design clan: 8_37_12
8-(37,12,m*21), 1 <= m <= 565; (33/321) lambda_max=23751, lambda_max_half=11875
the clan contains 33 families:
- family 0, lambda = 3360 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,3360) (#16786)
-
6-(36,11,20160) (#16787) 6-(35,11,16800) (#16789)
6-(35,10,3360) (#16788)
-
5-(36,11,104160) (#16793) 5-(35,11,84000) (#16795) 5-(34,11,67200) (#16803)
5-(35,10,20160) (#16794) 5-(34,10,16800) (#16800)
5-(34,9,3360) (#16799)
- family 1, lambda = 4200 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,4200) (#16805)
-
6-(36,11,25200) (#16806) 6-(35,11,21000) (#16808)
6-(35,10,4200) (#16807)
-
5-(36,11,130200) (#16812) 5-(35,11,105000) (#16814) 5-(34,11,84000) (#16822)
5-(35,10,25200) (#16813) 5-(34,10,21000) (#16819)
5-(34,9,4200) (#16818)
- family 2, lambda = 4536 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,4536) (#16824)
-
6-(36,11,27216) (#16825) 6-(35,11,22680) (#16827)
6-(35,10,4536) (#16826)
-
5-(36,11,140616) (#16831) 5-(35,11,113400) (#16833) 5-(34,11,90720) (#16841)
5-(35,10,27216) (#16832) 5-(34,10,22680) (#16838)
5-(34,9,4536) (#16837)
- family 3, lambda = 4935 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,4935) (#16843)
-
6-(36,11,29610) (#16844) 6-(35,11,24675) (#16846)
6-(35,10,4935) (#16845)
-
5-(36,11,152985) (#16850) 5-(35,11,123375) (#16852) 5-(34,11,98700) (#16860)
5-(35,10,29610) (#16851) 5-(34,10,24675) (#16857)
5-(34,9,4935) (#16856)
- family 4, lambda = 5040 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,5040) (#16862)
-
6-(36,11,30240) (#16863) 6-(35,11,25200) (#16865)
6-(35,10,5040) (#16864)
-
5-(36,11,156240) (#16869) 5-(35,11,126000) (#16871) 5-(34,11,100800) (#16879)
5-(35,10,30240) (#16870) 5-(34,10,25200) (#16876)
5-(34,9,5040) (#16875)
- family 5, lambda = 5271 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,5271) (#16881)
-
6-(36,11,31626) (#16882) 6-(35,11,26355) (#16884)
6-(35,10,5271) (#16883)
-
5-(36,11,163401) (#16888) 5-(35,11,131775) (#16890) 5-(34,11,105420) (#16898)
5-(35,10,31626) (#16889) 5-(34,10,26355) (#16895)
5-(34,9,5271) (#16894)
- family 6, lambda = 5376 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,5376) (#16900)
-
6-(36,11,32256) (#16901) 6-(35,11,26880) (#16903)
6-(35,10,5376) (#16902)
-
5-(36,11,166656) (#16907) 5-(35,11,134400) (#16909) 5-(34,11,107520) (#16917)
5-(35,10,32256) (#16908) 5-(34,10,26880) (#16914)
5-(34,9,5376) (#16913)
- family 7, lambda = 5775 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,5775) (#16919)
-
6-(36,11,34650) (#16920) 6-(35,11,28875) (#16922)
6-(35,10,5775) (#16921)
-
5-(36,11,179025) (#16926) 5-(35,11,144375) (#16928) 5-(34,11,115500) (#16936)
5-(35,10,34650) (#16927) 5-(34,10,28875) (#16933)
5-(34,9,5775) (#16932)
- family 8, lambda = 5880 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,5880) (#16938)
-
6-(36,11,35280) (#16939) 6-(35,11,29400) (#16941)
6-(35,10,5880) (#16940)
-
5-(36,11,182280) (#16945) 5-(35,11,147000) (#16947) 5-(34,11,117600) (#16955)
5-(35,10,35280) (#16946) 5-(34,10,29400) (#16952)
5-(34,9,5880) (#16951)
- family 9, lambda = 6111 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,6111) (#16957)
-
6-(36,11,36666) (#16958) 6-(35,11,30555) (#16960)
6-(35,10,6111) (#16959)
-
5-(36,11,189441) (#16964) 5-(35,11,152775) (#16966) 5-(34,11,122220) (#16974)
5-(35,10,36666) (#16965) 5-(34,10,30555) (#16971)
5-(34,9,6111) (#16970)
- family 10, lambda = 6216 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,6216) (#16976)
-
6-(36,11,37296) (#16977) 6-(35,11,31080) (#16979)
6-(35,10,6216) (#16978)
-
