NONABELIAN DESCENT ON ENRIQUES SURFACES

DAVID HARARI (JOINT WORK WITH ALEXEI SKOROBOGATOV)

Let k be a number field. Fix an algebraic closure \overline{k} .

1. A family of Enriques surfaces (geometry)

Let D_1, D_2 be curves of genus 1, say

$$D_1: y_1^2 = d_1(x^2 - a)(x^2 - ab^2)$$
$$D_2: y_2^2 = d_2(t^2 - a)(t^2 - ac^2)$$

where $b, c, d_1, d_2 \in k^{\times}$ and $a \in k^{\times} - k^{\times 2}$, and $b, c \neq \pm 1$.

Let E_i be the Jacobian of D_i for i = 1, 2. The elliptic curves E_1 and E_2 have $E_i(\overline{k})[2] \subset E_i(k)$. We have the involution -1 on D_1 and on D_2 . Let Y be the Kummer surface obtained as the minimal desingularization of $(D_1 \times D_2)/(-1)$. This is a K3 surface.

Choose rational points $P \in E_1[2]$ and $Q \in E_2[2]$. We have a fixed-point-free involution $\sigma: Y \to Y$ induced by $(x, y) \mapsto (x + P, -y + Q)$ for $x \in D_1$ and $y \in D_2$. An *Enriques* surface is an étale quotient of a K3 surface by a fixed-point-free involution. So $X := Y/\sigma$ is an Enriques surface. The variety Y is the minimal smooth projective model of

$$y^{2} = d(x^{2} - a)(x^{2} - ab^{2})(t^{2} - a)(t^{2} - ac^{2}),$$

and $\sigma(x, y, t) = (-x, -y, -t).$

We have $H^1(X, \mathcal{O}_X) = H^2(X, \mathcal{O}_X) = 0$, but $\overline{X} := X \times_k \overline{k}$ is not rational, since it has a $\mathbb{Z}/2$ étale covering \overline{Y} . In fact, since a K3 surface is simply connected, we have $\pi_1(\overline{X}) = \mathbb{Z}/2$.

Proposition 1.1. Under very mild conditions on b, c, the elliptic curves \overline{E}_1 and \overline{E}_2 are not isogenous.

Proof. Check that $j(\overline{E}_1)$ is not integral over $\mathbb{Z}[j(\overline{E}_2)]$.

Assume from now on that \overline{E}_1 and \overline{E}_2 are not isogenous. Then $\operatorname{Pic}(\overline{D}_1 \times \overline{D}_2) \simeq \operatorname{Pic}\overline{D}_1 \times \operatorname{Pic}\overline{D}_2$.

We define 24 lines (by which we mean rational curves) on \overline{Y} . Number the points $(\pm\sqrt{a}, 0)$ and $(\pm b\sqrt{a}, 0)$ on D_1 as 0, 1, 2, 3. Number the points $(\pm\sqrt{a}, 0)$ and $(\pm c\sqrt{a}, 0)$ on D_2 as 0, 1, 2, 3. Let ℓ_{ij} be the exceptional curve on \overline{Y} corresponding to the blow-up of $(i, j) \in (\overline{D}_1 \times \overline{D}_2)/(-1)$: this gives 16 lines. Let ℓ_i be the proper transform of $(i \times \overline{D}_2)/(-1)$, and let s_j be the proper transform of $(\overline{D}_1 \times j)/(-1)$. Let $U' = (D_1 - \{y_1 = 0\}) \times (D_2 - \{y_2 = 0\})$ and V' = U'/(-1). Then V' is the complement of the 24 lines on Y.

Proposition 1.2. We have $\operatorname{Pic} \overline{V}' = 0$ (so $\operatorname{Pic} \overline{Y}$ is generated by the 24 lines).

Proof. Use Proposition 1.1 and the Hochschild-Serre spectral sequence associated to $\overline{U}' \rightarrow \overline{V}'$.

Date: July 26, 2007.

Let $L = k(\sqrt{a})$.

Remark 1.3. The 24 lines are defined over L, and the action of $\operatorname{Gal}(L/k)$ coincides with the action of σ .

