design clan: 11_37_12
11-(37,12,m*2), 1 <= m <= 6; (6/88) lambda_max=26, lambda_max_half=13
the clan contains 6 families:
- family 0, lambda = 2 containing 9 designs:
minpath=(1, 2, 1) minimal_t=5
-
7-(34,10,225)
-
6-(34,10,1575) (#12543) 6-(33,10,1350) (#12368)
6-(33,9,225) (#12540)
-
5-(34,10,9135) (#12376) 5-(33,10,7560) (#12369) 5-(32,10,6210) (#12371)
5-(33,9,1575) (#12375) 5-(32,9,1350) (#12370)
5-(32,8,225) (#8232)
- family 1, lambda = 4 containing 1 designs:
minpath=(1, 4, 1) minimal_t=5
- family 2, lambda = 6 containing 20 designs:
minpath=(0, 2, 0) minimal_t=5
-
9-(35,10,6)
-
8-(35,10,81) 8-(34,10,75)
8-(34,9,6)
-
7-(35,10,756) 7-(34,10,675) 7-(33,10,600) (#16108)
7-(34,9,81) 7-(33,9,75)
7-(33,8,6)
-
6-(35,10,5481) 6-(34,10,4725) 6-(33,10,4050) (#16109) 6-(32,10,3450) (#16111)
6-(34,9,756) 6-(33,9,675) 6-(32,9,600) (#16110)
6-(33,8,81) 6-(32,8,75)
6-(32,7,6) (#12353)
-
5-(35,10,32886) (#16133) 5-(34,10,27405) (#16130) 5-(33,10,22680) (#16115) 5-(32,10,18630) (#16117) 5-(31,10,15180) (#16125)
5-(34,9,5481) (#16129) 5-(33,9,4725) (#16127) 5-(32,9,4050) (#16116) 5-(31,9,3450) (#16122)
5-(33,8,756) (#8331) 5-(32,8,675) (#8330) 5-(31,8,600) (#16121)
5-(32,7,81) (#8181) 5-(31,7,75) (#12355)
5-(31,6,6) (#12354)
- family 3, lambda = 8 containing 17 designs:
minpath=(0, 2, 0) minimal_t=4
-
9-(35,10,8)
-
8-(35,10,108) 8-(34,10,100)
8-(34,9,8)
-
7-(35,10,1008) 7-(34,10,900) (#16430) 7-(33,10,800)
7-(34,9,108) 7-(33,9,100) (#16207)
7-(33,8,8)
-
6-(35,10,7308) 6-(34,10,6300) (#16431) 6-(33,10,5400) (#16432) 6-(32,10,4600)
6-(34,9,1008) 6-(33,9,900) (#12673) 6-(32,9,800) (#16209)
6-(33,8,108) 6-(32,8,100) (#16208)
6-(32,7,8)
-
5-(35,10,43848) 5-(34,10,36540) (#16435) 5-(33,10,30240) (#16436) 5-(32,10,24840) (#16439) 5-(31,10,20240)
5-(34,9,7308) 5-(33,9,6300) (#12674) 5-(32,9,5400) (#12675) 5-(31,9,4600) (#16217)
5-(33,8,1008) 5-(32,8,900) (#8381) 5-(31,8,800) (#16214)
5-(32,7,108) 5-(31,7,100) (#16213)
5-(31,6,8)
-
4-(35,10,226548) 4-(34,10,182700) 4-(33,10,146160) 4-(32,10,115920) 4-(31,10,91080) 4-(30,10,70840)
4-(34,9,43848) 4-(33,9,36540) 4-(32,9,30240) 4-(31,9,24840) 4-(30,9,20240)
4-(33,8,7308) 4-(32,8,6300) 4-(31,8,5400) 4-(30,8,4600)
4-(32,7,1008) 4-(31,7,900) 4-(30,7,800)
4-(31,6,108) 4-(30,6,100)
4-(30,5,8) (#397)
- family 4, lambda = 10 containing 38 designs:
minpath=(0, 1, 0) minimal_t=5
-
10-(36,11,10)
-
9-(36,11,135) 9-(35,11,125)
9-(35,10,10)
-
8-(36,11,1260) (#18081) 8-(35,11,1125) 8-(34,11,1000)
8-(35,10,135) 8-(34,10,125)
8-(34,9,10)
-
7-(36,11,9135) (#17204) 7-(35,11,7875) (#18082) 7-(34,11,6750) 7-(33,11,5750)
7-(35,10,1260) (#16506) 7-(34,10,1125) (#16501) 7-(33,10,1000)
7-(34,9,135) (#16243) 7-(33,9,125) (#16239)
7-(33,8,10) (#16190)
-
6-(36,11,54810) (#17205) 6-(35,11,45675) (#17206) 6-(34,11,37800) (#18086) 6-(33,11,31050) 6-(32,11,25300)
6-(35,10,9135) (#16511) 6-(34,10,7875) (#16502) 6-(33,10,6750) (#16503) 6-(32,10,5750)
6-(34,9,1260) (#16199) 6-(33,9,1125) (#12443) 6-(32,9,1000) (#16240)
6-(33,8,135) (#16191) 6-(32,8,125) (#16193)
6-(32,7,10) (#16192)
-
5-(36,11,283185) (#17209) 5-(35,11,228375) (#17210) 5-(34,11,182700) (#17213) 5-(33,11,144900) (#18088) 5-(32,11,113850) 5-(31,11,88550)
5-(35,10,54810) (#16515) 5-(34,10,45675) (#16507) 5-(33,10,37800) (#16508) 5-(32,10,31050) (#16512) 5-(31,10,25300)
5-(34,9,9135) (#12449) 5-(33,9,7875) (#12444) 5-(32,9,6750) (#12445) 5-(31,9,5750) (#16244)
5-(33,8,1260) (#8430) 5-(32,8,1125) (#8429) 5-(31,8,1000) (#16204)
5-(32,7,135) (#8190) 5-(31,7,125) (#16201)
5-(31,6,10) (#16200)
- family 5, lambda = 12 containing 3 designs:
minpath=(1, 4, 0) minimal_t=5
created: Fri Oct 23 11:21:07 CEST 2009