5-(36,11,192696) (#16983) 5-(35,11,155400) (#16985) 5-(34,11,124320) (#16993)
5-(35,10,37296) (#16984) 5-(34,10,31080) (#16990)
5-(34,9,6216) (#16989)
- family 11, lambda = 6615 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,6615) (#16995)
-
6-(36,11,39690) (#16996) 6-(35,11,33075) (#16998)
6-(35,10,6615) (#16997)
-
5-(36,11,205065) (#17002) 5-(35,11,165375) (#17004) 5-(34,11,132300) (#17012)
5-(35,10,39690) (#17003) 5-(34,10,33075) (#17009)
5-(34,9,6615) (#17008)
- family 12, lambda = 6720 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,6720) (#17014)
-
6-(36,11,40320) (#17015) 6-(35,11,33600) (#17017)
6-(35,10,6720) (#17016)
-
5-(36,11,208320) (#17021) 5-(35,11,168000) (#17023) 5-(34,11,134400) (#17031)
5-(35,10,40320) (#17022) 5-(34,10,33600) (#17028)
5-(34,9,6720) (#17027)
- family 13, lambda = 7056 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,7056) (#17033)
-
6-(36,11,42336) (#17034) 6-(35,11,35280) (#17036)
6-(35,10,7056) (#17035)
-
5-(36,11,218736) (#17040) 5-(35,11,176400) (#17042) 5-(34,11,141120) (#17050)
5-(35,10,42336) (#17041) 5-(34,10,35280) (#17047)
5-(34,9,7056) (#17046)
- family 14, lambda = 7455 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,7455) (#17052)
-
6-(36,11,44730) (#17053) 6-(35,11,37275) (#17055)
6-(35,10,7455) (#17054)
-
5-(36,11,231105) (#17059) 5-(35,11,186375) (#17061) 5-(34,11,149100) (#17069)
5-(35,10,44730) (#17060) 5-(34,10,37275) (#17066)
5-(34,9,7455) (#17065)
- family 15, lambda = 7560 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,7560) (#17071)
-
6-(36,11,45360) (#17072) 6-(35,11,37800) (#17074)
6-(35,10,7560) (#17073)
-
5-(36,11,234360) (#17078) 5-(35,11,189000) (#17080) 5-(34,11,151200) (#17088)
5-(35,10,45360) (#17079) 5-(34,10,37800) (#17085)
5-(34,9,7560) (#17084)
- family 16, lambda = 7791 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,7791) (#17090)
-
6-(36,11,46746) (#17091) 6-(35,11,38955) (#17093)
6-(35,10,7791) (#17092)
-
5-(36,11,241521) (#17097) 5-(35,11,194775) (#17099) 5-(34,11,155820) (#17107)
5-(35,10,46746) (#17098) 5-(34,10,38955) (#17104)
5-(34,9,7791) (#17103)
- family 17, lambda = 7896 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,7896) (#17109)
-
6-(36,11,47376) (#17110) 6-(35,11,39480) (#17112)
6-(35,10,7896) (#17111)
-
5-(36,11,244776) (#17116) 5-(35,11,197400) (#17118) 5-(34,11,157920) (#17126)
5-(35,10,47376) (#17117) 5-(34,10,39480) (#17123)
5-(34,9,7896) (#17122)
- family 18, lambda = 8295 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,8295) (#17128)
-
6-(36,11,49770) (#17129) 6-(35,11,41475) (#17131)
6-(35,10,8295) (#17130)
-
5-(36,11,257145) (#17135) 5-(35,11,207375) (#17137) 5-(34,11,165900) (#17145)
5-(35,10,49770) (#17136) 5-(34,10,41475) (#17142)
5-(34,9,8295) (#17141)
- family 19, lambda = 8400 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,8400) (#17147)
-
6-(36,11,50400) (#17148) 6-(35,11,42000) (#17150)
6-(35,10,8400) (#17149)
-
5-(36,11,260400) (#17154) 5-(35,11,210000) (#17156) 5-(34,11,168000) (#17164)
5-(35,10,50400) (#17155) 5-(34,10,42000) (#17161)
5-(34,9,8400) (#17160)
- family 20, lambda = 8631 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,8631) (#17166)
-
6-(36,11,51786) (#17167) 6-(35,11,43155) (#17169)
6-(35,10,8631) (#17168)
-
5-(36,11,267561) (#17173) 5-(35,11,215775) (#17175) 5-(34,11,172620) (#17183)
5-(35,10,51786) (#17174) 5-(34,10,43155) (#17180)
5-(34,9,8631) (#17179)
- family 21, lambda = 9240 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,9240) (#17215)
-
6-(36,11,55440) (#17216) 6-(35,11,46200) (#17218)
6-(35,10,9240) (#17217)