2. A COUNTEREXAMPLE TO WEAK APPROXIMATION

Let $k = \mathbb{Q}$. Let b be a prime number p with $\left(\frac{a}{p}\right) = -1$. Let a be another prime number, with $a \equiv 1 \pmod{4}$. Let $c \in \mathbb{Z}$ such that $p \nmid c(c^2 - 1)$. Let $d_1 = d_2 = 1$.

For example, take a = 5, b = 13, c = 2. In this case, Y is given by

$$y^{2} = (x^{2} - a)(x^{2} - ap^{2})(t^{2} - a)(t^{2} - ac^{2}).$$

There is an obvious rational point $M \in Y(k)$, given by x = t = 0 and $y = a^2 pc$.

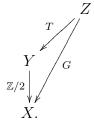
Define an adelic point $(M_v) \in \prod_v Y(k_v)$ where $M_v = M$ for v real and for $v \neq p$, and M_p given by $x = t = p^{-1}$, $y = p^{-4}\alpha$ where $\alpha \in \mathbb{Z}_p^{\times}$ with $\alpha \equiv 1 \pmod{p}$.

Proposition 2.1. Define $Q_v = f(M_v)$. Then (Q_v) is not in the closure of X(k) in $\prod_v X(k_v)$.

Idea: We can find a 1-dimensional k-torus T and an Y-torsor Z under T such that Z is also an X-torsor under a k-group G fitting into an exact sequence

$$1 \to T \to G \to \mathbb{Z}/2 \to 1.$$

In other words, we have



The étale cohomology set $H^1(X, G)$ classifies X-torsors under G. We have $[Z] \in H^1(X, G)$. Fact: $[Z](Q_v) \in \prod_v H^1(k_v, G)$ does not belong to the diagonal image of $H^1(k, G)$. This shows that $(Q_v) \notin \overline{X(k)}$, because of the Borel-Serre finiteness theorem.

3. Computations of Brauer groups

Goal: Show that (Q_v) is in the Brauer-Manin set of X: i.e., that for all $\alpha \in \operatorname{Br} X$,

(1)
$$\sum_{v} j_{v}(\alpha(Q_{v})) = 0$$

Let f be the map $Y \to X$. Recall that $\operatorname{Br}_1 X$ is the kernel of $\operatorname{Br} X \to \operatorname{Br} \overline{X}$.

Proposition 3.1. The group $f^*(Br_1 X)$ is contained in the image of $Br k \to Br Y$.

Proof. If k is a number field, then $\operatorname{Br}_1 X/\operatorname{Br} k = H^1(k, \operatorname{Pic} \overline{X})$. Similarly, $\operatorname{Br}_1 Y/\operatorname{Br} k = H^1(k, \operatorname{Pic} \overline{Y})$. Since $\operatorname{Pic} \overline{Y}$ is torsion-free, it is sufficient to show that $H^1(k, (\operatorname{Pic} \overline{X})/\operatorname{tors}) = 0$. The spectral sequence for $\overline{Y} \to \overline{X}$ gives

$$0 \to \mathbb{Z}/2 \to \operatorname{Pic} \overline{X} \to (\operatorname{Pic} \overline{Y})^{\sigma} \to H^2(\mathbb{Z}/2, \overline{k}^{\times})$$

and $(\operatorname{Pic} \overline{X})/\operatorname{tors} = \mathbb{Z}^r$ with trivial Galois action.

Theorem 3.2. If -d and -ad are not squares, then $\operatorname{Br}_1 X = \operatorname{Br} X$. (Note that $\operatorname{Br} \overline{X} = \mathbb{Z}/2$.) Proof of (1). Take $\alpha \in \operatorname{Br} X = \operatorname{Br}_1 X$. Then

$$\sum_{v} j_v(\alpha(Q_v)) = \sum_{v} j_v(f^*(\alpha)(M_v)),$$

which is constant by Proposition 3.1, so it is 0.

Conclusion: "The Brauer-Manin obstruction to weak approximation is not the only one for Enriques surfaces."

Remark 3.3. The important facts we used were:

- *G* is not commutative
- G is not connected.

If one of these failed, the obstruction would be explained by the Brauer-Manin obstruction.

Question 3.4. The map $\operatorname{Br} \overline{X} \to \operatorname{Br} \overline{Y}$ is injective for this family. Is it true in general for every Enriques surface?

Conjecture 3.5. The Brauer-Manin obstruction to the Hasse principle is not the only one for Enriques surfaces.