DEL PEZZO SURFACES OF DEGREE 1

ANTHONY VARILLY

1. Del Pezzo surfaces

Let K be a number field.

Definition 1.1. X/K is a *del Pezzo surface* if X is smooth, projective, geometrically integral, $\dim X = 2$, and $-K_X$ is ample.

Theorem 1.2 (Segre-Manin). Let X/K be a del Pezzo surface of degree ≥ 2 such that X has a K-point not on any exceptional curve. Then $X(K)$ is Zariski dense.

2. $pP1s$

Theorem 2.1. A dP1 is a smooth sextic in $\mathbb{P}(1, 1, 2, 3)$, and conversely.

Let x, y, z, w be the variables on $\mathbb{P}(1, 1, 2, 3)$. If char $k \neq 2, 3$, then a dP1 can be given an equation

$$
w^2 = z^3 + G(x, y)z + F(x, y)
$$

where G and F are binary homogeneous forms of degrees 4 and 6.

We will focus on the case $G \equiv 0$. Then X is smooth if and only if F has no square factors.

Theorem 2.2. Let X/\mathbb{Q} be a dP1 given by

$$
w^2 = z^3 + Ax^6 + By^6
$$

in $\mathbb{P}_{\mathbb{Q}}(1,1,2,3)$ where A, B are nonzero integers. Assume (III): that every elliptic curve E/\mathbb{Q} with $j(E) = 0$ there exists a prime p of good ordinary reduction such that $\text{III}(E,\mathbb{Q})[p^{\infty}] < \infty$ (this implies the parity conjecture for E, by work of Nekovar¹). Also assume that if $A/B =$ $3a^2/b^2$ for a, $b \in \mathbb{Z}$ with $b \neq 0$ and $(a, b) = 1$, then $gcd(A, B) = 1$. Then $X(\mathbb{Q})$ is Zariski dense.

3. Elliptic fibrations

dP1s have a canonical rational point $P_{\text{can}} := [0:0:1:1]$. The anticanonical map is

$$
X \dashrightarrow \mathbb{P}^1
$$

$$
[x:y:z:w] \mapsto [x:y].
$$

Its indeterminacy at P_{can} is resolved by taking $\tilde{X} := \text{Bl}_{P_{\text{can}}} X$: We get an elliptic surface $\tilde{X} \to \mathbb{P}^1$, whose fiber above $(m:n) \in \mathbb{P}^1$ is isomorphic to the elliptic curve $E_{m,n}$: $y^2 =$ $x^3 + Am^6 + Bn^6$.

Date: July 26, 2007.

¹Recent work by the Dokchitser brothers should allow us to remove the words "of good ordinary reduction." See arxiv:math/0612054

We hope to show that infinitely many of these curves $E_{m,n}$ have infinitely many rational points, since then $X(\mathbb{Q})$ is Zariski dense in X.

4. Root numbers

Given a CM elliptic curve E/\mathbb{Q} of conductor N, we know that $L(E, s)$ has an analytic continuation and functional equation: $\Lambda(E,s) = N^{s/2} (2\pi)^{-s} \Gamma(s) L(E,s)$ satisfies $\Lambda(E,s) =$ $\pm\Lambda(E, 2-s)$. Let $W(E)$ be the sign of the functional equation above, so $W(E) = (-1)^{r_{\text{an}}(E)}$. Hypothesis III plus work of Nekovar implies that $W(E) = (-1)^{\text{rank } E(\mathbb{Q})}$ for our E's.

We need to compute $W(E)$. It turns out that $W(E) = \prod_{p \leq \infty} W_p(E)$ where $W_p(E) = \pm 1$ is defined in terms of ϵ -factors of representations of the Weil-Deligne of \mathbb{Q}_p .

Theorem 4.1 (Rohrlich, Halberstadt, Rizzo). Let E/\mathbb{Q} be an elliptic curve in Weierstrass form. Let c_4, c_6, ∞ be the usual quantities. Then

- (i) $W_{\infty}(E) = -1$.
- (ii) $W_p(E) = +1$ if p is a prime of good reduction.
- (iii) Suppose that E has additive potentially good reduction at $p > 3$. Let $e = 12/\gcd(v_p(\Delta), 12)$. Then

$$
W_p(E) := \begin{cases} 1, & \text{if } e = 1; \\ \left(\frac{-1}{p}\right), & \text{if } e = 2 \text{ or } e = 6; \\ \left(\frac{-3}{p}\right), & \text{if } e = 3; \\ \left(\frac{-2}{p}\right), & \text{if } e = 4. \end{cases}
$$

(iv) $W_2(E)$ and $W_3(E)$ can be computed from knowledge of c_4 , c_6 , Δ .

