design clan: 11_24_12
11-(24,12,m*1), 1 <= m <= 6; (6/132) lambda_max=13, lambda_max_half=6
the clan contains 6 families:
- family 0, lambda = 1 containing 14 designs:
minpath=(0, 0, 0) minimal_t=3
-
11-(24,12,1)
-
10-(24,12,7) 10-(23,12,6)
10-(23,11,1)
-
9-(24,12,35) 9-(23,12,28) 9-(22,12,22)
9-(23,11,7) 9-(22,11,6)
9-(22,10,1)
-
8-(24,12,140) 8-(23,12,105) 8-(22,12,77) 8-(21,12,55)
8-(23,11,35) 8-(22,11,28) 8-(21,11,22)
8-(22,10,7) 8-(21,10,6)
8-(21,9,1)
-
7-(24,12,476) 7-(23,12,336) 7-(22,12,231) 7-(21,12,154) 7-(20,12,99)
7-(23,11,140) 7-(22,11,105) 7-(21,11,77) 7-(20,11,55)
7-(22,10,35) 7-(21,10,28) 7-(20,10,22)
7-(21,9,7) 7-(20,9,6)
7-(20,8,1)
-
6-(24,12,1428) 6-(23,12,952) 6-(22,12,616) 6-(21,12,385) 6-(20,12,231) 6-(19,12,132)
6-(23,11,476) 6-(22,11,336) 6-(21,11,231) 6-(20,11,154) 6-(19,11,99)
6-(22,10,140) 6-(21,10,105) 6-(20,10,77) 6-(19,10,55)
6-(21,9,35) 6-(20,9,28) 6-(19,9,22)
6-(20,8,7) 6-(19,8,6)
6-(19,7,1)
-
5-(24,12,3876) (#950) 5-(23,12,2448) 5-(22,12,1496) 5-(21,12,880) 5-(20,12,495) 5-(19,12,264) 5-(18,12,132)
5-(23,11,1428) (#949) 5-(22,11,952) (#348) 5-(21,11,616) (#948) 5-(20,11,385) 5-(19,11,231) 5-(18,11,132)
5-(22,10,476) (#947) 5-(21,10,336) (#946) 5-(20,10,231) (#928) 5-(19,10,154) 5-(18,10,99)
5-(21,9,140) (#945) 5-(20,9,105) (#944) 5-(19,9,77) 5-(18,9,55) (#746)
5-(20,8,35) (#938) 5-(19,8,28) 5-(18,8,22)
5-(19,7,7) 5-(18,7,6) (#466)
5-(18,6,1)
-
4-(24,12,9690) 4-(23,12,5814) 4-(22,12,3366) 4-(21,12,1870) 4-(20,12,990) 4-(19,12,495) 4-(18,12,231) 4-(17,12,99)
4-(23,11,3876) 4-(22,11,2448) 4-(21,11,1496) 4-(20,11,880) 4-(19,11,495) 4-(18,11,264) 4-(17,11,132)
4-(22,10,1428) 4-(21,10,952) (#347) 4-(20,10,616) 4-(19,10,385) 4-(18,10,231) 4-(17,10,132)
4-(21,9,476) 4-(20,9,336) 4-(19,9,231) 4-(18,9,154) 4-(17,9,99)
4-(20,8,140) 4-(19,8,105) 4-(18,8,77) 4-(17,8,55)
4-(19,7,35) 4-(18,7,28) 4-(17,7,22)
4-(18,6,7) 4-(17,6,6)
4-(17,5,1)
-
3-(24,12,22610) 3-(23,12,12920) 3-(22,12,7106) 3-(21,12,3740) 3-(20,12,1870) 3-(19,12,880) 3-(18,12,385) 3-(17,12,154) 3-(16,12,55)
3-(23,11,9690) 3-(22,11,5814) 3-(21,11,3366) 3-(20,11,1870) 3-(19,11,990) 3-(18,11,495) 3-(17,11,231) 3-(16,11,99)
3-(22,10,3876) 3-(21,10,2448) 3-(20,10,1496) 3-(19,10,880) 3-(18,10,495) 3-(17,10,264) 3-(16,10,132)
3-(21,9,1428) 3-(20,9,952) 3-(19,9,616) 3-(18,9,385) 3-(17,9,231) 3-(16,9,132)
