ARITHMETIC OF K3 SURFACES

RONALD VAN LUIJK

Definition 0.1. A K3 surface is a smooth projective geometrically integral surface such that

(1) $K_X \sim 0$ (canonical divisor)

(2) $H^1(X, \mathcal{O}_X) = 0.$

For m > 0, one has $\phi_m \colon X \dashrightarrow \mathbb{P}(H^0(X, \omega_X^{\otimes m})^{\vee})$. The Kodaira dimension of X is $-\infty$ if none of the ϕ_m exist, and $\max_{m>0} \dim \phi_m(X)$ otherwise. For a K3 surface, one has $\kappa(X) = 0$.

Consequence: K3 surfaces are not parametrizable. Proof: If there were a birational map $X \sim \mathbb{P}^2$, then $\kappa(X)$ would be negative.

Fact: If X is a smooth projective geometrically irreducible surface with canonical sheaves isomorphic to $\omega_X = \mathcal{O}_X$, then either X is a K3 surface or X is an abelian surface.

Examples:

• Let X be a smooth complete intersection X of r hyperplanes of degree d_1, \ldots, d_r in \mathbb{P}^n . Then $\omega_X \simeq \mathcal{O}_X(-n-1+\sum d_i)$. If we have a K3 surface, we must have $\sum d_i = n+1$ and r = n-2 (so that it is a surface). We may assume that $d_i \ge 2$. Then $\sum d_i \ge (n-2)2$ so $n \le 5$. The only possibilities are

$$-n = 3, \vec{d} = (4) -n = 4, \vec{d} = (2, 3)$$

$$-n = 5, \vec{d} = (2, 2, 2).$$

Complete intersections have trivial $H^i(X, \mathcal{O}_X)$ for $0 < i < \dim X$, so these examples are actual K3 surfaces.

- Let A be an abelian surface. Then Y := A/[-1] is a singular surface with 16 ordinary double points. The blowup of Y at all 16 singular points is a K3 surface containing 16 exceptional divisors each isomorphic to \mathbb{P}^1 .
- An elliptic surface

$$y^{2} + A_{1}(t)xy + A_{3}(t)y = x^{3} + A_{2}(t)x^{2} + A_{4}(t)x + A_{6}(t)$$

in minimal Weierstrass form where $A_i \in k[t]$ satisfies deg $A_i \leq 2i$ for all i and deg $A_i > i$ for some i is a K3 surface.

- A double cover of \mathbb{P}^2 ramified over a sextic (with only double and triple points)
- Many other examples!

Open problem: Is there a K3 surface X over a number field k such that $X(k) \neq \emptyset$ and X(k) is not Zariski dense? (Over finite fields k the answer is yes! But are there other fields for which the answer is yes?)

The same problem is open for rational surfaces.

Example 0.2. The K3 surface $x^4 + y^4 + z^4 + t^4 = 0$ in $\mathbb{P}^3_{\mathbb{Q}}$ has no rational points.

Example 0.3. Some elliptic K3 surfaces have a Zariski dense set of rational points.

Date: July 25, 2007.

Suppose that X is a smooth projective variety over $k = \mathbb{C}$. We have

$$0 \to \mathbb{Z} \to \mathbb{C} \stackrel{\exp(2\pi i \cdot)}{\to} \mathbb{C}^{\times} \to 1$$

and hence

$$0 \to \mathbb{Z} \to \mathcal{O}_X \to \mathcal{O}_X^{\times} \to 1$$

in the analytic topology. Taking sheaf cohomology yields

where $\operatorname{Pic}^{0} X := \{ [D] \in \operatorname{Pic} X : D \sim_{\operatorname{alg}} 0 \}.$

Let X be a K3 surface over \mathbb{C} . Then

- $\operatorname{Pic}^0 X = 0$, so $\operatorname{Pic} X \simeq \operatorname{NS} X$.
- $H^2(X,\mathbb{Z}) \simeq \mathbb{Z}^{22}$.

