length n = 150
dimension k = 10
alphabet length q = 2

minimum distance d = 68

generator matrix:
000000000000011111111000000000111111111111000000000000011111111000000000000000001111000000000111111111111000000000001111111111110000000001111111111110
000000011111100000011000001111000000001111000000011111100000011000000011111111110011000001111000000001111000001111110000001111110001111110000001111110
000011100011101111101000010111000111110111000011100011101111101001111100000111110101000010111000111110111001110001110001110001111110001110001110001110
000101100100100001111001101000000001110111001101111101110001110010001101111000110000011100001001000110001110010110110011110110111110010011111110010010
011101101101111111111001110000001110010011010000101100110010110000110110001001010011101100010001001010010110101011010100010000110111100100010110111110
001110100010110110111000101011011111110001110101010001000110000101110010111010101100011111010110011000101000001010110110111011011011100001101010110110
010101011110100111010011010111111010101000101101010111011101000101011010010101110011011101101110111000010001100001010111011101100100000010001000000010
110000011100000110101111100111001000000100010010110001011010100101101011001110111001000101110011100000010111101000110110100000100110110010111110010110
111111101001000000000100001100101101001010111001001011010111101100010000100110111001110000011111101101100111011000000111110001000111100100000100010110
010111110101010011010101111001100011011010000111001010101000001101110101000101111010110101110001010011110001111110000111000010110011000001101111110110

by adding the parity bit to 149