Second p-Descent on elliptic curves (or: Descent on genus one normal curves of prime degree)

Brendan Creutz

Rational Points 3, July 2010

Notation

- k is a number field.
- G_{k} is the absolute Galois group.
- p is a prime number.

Let C / k be an everywhere locally solvable genus one normal curve of degree p,

The model for C

- $p=2$: a double cover of \mathbb{P}^{1} ramified in 4 points
- $p=3$: a cubic curve in \mathbb{P}^{2}
- $p \geq 5$: an intersection of $p(p-3) / 2$ quadrics in \mathbb{P}^{p-1}

Remark

C represents an element of $\mathrm{Sel}^{(p)}(E / k)$ which sits in the exact sequence

$$
0 \rightarrow E(k) / p E(k) \rightarrow \operatorname{Sel}^{(p)}(E / k) \rightarrow \amalg(E / k)[p] \rightarrow 0 .
$$

An explicit p-descent on E computes $\mathrm{Sel}^{(p)}(E / k)$ and produces models for its elements as genus one normal curves of degree p as above.

p-coverings

Definition

A p-covering of C is an uramified Galois covering $D \xrightarrow{\pi} C$ with Galois group isomorphic (as a G_{k}-module) to $E[p]$. Define $\mathrm{Sel}^{(p)}(C / k)$ to be the set of isomorphism classes of p-coverings of C that are everywhere locally solvable.

Goal 2: Do a second p-descent.

Compute Sel $^{(p)}(C / k)$.

Note: This might achieve Goal 1.

If $\mathrm{Sel}^{(p)}(C / k)=\emptyset$, then $C(k)=\emptyset$.

Flex Points

From now on p is an odd prime.

Definitions

- Let X denote the set of flex points of C.
- Let Y be the set of divisors on C of the form:

$$
(p-2)[x]+[x+P]+[x-P], \text { with } x \in X \text { and } P \in E[p] .
$$

Remarks

- The action of E on C restricts to an action of $E[p]$ on X.
- X is a G_{k}-set and $\# X=p^{2}$.
- Y is a G_{k}-set of hyperplanes sections of C supported on X.

Etale algebras

Etale k-algebras

Corresponding to these finite G_{k}-sets we have étale k-algebras.

- $F:=\operatorname{Map}_{k}(X, \bar{k})$, the 'flex algebra'
- $H:=\operatorname{Map}_{k}(Y, \bar{k})$, the 'hyperplane algebra'

The induced norm map

The action of G_{k} on Y is derived from that of G_{k} on X. This gives rise to an induced norm map, $\partial: F \rightarrow H$.

$$
\text { For } \varphi \in F \text { and } y \in Y \text {, we have } \partial \varphi(y)=\prod_{x \in y} \varphi(x)
$$

Descent on $\operatorname{Pic}_{k}(C)$

A family of functions

Choose a G_{k}-equivariant family $f: Y \rightarrow \kappa(\bar{C})^{\times}$of rational functions such that $\operatorname{div}\left(f_{y}\right)=y-\Delta$ where Δ is an effective divisor on C with support disjoint from X.

Proposition

The family f induces a unique homomorphism

$$
\tilde{f}: \operatorname{Pic}_{k}(C) \rightarrow \frac{H^{\times}}{k^{\times} \partial F^{x}}
$$

with the property that, for any $Z \in \operatorname{Pic}_{k}(C), \tilde{f}(Z) \equiv f(z)$ where z is any k-rational divisor representing Z with support disjoint from all poles and zeros of the f_{y}.

Descent on C

Remark

The proposition is functorial in k.
We have a commutative diagram:

One should consider $\bigcap_{v} \operatorname{res}_{v}^{-1}\left(\tilde{f}_{v}\left(\operatorname{Pic}_{v}^{1}(C)\right)\right) \subset \frac{H^{\times}}{k^{\times} \partial F^{x}}$.

Descent on C

Theorem 1

There is a bijective map
$\operatorname{Sel}^{(p)}(C / k) \xrightarrow{1: 1}\left\{\delta \in \frac{H^{\times}}{k^{\times} \partial F^{x}}: \forall v, \operatorname{res}_{v}(\delta) \in \tilde{f}\left(\operatorname{Pic}_{v}^{1}(C)\right)\right\}$.

Theorem 1 (version 2)

There exists a finite set of primes S of k such that $\operatorname{Sel}^{(p)}(C / k) \xrightarrow{1: 1}\left\{\delta \in \frac{H^{\times}}{k^{\times} \partial F^{\times}}: \begin{array}{l}\delta \text { is unramfied outside } S \text { and } \\ \forall v \in S, \operatorname{res}_{v}(\delta) \in \tilde{f}_{v}\left(\operatorname{Pic}_{v}^{1}(C)\right)\end{array}\right\}$.

Computing $\mathrm{Sel}^{(p)}(C / k)$

H splits as $H \simeq F \times H_{2}$. Projection onto the first factor induces a surjective map $\frac{H^{\times}}{k^{\times} \partial F^{\times}} \rightarrow \frac{F^{\times}}{k^{\times} F^{\times \rho}}$ with finite kernel.

Corollary

There is an algorithm for computing (a set of representatives in H^{\times}for) $\operatorname{Sel} I^{(p)}(C / k)$ that is efficient modulo

- computing S-class and -unit group information in F and
- extracting p-th roots of elements in $H_{2}^{\times p}$.

Remark

For $p=3$ and $k=\mathbb{Q}$ this means computations are feasible in practice.

Models in projective space

Theorem 2

Given $\delta \in H^{\times}$representing some p-covering (D, π) we can explicitly compute a set of $p^{2}\left(p^{2}-3\right) / 2$ quadrics giving a model for D as a genus one normal curve of degree p^{2} in $\mathbb{P}^{p^{2}-1}$.

Minimization and Reduction

Once we have produced a model, we would like to make a change of coordinates on $\mathbb{P}^{p^{2}-1}$ to get a nice model (i.e. with small coefficients and as few primes as possible dividing the invariants). I don't know how to do this. . .