Conclusion: NS $X \simeq \operatorname{Pic} X$ is a free abelian rank of rank ≤ 22 . Fact:

- The cup product on $H^2(X,\mathbb{Z})$ coincides with the intersection pairing on Pic X.
- Poincaré duality: $H^2(X, \mathbb{Z})$ is unimodular, with det = ± 1 .

Hodge theory gives

$$H^{i}(X,\mathbb{C}) \simeq \bigoplus_{\substack{p,q \ge 0\\ p+q=i}} H^{q}(X, \bigwedge^{p} \Omega_{X/\mathbb{C}}).$$

Let $H^{pq} := H^q(X, \bigwedge^p \Omega_{X/\mathbb{C}})$ and $h^{pq} := \dim H^{pq}$. We know that $H^0(X, \omega_X) = H^0(X, \mathcal{O}_X) = \mathbb{C}$ and $H^1(X, \mathcal{O}_X) = 0$. Using Serre duality and Poincaré duality, we get all the entries in the table of h^{pq} 's below except the middle entry (we put h^{pq} in position (p, q), where $0 \le p \le 2$ and $0 \le q \le 2$):

1	0	1
0	20	0
1	0	1

The middle entry can be gotten from the fact that the topological Euler characteristic $\chi(X)$ equals $12\chi(\mathcal{O}_X) = 12 \cdot 2 = 24$. Since NS $X \hookrightarrow H^{1,1}$, we have rank NS ≤ 20 .

Fact: The lattice $H^2(X, \mathbb{Z})$ is

- unimodular
- even (for all x, we have $x \cdot x \equiv 0 \pmod{2}$)
- signature (3, 19), where 3 is the number of positive eigenvalues, and 19 is the number of negative eigenvalues.

These imply that $H^2(X,\mathbb{Z}) \simeq E_8(-1)^2 \oplus U^3$ as lattices, where $E_8(-1)$ is the E_8 -lattice with inner product multiplied by -1, and U is the rank-2 hyperbolic lattice.

On the other hand, the lattice NS X is

- not necessarily unimodular
- even (the adjunction formula says that for a curve C on X, we have $2g(C) 2 = C.(C + K) = C^2$, since K = 0 for a K3 surface).

- signature $(1, \rho 1)$, where $\rho := \operatorname{rank} NS$.
- primitive sublattice of $H^2(X, \mathbb{Z})$ (one says that $L \subset \Lambda$ is *primitive* if Λ/L is torsion-free)

Theorem 0.4 (consequence of Torelli theorem). Let L be any primitive sublattice of $E_8(-1)^2 \oplus U^3$ with signature $(1, \rho - 1)$. Then there is a moduli space of K3 surfaces X together with a diagram

compatible with $H^2(X,\mathbb{Z})$ whose irreducible components have dimension $20 - \rho$.

Example 0.5. Quartic surfaces in \mathbb{P}^3 : There are $35 = \binom{4+3}{3}$ monomials of degree 4 in 4 variables, so a quartic surface is given by a point in \mathbb{P}^{34} . But there is an action of PGL₄ on this, and dim PGL₄ = 16 - 1 = 15. We find that dim $\mathbb{P}^{34}/\text{PGL}_4 = 19$.

Example 0.6. For double covers of \mathbb{P}^2 ramified over a sextic, one finds

dim
$$(\mathbb{P}^{28-1}/\mathrm{PGL}_3) = 27 - (3^2 - 1) = 19.$$

Question 0.7. Is $\operatorname{Pic} X$ computable?

Question 0.8. Is there any K3 surface X over any number field k with rank $\operatorname{Pic} \overline{X} = 1$ such that X(k) is dense?

Question 0.9. Is there any K3 surface X over any number field k with rank $\operatorname{Pic} \overline{X} = 1$ such that for all finite extensions ℓ of k, the set $X(\ell)$ is not dense?