Proposition 4.2. Let $\alpha \in \mathbb{Z}$. Let E_{α} be the elliptic curve $y^2 = x^3 + \alpha$. Let $W(\alpha) = W(E_{\alpha})$. Then

$$
W(\alpha) = -\left[W_2(E_\alpha)\left(\frac{-1}{\alpha_{\text{odd}}}\right)W_3(\alpha)(-1)^{v_3(\alpha)}\right] \prod_{\substack{p>5\\p^2|\alpha}}\begin{cases}1, & \text{if } v_p(\alpha)\equiv 0,1,3,5\pmod{6}\\ \left(\frac{-3}{p}\right), & \text{if } v_p(\alpha)\equiv 2,4\pmod{6}\end{cases}.
$$

Moreover, if α and β satisfy $v_2(\alpha) = v_2(\beta) =: r_2$ and $v_3(\alpha) = v_3(\beta) =: r_3$, and if $\alpha \equiv$ $β \mod 2^{r_2+2}3^{r_3+2}$, then the product in brackets for $W(α)$ and $W(β)$ coincide.

Corollary 4.3 (Flipping). Suppose $\alpha, \beta \in \mathbb{Z}-\{0\}$ are values of $Am^6 + Bn^6$ with $gcd(A, B) =$ 1. Assume that

- $\alpha \equiv \beta \pmod{36}$.
- α is squarefree.
- $\beta = p^{2+6k}\eta$ with η squarefree, with p prime, $p > 3$, $p \equiv 2 \pmod{3}$, $k \in \mathbb{Z}_{\geq 0}$.

Then $W(\alpha) = -W(\beta)$.

To prove Zariski density (at least for $gcd(A, B) = 1$), we need two families \mathcal{F}_1 and \mathcal{F}_2 of pairs of relatively prime integers (m, n) such that

- (i) $Am^6 + Bn^6$ is of the form α as in the corollary for $(m, n) \in \mathcal{F}_1$
- (ii) $Am^6 + Bn^6$ is of the form β as in the corollary for $(m, n) \in \mathcal{F}_2$.

5. Sieving

Theorem 5.1 (Greaves, Gouvea-Mazur, Varilly). Let $F(m, n)$ be a homogeneous binary form in $\mathbb{Z}[x, y]$ with nonzero discriminant. Assume that no irreducible factor of F has degree > 6 . Fix a modulus M and integers a, b such that $gcd(a, b, M) = 1$. Let S be a finite set of distinct primes p_1, \ldots, p_r . Let T be a finite set of nonnegative integers t_1, \ldots, t_r (of the same cardinality as S). Let $N(x)$ be the number of $(m, n) \in \mathbb{Z}^2$ with $gcd(m, n) = 1$ such that $0 \leq m, n \leq x$ and $m \equiv a \pmod{M}$ and $n \equiv b \pmod{M}$ and $F(m, n) \equiv p_1^{t_1} \cdots p_r^{t_r} \alpha$ where α is squarefree and $v_{p_i}(\alpha) = 0$ for $i = 1, ..., r$. Then $N(x) = Cx^2 + O(x^2/(\log x)^{1/3})$.

Remark 5.2. The constant C can be 0.

For $F(m, n) = Am^6 + Bn^6$ with $gcd(A, B) = 1$, we have $C = 0$ if and only if there exists *i* such that for all $1 \leq m, n \leq p_i^{t_i+1}$ we have $v_{p_i}(F(m,n)) \neq t_i$.

For \mathcal{F}_1 , we take $S = \emptyset$ and a, b arbitrary and $M = 36$.

For \mathcal{F}_2 , we take $S = \{p\}$ and $T = \{2 + 6k\}$ and $M = 36$. This time C can be 0: in fact, $C = 0$ when A/B is of the form $3a^2/b^2$.

Example 5.3. For $y^2 = x^3 + 27m^6 + 16n^6$, $W(E_{m,n}) = +1$. But we have sections: e.g., $(x, y) = (-3m^2, 4n^3).$

But there are others:

$$
y^2 = x^3 + 6(3m^6 + n^6)
$$

where $W(E_{m,n}) = +1$ and there are no sections.