29808) (#16499) 5-(31,10,24288)
5-(33,9,7560) (#12438) 5-(32,9,6480) (#12439) 5-(31,9,5520) (#16237)
5-(32,8,1080) (#8420) 5-(31,8,960) (#16234)
5-(31,7,120) (#16233)
- family 19, lambda = 135 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 20, lambda = 140 containing 16 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,140)
-
7-(34,10,1260) (#16553) 7-(33,10,1120)
7-(33,9,140) (#16247)
-
6-(34,10,8820) (#12832) 6-(33,10,7560) (#16554) 6-(32,10,6440)
6-(33,9,1260) (#12481) 6-(32,9,1120) (#16249)
6-(32,8,140) (#16248)
-
5-(34,10,51156) (#12833) 5-(33,10,42336) (#12834) 5-(32,10,34776) (#16557) 5-(31,10,28336)
5-(33,9,8820) (#12482) 5-(32,9,7560) (#12483) 5-(31,9,6440) (#16257)
5-(32,8,1260) (#8460) 5-(31,8,1120) (#16254)
5-(31,7,140) (#16253)
- family 21, lambda = 145 containing 16 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,145)
-
7-(34,10,1305) (#16559) 7-(33,10,1160)
7-(33,9,145) (#16259)
-
6-(34,10,9135) (#12837) 6-(33,10,7830) (#16560) 6-(32,10,6670)
6-(33,9,1305) (#12487) 6-(32,9,1160) (#16261)
6-(32,8,145) (#16260)
-
5-(34,10,52983) (#12838) 5-(33,10,43848) (#12839) 5-(32,10,36018) (#16563) 5-(31,10,29348)
5-(33,9,9135) (#12488) 5-(32,9,7830) (#12489) 5-(31,9,6670) (#16269)
5-(32,8,1305) (#8471) 5-(31,8,1160) (#16266)
5-(31,7,145) (#16265)
- family 22, lambda = 155 containing 1 designs:
minpath=(1, 4, 0) minimal_t=5
- family 23, lambda = 160 containing 17 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(34,10,160)
-
7-(34,10,1440) (#16617) 7-(33,10,1280)
7-(33,9,160) (#16271)
-
6-(34,10,10080) (#12842) 6-(33,10,8640) (#16618) 6-(32,10,7360)
6-(33,9,1440) (#12518) 6-(32,9,1280) (#16273)
6-(32,8,160) (#16272)
-
5-(34,10,58464) (#12526) 5-(33,10,48384) (#12524) 5-(32,10,39744) (#12350) 5-(31,10,32384) (#12352)
5-(33,9,10080) (#12519) 5-(32,9,8640) (#12520) 5-(31,9,7360) (#12351)
5-(32,8,1440) (#8502) 5-(31,8,1280) (#16278)
5-(31,7,160) (#16277)
created: Fri Oct 23 11:21:00 CEST 2009