3-(20,8,476) 3-(19,8,336) 3-(18,8,231) 3-(17,8,154) 3-(16,8,99)
3-(19,7,140) 3-(18,7,105) 3-(17,7,77) 3-(16,7,55)
3-(18,6,35) 3-(17,6,28) 3-(16,6,22)
3-(17,5,7) 3-(16,5,6)
3-(16,4,1) (#2)
- family 1, lambda = 2 containing 17 designs:
minpath=(0, 0, 0) minimal_t=3
-
11-(24,12,2)
-
10-(24,12,14) 10-(23,12,12)
10-(23,11,2)
-
9-(24,12,70) 9-(23,12,56) 9-(22,12,44)
9-(23,11,14) 9-(22,11,12)
9-(22,10,2)
-
8-(24,12,280) 8-(23,12,210) 8-(22,12,154) 8-(21,12,110)
8-(23,11,70) 8-(22,11,56) 8-(21,11,44)
8-(22,10,14) 8-(21,10,12)
8-(21,9,2)
-
7-(24,12,952) 7-(23,12,672) 7-(22,12,462) 7-(21,12,308) 7-(20,12,198)
7-(23,11,280) 7-(22,11,210) 7-(21,11,154) 7-(20,11,110)
7-(22,10,70) 7-(21,10,56) 7-(20,10,44)
7-(21,9,14) 7-(20,9,12)
7-(20,8,2)
-
6-(24,12,2856) 6-(23,12,1904) 6-(22,12,1232) 6-(21,12,770) 6-(20,12,462) 6-(19,12,264)
6-(23,11,952) 6-(22,11,672) 6-(21,11,462) 6-(20,11,308) 6-(19,11,198)
6-(22,10,280) 6-(21,10,210) 6-(20,10,154) 6-(19,10,110)
6-(21,9,70) 6-(20,9,56) 6-(19,9,44)
6-(20,8,14) 6-(19,8,12)
6-(19,7,2)
-
5-(24,12,7752) (#943) 5-(23,12,4896) 5-(22,12,2992) 5-(21,12,1760) 5-(20,12,990) 5-(19,12,528) 5-(18,12,264)
5-(23,11,2856) (#942) 5-(22,11,1904) (#539) 5-(21,11,1232) (#540) 5-(20,11,770) 5-(19,11,462) 5-(18,11,264)
5-(22,10,952) (#941) 5-(21,10,672) (#538) 5-(20,10,462) (#535) 5-(19,10,308) (#536) 5-(18,10,198)
5-(21,9,280) (#940) 5-(20,9,210) (#537) 5-(19,9,154) (#534) 5-(18,9,110) (#533)
5-(20,8,70) (#939) 5-(19,8,56) (#495) 5-(18,8,44) (#494)
5-(19,7,14) 5-(18,7,12) (#459)
5-(18,6,2)
-
4-(24,12,19380) 4-(23,12,11628) 4-(22,12,6732) 4-(21,12,3740) 4-(20,12,1980) 4-(19,12,990) 4-(18,12,462) 4-(17,12,198)
4-(23,11,7752) 4-(22,11,4896) 4-(21,11,2992) 4-(20,11,1760) 4-(19,11,990) 4-(18,11,528) 4-(17,11,264)
4-(22,10,2856) 4-(21,10,1904) 4-(20,10,1232) 4-(19,10,770) 4-(18,10,462) 4-(17,10,264)
4-(21,9,952) 4-(20,9,672) 4-(19,9,462) 4-(18,9,308) 4-(17,9,198)
4-(20,8,280) 4-(19,8,210) 4-(18,8,154) 4-(17,8,110)
4-(19,7,70) 4-(18,7,56) 4-(17,7,44)
4-(18,6,14) 4-(17,6,12)
4-(17,5,2)
-
3-(24,12,45220) 3-(23,12,25840) 3-(22,12,14212) 3-(21,12,7480) 3-(20,12,3740) 3-(19,12,1760) 3-(18,12,770) 3-(17,12,308) 3-(16,12,110)
3-(23,11,19380) 3-(22,11,11628) 3-(21,11,6732) 3-(20,11,3740) 3-(19,11,1980) 3-(18,11,990) 3-(17,11,462) 3-(16,11,198)
3-(22,10,7752) 3-(21,10,4896) 3-(20,10,2992) 3-(19,10,1760) 3-(18,10,990) 3-(17,10,528) 3-(16,10,264)