-
5-(36,11,286440) (#17222) 5-(35,11,231000) (#17224) 5-(34,11,184800) (#17232)
5-(35,10,55440) (#17223) 5-(34,10,46200) (#17229)
5-(34,9,9240) (#17228)
- family 22, lambda = 9471 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,9471) (#17234)
-
6-(36,11,56826) (#17235) 6-(35,11,47355) (#17237)
6-(35,10,9471) (#17236)
-
5-(36,11,293601) (#17241) 5-(35,11,236775) (#17243) 5-(34,11,189420) (#17251)
5-(35,10,56826) (#17242) 5-(34,10,47355) (#17248)
5-(34,9,9471) (#17247)
- family 23, lambda = 9576 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,9576) (#17253)
-
6-(36,11,57456) (#17254) 6-(35,11,47880) (#17256)
6-(35,10,9576) (#17255)
-
5-(36,11,296856) (#17260) 5-(35,11,239400) (#17262) 5-(34,11,191520) (#17270)
5-(35,10,57456) (#17261) 5-(34,10,47880) (#17267)
5-(34,9,9576) (#17266)
- family 24, lambda = 9975 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,9975) (#17272)
-
6-(36,11,59850) (#17273) 6-(35,11,49875) (#17275)
6-(35,10,9975) (#17274)
-
5-(36,11,309225) (#17279) 5-(35,11,249375) (#17281) 5-(34,11,199500) (#17289)
5-(35,10,59850) (#17280) 5-(34,10,49875) (#17286)
5-(34,9,9975) (#17285)
- family 25, lambda = 10080 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,10080) (#16634)
-
6-(36,11,60480) (#16635) 6-(35,11,50400) (#16637)
6-(35,10,10080) (#16636)
-
5-(36,11,312480) (#16641) 5-(35,11,252000) (#16643) 5-(34,11,201600) (#16651)
5-(35,10,60480) (#16642) 5-(34,10,50400) (#16648)
5-(34,9,10080) (#16647)
- family 26, lambda = 10311 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,10311) (#16653)
-
6-(36,11,61866) (#16654) 6-(35,11,51555) (#16656)
6-(35,10,10311) (#16655)
-
5-(36,11,319641) (#16660) 5-(35,11,257775) (#16662) 5-(34,11,206220) (#16670)
5-(35,10,61866) (#16661) 5-(34,10,51555) (#16667)
5-(34,9,10311) (#16666)
- family 27, lambda = 10416 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,10416) (#16672)
-
6-(36,11,62496) (#16673) 6-(35,11,52080) (#16675)
6-(35,10,10416) (#16674)
-
5-(36,11,322896) (#16679) 5-(35,11,260400) (#16681) 5-(34,11,208320) (#16689)
5-(35,10,62496) (#16680) 5-(34,10,52080) (#16686)
5-(34,9,10416) (#16685)
- family 28, lambda = 10500 containing 1 designs:
minpath=(0, 4, 0) minimal_t=4
- family 29, lambda = 10815 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,10815) (#16691)
-
6-(36,11,64890) (#16692) 6-(35,11,54075) (#16694)
6-(35,10,10815) (#16693)
-
5-(36,11,335265) (#16698) 5-(35,11,270375) (#16700) 5-(34,11,216300) (#16708)
5-(35,10,64890) (#16699) 5-(34,10,54075) (#16705)
5-(34,9,10815) (#16704)
- family 30, lambda = 11151 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,11151) (#16729)
-
6-(36,11,66906) (#16730) 6-(35,11,55755) (#16732)
6-(35,10,11151) (#16731)
-
5-(36,11,345681) (#16736) 5-(35,11,278775) (#16738) 5-(34,11,223020) (#16746)
5-(35,10,66906) (#16737) 5-(34,10,55755) (#16743)
5-(34,9,11151) (#16742)
- family 31, lambda = 11655 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,11655) (#16748)
-
6-(36,11,69930) (#16749) 6-(35,11,58275) (#16751)
6-(35,10,11655) (#16750)
-
5-(36,11,361305) (#16755) 5-(35,11,291375) (#16757) 5-(34,11,233100) (#16765)
5-(35,10,69930) (#16756) 5-(34,10,58275) (#16762)
5-(34,9,11655) (#16761)
- family 32, lambda = 11760 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(36,11,11760) (#16767)
-
6-(36,11,70560) (#16768) 6-(35,11,58800) (#16770)
6-(35,10,11760) (#16769)
-
5-(36,11,364560) (#16774) 5-(35,11,294000) (#16776) 5-(34,11,235200) (#16784)
5-(35,10,70560) (#16775) 5-(34,10,58800) (#16781)
5-(34,9,11760) (#16780)
created: Fri Oct 23 11:20:54 CEST 2009