OPEN PROBLEMS / RATIONAL POINTS 2025

MICHAEL STOLL, NAEMI FISCHER

Abstract. This is the collection of open problems from the *Rational Points* workshop in 2025.

1 Michael Stoll

Question 1.1. Is there a (nice) curve X over \mathbb{Q} of genus $g \geq 2$ such that

$$\#X(\mathbb{Q}) > 10^{100}$$
q?

Remarks.

- (1) The record for genus g = 2 is $\#X(\mathbb{Q}) \ge 642 = 321g$.
- (2) Obvious lower bound for hyperelliptic curves: $\#X(\mathbb{Q}) \ge 2g + 2$.
- (3) Less obvious lower bound for hyperelliptic curves (using a trick due to Mestre): $\#X(\mathbb{Q}) \ge 8g + 12$.
- (4) Unlikely intersection heuristics may suggest a bound $\#X(\mathbb{Q}) \ll g + r$, where r is the Mordell-Weil rank; see [Sto19, Question 1]. So if $r \ll g$, then one may expect $\#X(\mathbb{Q}) \ll g$.

2 Nils Bruin

Question 2.1. Can we find a mock rational point which we can show to be transcendental?

(A *mock rational point* is a p-adic point that is a zero of all Chabauty functions, but not a rational point.)

Variant: Replace Jacobian by a torus.

Remark. If there are two or more Chabauty function, we expect the points cut out by them to be there for a reason; in particular, they should be algebraic. So this question is about the case when there is exactly one Chabauty function, in which case one expects a number of zeros that grows with p, and the mock rational points among them should not have any particular special properties, so are likely to be transcendental.

3 Maarten Derickx

Let

E:
$$y^2 = 2(x^4 + 2x^2z^2 - z^4)$$

(an elliptic curve with rank 1 over \mathbb{Q} , with O = (1:2:1)).

Question 3.1. Are there infinitely many points $(x : y : z) \in E(\mathbb{Q})$ such that

$$2(x^4 + z^4) = pw^2$$
 with a prime p and some $w \in \mathbb{Z}$?

Date: July 30, 2025.

Remark. This is a special case of a family of similar questions. In the concrete case, a solution is known with a rather large prime p.

Ignore the square; then the "probability" for the value N to be (more or less) a prime is about $1/\log N$. The logarithmic height of the coordinates of multiples of a generator grows quadratically, so the expected number of positive cases in the rank 1 case should be something like

$$\sum_{n>0} \frac{1}{cn^2} < \infty.$$

For rank ≥ 2 , the corresponding series diverges, though.

4 Davide Lombardo

Consider the plane quartic

$$x^4 + 3x^3y - 3x^2yz - 3x^2z^2 + 6xy^3 - 6xy^2z + 3xyz^2 - 2xz^3 + 4y^4 + 2y^3z - 5yz^3 = 0$$
.

(The twist $X(7)_{392c1}$ of X(7), a.k.a. the Klein Quartic.) Its Jacobian has a nontrivial endomorphism defined over a quadratic extension.

Determine its rational points!

Drew Sutherland: The endomorphism field is the splitting field of

$$x^8 - 2x^7 + 7x^4 - 14x^2 + 8x + 5$$

(https://www.lmfdb.org/NumberField/8.2.10330523392.1)

The geometric Picard number is 3, but the classes are not defined over \mathbb{Q} , so standard Quadratic Chabauty does not apply. The Jacobian does not decompose over any field of degree ≤ 24 . There are at least four rational points.

5 David Angdinata

Question 5.1. Let C be a singular projective curve over an *imperfect* field K given by a Weierstrass equation. What is the structure of the group of non-singular rational points $C_{ns}(K)$?

See here on MO.

Over perfect fields, this is known (\mathbb{G}_m or a quadratic twist, or \mathbb{G}_a); see, e.g., Silverman. Want a general description (for the purpose of formalizing the theory).

6 Carlo Pagano

Question 6.1. Let K be a number field. Can you find a cubic non-singular polynomial f(X) in K[X] and a non-constant polynomial g(T) in K[T] totally split such that the curve $g(T)y^2 = f(X)$ has rank precisely 2 over K(T)?

(This would \approx imply that there are infinitely many elliptic curves of rank exactly 2 over K.)

Even open for $K = \mathbb{Q}$ (an example for this case would already be nice).

The desired result on elliptic curves of rank 2 is known for some number fields.

7 Pip Goodman

Let M be an imaginary quadratic field of class number 1.

Question 7.1. Does there exist an abelian threefold defined over \mathbb{Q} whose geometric endomorphism algebra is isomorphic to M?

Remarks.

- (1) If such a threefold exists, M is forced to have class number 1 (so $M=\mathbb{Q}(\sqrt{-d})$ for $d\in\{1,2,3,7,11,19,43,67,163\}$).
- (2) Examples are known for $M = \mathbb{Q}(\sqrt{-d})$ for d = 1, 2, 3, 7. (Easy for d = 1, 3.)
- (3) The field of definition of the endomorphisms is necessarily M.

8 Jack Thorne

Question 8.1. Can one prove the Lang-Silverman Conjecture for odd hyperelliptic curves of some fixed genus (≥ 2) over a global function field K (e.g., $\mathbb{F}_q(t)$)?

Concretely, is there a constant C such that $\hat{h}(P) \ge C \deg(D)$ for all non-torsion points $P \in J(K)$, where J is the Jacobian and D is the discriminant divisor of the curve?

For elliptic curves, this follows from the ABC conjecture (Hindry-Silverman), which is known for function fields.

Michael Stoll: There are examples of (even degree) genus 2 curves over $\mathbb{Q}(t)$ with a point of rather small positive canonical height:

$$y^{2} = 9(4t+1)^{2}x^{6} - 24(4t+1)(t+2)x^{4} - 48(4t+1)(t-1)x^{3}$$
$$+ 16(t-2)^{2}x^{2} + 64(t+1)(t-2)x + 64(t+1)^{2}$$

with $\hat{h}(P) = \frac{1}{840}$.

Drew Sutherland: What about places of bad reduction for the curve, but good reduction for the Jacobian?

9 Sam Frengley

Question 9.1. Another genus 3 curve: $X_{ns}^{+}(24)$. Can we determine its rational points?

References

[Sto19] Michael Stoll, Uniform bounds for the number of rational points on hyperelliptic curves of small Mordell-Weil rank, J. Eur. Math. Soc. (JEMS) **21** (2019), no. 3, 923–956, DOI 10.4171/JEMS/857. MR3908770 ⁴

Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany.

Email address: Michael.Stoll@uni-bayreuth.de