3-(21,9,2856) 3-(20,9,1904) 3-(19,9,1232) 3-(18,9,770) 3-(17,9,462) 3-(16,9,264)
3-(20,8,952) 3-(19,8,672) 3-(18,8,462) 3-(17,8,308) 3-(16,8,198)
3-(19,7,280) 3-(18,7,210) 3-(17,7,154) 3-(16,7,110)
3-(18,6,70) 3-(17,6,56) 3-(16,6,44)
3-(17,5,14) 3-(16,5,12) (#3)
3-(16,4,2)
- family 2, lambda = 3 containing 23 designs:
minpath=(0, 0, 0) minimal_t=4
-
11-(24,12,3)
-
10-(24,12,21) 10-(23,12,18)
10-(23,11,3)
-
9-(24,12,105) 9-(23,12,84) 9-(22,12,66)
9-(23,11,21) 9-(22,11,18)
9-(22,10,3)
-
8-(24,12,420) 8-(23,12,315) 8-(22,12,231) 8-(21,12,165)
8-(23,11,105) 8-(22,11,84) 8-(21,11,66)
8-(22,10,21) 8-(21,10,18)
8-(21,9,3)
-
7-(24,12,1428) 7-(23,12,1008) 7-(22,12,693) 7-(21,12,462) 7-(20,12,297)
7-(23,11,420) 7-(22,11,315) (#13127) 7-(21,11,231) 7-(20,11,165)
7-(22,10,105) 7-(21,10,84) 7-(20,10,66)
7-(21,9,21) 7-(20,9,18)
7-(20,8,3)
-
6-(24,12,4284) 6-(23,12,2856) 6-(22,12,1848) 6-(21,12,1155) 6-(20,12,693) 6-(19,12,396)
6-(23,11,1428) 6-(22,11,1008) (#8701) 6-(21,11,693) (#13129) 6-(20,11,462) 6-(19,11,297)
6-(22,10,420) 6-(21,10,315) (#13128) 6-(20,10,231) 6-(19,10,165)
6-(21,9,105) 6-(20,9,84) 6-(19,9,66)
6-(20,8,21) 6-(19,8,18)
6-(19,7,3)
-
5-(24,12,11628) (#937) 5-(23,12,7344) 5-(22,12,4488) 5-(21,12,2640) 5-(20,12,1485) 5-(19,12,792) 5-(18,12,396)
5-(23,11,4284) (#936) 5-(22,11,2856) (#140) 5-(21,11,1848) (#591) 5-(20,11,1155) (#13134) 5-(19,11,693) 5-(18,11,396)
5-(22,10,1428) (#935) 5-(21,10,1008) (#590) 5-(20,10,693) (#587) 5-(19,10,462) (#588) 5-(18,10,297)
5-(21,9,420) (#934) 5-(20,9,315) (#589) 5-(19,9,231) (#586) 5-(18,9,165) (#585)
5-(20,8,105) (#933) 5-(19,8,84) (#508) 5-(18,8,66) (#507)
5-(19,7,21) 5-(18,7,18) (#460)
5-(18,6,3)
-
4-(24,12,29070) 4-(23,12,17442) 4-(22,12,10098) 4-(21,12,5610) 4-(20,12,2970) 4-(19,12,1485) 4-(18,12,693) 4-(17,12,297)
4-(23,11,11628) 4-(22,11,7344) 4-(21,11,4488) 4-(20,11,2640) 4-(19,11,1485) 4-(18,11,792) 4-(17,11,396)
4-(22,10,4284) 4-(21,10,2856) (#139) 4-(20,10,1848) 4-(19,10,1155) 4-(18,10,693) 4-(17,10,396)
4-(21,9,1428) 4-(20,9,1008) 4-(19,9,693) 4-(18,9,462) 4-(17,9,297)
4-(20,8,420) 4-(19,8,315) 4-(18,8,231) 4-(17,8,165)
4-(19,7,105) 4-(18,7,84) 4-(17,7,66)
4-(18,6,21) 4-(17,6,18)
4-(17,5,3) (#51)
- family 3, lambda = 4 containing 22 designs:
minpath=(0, 0, 0) minimal_t=5
-
11-(24,12,4)
-
10-(24,12,28) 10-(23,12,24)
10-(23,11,4)
-
9-(24,12,140) 9-(23,12,112) 9-(22,12,88)
