
DEL PEZZO SURFACES OF DEGREE 1

ANTHONY VARILLY

1. Del Pezzo surfaces

Let K be a number field.

Definition 1.1. X/K is a del Pezzo surface if X is smooth, projective, geometrically integral,
dim X = 2, and −KX is ample.

Theorem 1.2 (Segre-Manin). Let X/K be a del Pezzo surface of degree ≥ 2 such that X
has a K-point not on any exceptional curve. Then X(K) is Zariski dense.

2. dP1s

Theorem 2.1. A dP1 is a smooth sextic in P(1, 1, 2, 3), and conversely.

Let x, y, z, w be the variables on P(1, 1, 2, 3). If char k 6= 2, 3, then a dP1 can be given an
equation

w2 = z3 + G(x, y)z + F (x, y)

where G and F are binary homogeneous forms of degrees 4 and 6.
We will focus on the case G ≡ 0. Then X is smooth if and only if F has no square factors.

Theorem 2.2. Let X/Q be a dP1 given by

w2 = z3 + Ax6 + By6

in PQ(1, 1, 2, 3) where A, B are nonzero integers. Assume (X): that every elliptic curve E/Q
with j(E) = 0 there exists a prime p of good ordinary reduction such that X(E, Q)[p∞] < ∞
(this implies the parity conjecture for E, by work of Nekovar1). Also assume that if A/B =
3a2/b2 for a, b ∈ Z with b 6= 0 and (a, b) = 1, then gcd(A, B) = 1. Then X(Q) is Zariski
dense.

3. Elliptic fibrations

dP1s have a canonical rational point Pcan := [0 : 0 : 1 : 1]. The anticanonical map is

X 99K P1

[x : y : z : w] 7→ [x : y].

Its indeterminacy at Pcan is resolved by taking X̃ := BlPcan X: We get an elliptic surface
X̃ → P1, whose fiber above (m : n) ∈ P1 is isomorphic to the elliptic curve Em,n : y2 =
x3 + Am6 + Bn6.

Date: July 26, 2007.
1Recent work by the Dokchitser brothers should allow us to remove the words “of good ordinary reduction.”

See arxiv:math/0612054
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We hope to show that infinitely many of these curves Em,n have infinitely many rational
points, since then X(Q) is Zariski dense in X.

4. Root numbers

Given a CM elliptic curve E/Q of conductor N , we know that L(E, s) has an analytic
continuation and functional equation: Λ(E, s) = N s/2(2π)−sΓ(s)L(E, s) satisfies Λ(E, s) =
±Λ(E, 2−s). Let W (E) be the sign of the functional equation above, so W (E) = (−1)ran(E).
Hypothesis X plus work of Nekovar implies that W (E) = (−1)rank E(Q) for our E’s.

We need to compute W (E). It turns out that W (E) =
∏

p≤∞Wp(E) where Wp(E) = ±1
is defined in terms of ε-factors of representations of the Weil-Deligne of Qp.

Theorem 4.1 (Rohrlich, Halberstadt, Rizzo). Let E/Q be an elliptic curve in Weierstrass
form. Let c4, c6,∞ be the usual quantities. Then

(i) W∞(E) = −1.
(ii) Wp(E) = +1 if p is a prime of good reduction.
(iii) Suppose that E has additive potentially good reduction at p > 3. Let e = 12/ gcd(vp(∆), 12).

Then

Wp(E) :=



1, if e = 1;(
−1
p

)
, if e = 2 or e = 6;(

−3
p

)
, if e = 3;(

−2
p

)
, if e = 4.

(iv) W2(E) and W3(E) can be computed from knowledge of c4, c6, ∆.

Proposition 4.2. Let α ∈ Z. Let Eα be the elliptic curve y2 = x3 +α. Let W (α) = W (Eα).
Then

W (α) = −
[
W2(Eα)

(
−1

αodd

)
W3(α)(−1)v3(α)

] ∏
p>5
p2|α

{
1, if vp(α) ≡ 0, 1, 3, 5 (mod 6)(
−3
p

)
, if vp(α) ≡ 2, 4 (mod 6)

.

Moreover, if α and β satisfy v2(α) = v2(β) =: r2 and v3(α) = v3(β) =: r3, and if α ≡
β mod 2r2+23r3+2, then the product in brackets for W (α) and W (β) coincide.

Corollary 4.3 (Flipping). Suppose α, β ∈ Z−{0} are values of Am6+Bn6 with gcd(A, B) =
1. Assume that

• α ≡ β (mod 36).
• α is squarefree.
• β = p2+6kη with η squarefree, with p prime, p > 3, p ≡ 2 (mod 3), k ∈ Z≥0.

Then W (α) = −W (β).

To prove Zariski density (at least for gcd(A, B) = 1), we need two families F1 and F2 of
pairs of relatively prime integers (m, n) such that

(i) Am6 + Bn6 is of the form α as in the corollary for (m, n) ∈ F1

(ii) Am6 + Bn6 is of the form β as in the corollary for (m, n) ∈ F2.
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5. Sieving

Theorem 5.1 (Greaves, Gouvea-Mazur, Varilly). Let F (m, n) be a homogeneous binary
form in Z[x, y] with nonzero discriminant. Assume that no irreducible factor of F has degree
> 6. Fix a modulus M and integers a, b such that gcd(a, b, M) = 1. Let S be a finite set
of distinct primes p1, . . . , pr. Let T be a finite set of nonnegative integers t1, . . . , tr (of the
same cardinality as S). Let N(x) be the number of (m, n) ∈ Z2 with gcd(m, n) = 1 such that
0 ≤ m, n ≤ x and m ≡ a (mod M) and n ≡ b (mod M) and F (m, n) ≡ pt1

1 · · · ptr
r α where α

is squarefree and vpi
(α) = 0 for i = 1, . . . , r. Then N(x) = Cx2 + O(x2/(log x)1/3).

Remark 5.2. The constant C can be 0.

For F (m, n) = Am6 + Bn6 with gcd(A, B) = 1, we have C = 0 if and only if there exists
i such that for all 1 ≤ m, n ≤ pti+1

i we have vpi
(F (m, n)) 6= ti.

For F1, we take S = ∅ and a, b arbitrary and M = 36.
For F2, we take S = {p} and T = {2 + 6k} and M = 36. This time C can be 0: in fact,

C = 0 when A/B is of the form 3a2/b2.

Example 5.3. For y2 = x3 + 27m6 + 16n6, W (Em,n) = +1. But we have sections: e.g.,
(x, y) = (−3m2, 4n3).

But there are others:
y2 = x3 + 6(3m6 + n6)

where W (Em,n) = +1 and there are no sections.
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