Second *p*-Descent on elliptic curves (or: Descent on genus one normal curves of prime degree)

Brendan Creutz

Rational Points 3, July 2010

Notation

- k is a number field.
- G_k is the absolute Galois group.
- *p* is a prime number.

Let C/k be an everywhere locally solvable genus one normal curve of degree p,

The model for C

- p = 2: a double cover of \mathbb{P}^1 ramified in 4 points
- p = 3: a cubic curve in \mathbb{P}^2
- $p \ge 5$: an intersection of p(p-3)/2 quadrics in \mathbb{P}^{p-1}

Remark

C represents an element of $Sel^{(p)}(E/k)$ which sits in the exact sequence

$$0 \to E(k)/pE(k) \to \operatorname{Sel}^{(p)}(E/k) \to \ \operatorname{III}(E/k)[p] \to 0 \,.$$

An explicit *p*-descent on *E* computes $\text{Sel}^{(p)}(E/k)$ and produces models for its elements as genus one normal curves of degree *p* as above.

p-coverings

Definition

A *p*-covering of *C* is an uramified Galois covering $D \xrightarrow{\pi} C$ with Galois group isomorphic (as a G_k -module) to E[p]. Define $Sel^{(p)}(C/k)$ to be the set of isomorphism classes of *p*-coverings of *C* that are everywhere locally solvable.

Goal 2: Do a second *p*-descent.

Compute $\operatorname{Sel}^{(p)}(C/k)$.

Note: This might achieve Goal 1.

If $\operatorname{Sel}^{(p)}(C/k) = \emptyset$, then $C(k) = \emptyset$.

From now on *p* is an odd prime.

Definitions Let X denote the set of flex points of C. Let Y be the set of divisors on C of the form: (p − 2)[x] + [x + P] + [x − P], with x ∈ X and P ∈ E[p].

Remarks

- The action of E on C restricts to an action of E[p] on X.
- X is a G_k -set and $\#X = p^2$.
- Y is a G_k -set of hyperplanes sections of C supported on X.

Etale algebras

Etale *k*-algebras

Corresponding to these finite G_k -sets we have étale k-algebras.

- $F := \operatorname{Map}_k(X, \overline{k})$, the 'flex algebra'
- $H := \operatorname{Map}_k(Y, \overline{k})$, the 'hyperplane algebra'

The induced norm map

The action of G_k on Y is derived from that of G_k on X. This gives rise to an induced norm map, $\partial : F \to H$.

For
$$\varphi \in F$$
 and $y \in Y$, we have $\partial \varphi(y) = \prod_{x \in y} \varphi(x)$.

Descent on $Pic_k(C)$

A family of functions

Choose a G_k -equivariant family $f : Y \to \kappa(\overline{C})^{\times}$ of rational functions such that $\operatorname{div}(f_y) = y - \Delta$ where Δ is an effective divisor on *C* with support disjoint from *X*.

Proposition

The family *f* induces a unique homomorphism

$$\widetilde{f}: \mathsf{Pic}_k(\mathcal{C}) o rac{H^{ imes}}{k^{ imes} \partial F^{ imes}}$$

with the property that, for any $Z \in \text{Pic}_k(C)$, $\tilde{f}(Z) \equiv f(z)$ where z is any k-rational divisor representing Z with support disjoint from all poles and zeros of the f_y .

Descent on C

Remark

The proposition is functorial in k.

We have a commutative diagram:

One should consider $\bigcap_{\nu} \operatorname{res}_{\nu}^{-1}(\tilde{f}_{\nu}(\operatorname{Pic}_{\nu}^{1}(\mathcal{C}))) \subset \frac{H^{\times}}{k^{\times} \partial F^{\times}}.$

Descent on C

Theorem 1

There is a bijective map $\operatorname{Sel}^{(p)}(C/k) \xrightarrow{1:1} \left\{ \delta \in \frac{H^{\times}}{k^{\times} \partial F^{\times}} : \forall v, \operatorname{res}_{v}(\delta) \in \tilde{f}(\operatorname{Pic}_{v}^{1}(C)) \right\}.$

Theorem 1 (version 2)

There exists a finite set of primes *S* of *k* such that $Sel^{(p)}(C/k) \xrightarrow{1:1} \left\{ \delta \in \frac{H^{\times}}{k^{\times} \partial F^{\times}} : \begin{array}{c} \delta \text{ is unramfied outside } S \text{ and} \\ \forall v \in S, \operatorname{res}_{v}(\delta) \in \tilde{f}_{v}(\operatorname{Pic}_{v}^{1}(C)) \end{array} \right\}.$

Computing $\operatorname{Sel}^{(p)}(C/k)$

H splits as $H \simeq F \times H_2$. Projection onto the first factor induces a surjective map $\frac{H^{\times}}{k^{\times}\partial F^{\times}} \rightarrow \frac{F^{\times}}{k^{\times}F^{\times p}}$ with finite kernel.

Corollary

There is an algorithm for computing (a set of representatives in H^{\times} for) $Sel^{(p)}(C/k)$ that is efficient modulo

- computing S-class and -unit group information in F and
- extracting *p*-th roots of elements in $H_2^{\times p}$.

Remark

For p = 3 and $k = \mathbb{Q}$ this means computations are feasible in practice.

Models in projective space

Theorem 2

Given $\delta \in H^{\times}$ representing some *p*-covering (D, π) we can explicitly compute a set of $p^2(p^2 - 3)/2$ quadrics giving a model for *D* as a genus one normal curve of degree p^2 in \mathbb{P}^{p^2-1} .

Minimization and Reduction

Once we have produced a model, we would like to make a change of coordinates on \mathbb{P}^{p^2-1} to get a nice model (i.e. with small coefficients and as few primes as possible dividing the invariants). I don't know how to do this...