length n = 151
dimension k = 10
alphabet length q = 2

minimum distance d = 68

generator matrix:
0000000000000111111110000000001111111111110000000000000111111110000000000000000011110000000001111111111110000000000011111111111100000000011111111111100
0000000111111000000110000011110000000011110000000111111000000110000000111111111100110000011110000000011110000011111100000011111100011111100000011111100
0000111000111011111010000101110001111101110000111000111011111010011111000001111101010000101110001111101110011100011100011100011111100011100011100011100
0001011001001000011110011010000000011101110011011111011100011100100011011110001100000111000010010001100011100101101100111101101111100100111111100100100
0111011011011111111110011100000011100100110100001011001100101100001101100010010100111011000100010010100101101010110101000100001101111001000101101111100
0011101000101101101110001010110111111100011101010100010001100001011100101110101011000111110101100110001010000010101101101110110110111000011010101101100
0101010111101001110100110101111110101010001011010101110111010001010110100101011100110111011011101110000100011000010101110111011001000000100010000000100
1100000111000001101011111001110010000001000100101100010110101001011010110011101110010001011100111000000101111010001101101000001001101100101111100101100
1111111010010000000001000011001011010010101110010010110101111011000100001001101110011100000111111011011001110110000001111100010001111001000001000101100
0101111101010100110101011110011000110110100001110010101010000011011101010001011110101101011100010100111100011111100001110000101100110000011011111101100

by adding the parity bit to 150