9-(23,11,28) 9-(22,11,24)
9-(22,10,4)
-
8-(24,12,560) 8-(23,12,420) 8-(22,12,308) 8-(21,12,220)
8-(23,11,140) 8-(22,11,112) 8-(21,11,88)
8-(22,10,28) 8-(21,10,24)
8-(21,9,4)
-
7-(24,12,1904) 7-(23,12,1344) 7-(22,12,924) 7-(21,12,616) 7-(20,12,396)
7-(23,11,560) 7-(22,11,420) 7-(21,11,308) 7-(20,11,220)
7-(22,10,140) 7-(21,10,112) 7-(20,10,88)
7-(21,9,28) 7-(20,9,24)
7-(20,8,4)
-
6-(24,12,5712) 6-(23,12,3808) 6-(22,12,2464) 6-(21,12,1540) 6-(20,12,924) 6-(19,12,528)
6-(23,11,1904) 6-(22,11,1344) 6-(21,11,924) 6-(20,11,616) 6-(19,11,396)
6-(22,10,560) 6-(21,10,420) 6-(20,10,308) 6-(19,10,220)
6-(21,9,140) (#8670) 6-(20,9,112) (#8669) 6-(19,9,88)
6-(20,8,28) (#8658) 6-(19,8,24)
6-(19,7,4) (#8609)
-
5-(24,12,15504) (#636) 5-(23,12,9792) 5-(22,12,5984) 5-(21,12,3520) 5-(20,12,1980) 5-(19,12,1056) 5-(18,12,528)
5-(23,11,5712) (#635) 5-(22,11,3808) (#632) 5-(21,11,2464) (#633) 5-(20,11,1540) 5-(19,11,924) 5-(18,11,528)
5-(22,10,1904) (#634) 5-(21,10,1344) (#630) 5-(20,10,924) (#627) 5-(19,10,616) (#628) 5-(18,10,396)
5-(21,9,560) (#631) 5-(20,9,420) (#629) 5-(19,9,308) (#626) 5-(18,9,220) (#625)
5-(20,8,140) (#519) 5-(19,8,112) (#518) 5-(18,8,88) (#517)
5-(19,7,28) (#462) 5-(18,7,24) (#461)
5-(18,6,4) (#457)
- family 4, lambda = 5 containing 23 designs:
minpath=(0, 0, 0) minimal_t=5
-
11-(24,12,5)
-
10-(24,12,35) 10-(23,12,30)
10-(23,11,5)
-
9-(24,12,175) 9-(23,12,140) 9-(22,12,110)
9-(23,11,35) 9-(22,11,30)
9-(22,10,5)
-
8-(24,12,700) 8-(23,12,525) 8-(22,12,385) 8-(21,12,275)
8-(23,11,175) 8-(22,11,140) 8-(21,11,110)
8-(22,10,35) 8-(21,10,30)
8-(21,9,5)
-
7-(24,12,2380) 7-(23,12,1680) 7-(22,12,1155) 7-(21,12,770) 7-(20,12,495)
7-(23,11,700) 7-(22,11,525) (#8673) 7-(21,11,385) 7-(20,11,275)
7-(22,10,175) 7-(21,10,140) 7-(20,10,110)
7-(21,9,35) 7-(20,9,30)
7-(20,8,5)
-
6-(24,12,7140) 6-(23,12,4760) 6-(22,12,3080) 6-(21,12,1925) 6-(20,12,1155) 6-(19,12,660)
6-(23,11,2380) 6-(22,11,1680) (#8672) 6-(21,11,1155) (#8674) 6-(20,11,770) 6-(19,11,495)
6-(22,10,700) 6-(21,10,525) (#8671) 6-(20,10,385) 6-(19,10,275)
6-(21,9,175) 6-(20,9,140) 6-(19,9,110)
6-(20,8,35) 6-(19,8,30)
6-(19,7,5)
-
5-(24,12,19380) (#678) 5-(23,12,12240) 5-(22,12,7480) 5-(21,12,4400) 5-(20,12,2475) 5-(19,12,1320) 5-(18,12,660)
5-(23,11,7140) (#677) 5-(22,11,4760) (#674) 5-(21,11,3080) (#675) 5-(20,11,1925) (#8682) 5-(19,11,1155) 5-(18,11,660)
5-(22,10,2380) (#676) 5-(21,10,1680) (#672) 5-(20,10,1155) (#669) 5-(19,10,770) (#670) 5-(18,10,495)
5-(21,9,700) (#673) 5-(20,9,525) (#671) 5-(19,9,385) (#668) 5-(18,9,275) (#667)
5-(20,8,175) (#471) 5-(19,8,140) (#470) 5-(18,8,110) (#469)
5-(19,7,35) (#464) 5-(18,7,30) (#463)
5-(18,6,5) (#458)
- family 5, lambda = 6 containing 33 designs:
minpath=(0, 0, 0) minimal_t=4
-
11-(24,12,6)
-
10-(24,12,42) 10-(23,12,36)
10-(23,11,6)
-
9-(24,12,210) 9-(23,12,168) 9-(22,12,132)
9-(23,11,42) 9-(22,11,36)
9-(22,10,6)
-
8-(24,12,840) 8-(23,12,630) 8-(22,12,462) 8-(21,12,330)
8-(23,11,210) 8-(22,11,168) 8-(21,11,132)
8-(22,10,42) 8-(21,10,36)
8-(21,9,6)
-
7-(24,12,2856) (#8716) 7-(23,12,2016) 7-(22,12,1386) 7-(21,12,924) 7-(20,12,594)
7-(23,11,840) 7-(22,11,630) (#13137) 7-(21,11,462) 7-(20,11,330)
7-(22,10,210) 7-(21,10,168) 7-(20,10,132)
7-(21,9,42) 7-(20,9,36)
7-(20,8,6)
-
6-(24,12,8568) (#8715) 6-(23,12,5712) (#8719) 6-(22,12,3696) 6-(21,12,2310) 6-(20,12,1386) 6-(19,12,792)
6-(23,11,2856) (#8714) 6-(22,11,2016) (#8713) 6-(21,11,1386) (#13139) 6-(20,11,924) 6-(19,11,594)
6-(22,10,840) (#8696) 6-(21,10,630) (#13138) 6-(20,10,462) 6-(19,10,330)
6-(21,9,210) 6-(20,9,168) 6-(19,9,132)
6-(20,8,42) 6-(19,8,36)
6-(19,7,6) (#8613)
-
5-(24,12,23256) (#774) 5-(23,12,14688) (#8717) 5-(22,12,8976) (#8723) 5-(21,12,5280) 5-(20,12,2970) 5-(19,12,1584) 5-(18,12,792)
5-(23,11,8568) (#773) 5-(22,11,5712) (#266) 5-(21,11,3696) (#718) 5-(20,11,2310) (#13144) 5-(19,11,1386) 5-(18,11,792)
5-(22,10,2856) (#772) 5-(21,10,2016) (#717) 5-(20,10,1386) (#714) 5-(19,10,924) (#715) 5-(18,10,594)
5-(21,9,840) (#771) 5-(20,9,630) (#716) 5-(19,9,462) (#713) 5-(18,9,330) (#712)
5-(20,8,210) (#770) 5-(19,8,168) (#481) 5-(18,8,132) (#480)
5-(19,7,42) (#769) 5-(18,7,36) (#465)
5-(18,6,6) (#8614)
-
4-(24,12,58140) 4-(23,12,34884) 4-(22,12,20196) 4-(21,12,11220) 4-(20,12,5940) 4-(19,12,2970) 4-(18,12,1386) 4-(17,12,594)
4-(23,11,23256) 4-(22,11,14688) 4-(21,11,8976) 4-(20,11,5280) 4-(19,11,2970) 4-(18,11,1584) 4-(17,11,792)
4-(22,10,8568) 4-(21,10,5712) (#265) 4-(20,10,3696) 4-(19,10,2310) 4-(18,10,1386) 4-(17,10,792)
4-(21,9,2856) 4-(20,9,2016) 4-(19,9,1386) 4-(18,9,924) 4-(17,9,594)
4-(20,8,840) 4-(19,8,630) 4-(18,8,462) 4-(17,8,330)
4-(19,7,210) 4-(18,7,168) 4-(17,7,132)
4-(18,6,42) 4-(17,6,36)
4-(17,5,6) (#52)
created: Fri Oct 23 11:21:02 CEST 2009