HOW TO TRIVIALISE A CENTRAL SIMPLE ALGEBRA

TOM FISHER

Let K be a field. Let A be a finite-dimensional associative K-algebra with 1 with basis a_1, \ldots, a_d , given by a list of structure constants c_{ijk} such that $a_i a_j = \sum_{k=1}^d c_{ijk} a_k$ for $i, j = 1, \ldots, d$.

Problem: Determine whether $A \simeq \operatorname{Mat}_n(K)$ for some n, and if so, find an isomorphism explicitly.

We may assume that $d = n^2$.

Remarks 1.

- (i) We may assume the following, since otherwise the answer is clearly no:
 - A is central (i.e., the centre is K)
 - A is simple (i.e., no 2-sided ideals)
- (ii) Wedderburn: Then $A \simeq \operatorname{Mat}_r(D)$ where $r \ge 1$ and D is a skew field with centre K. We have $[A:K] = r^2[D:K]$.

Consequence: If $[A:K] = p^2$, then $A \simeq \operatorname{Mat}_p(K)$ if and only if A contains a zero-divisor. Algorithmic version: Every left A-module is isomorphic to $M \oplus \cdots \oplus M$ where M is the unique (faithful) simple left A-module. Assume A contains a zero-divisor. Then [M:K] = p. Given a zero-divisor $x \in A$, put $N_1 = Ax$. Then $N_1 \simeq M^s$ with 0 < s < p. Construct a sequence N_1, N_2, \ldots of nonzero left A-modules of decreasing dimension. Initially taking B = A, pick $0 \neq \phi \in \operatorname{Hom}_A(N_i, B)$. If ϕ is not injective, take $N_{i+1} = \ker(\phi)$. Otherwise, replace B by $\operatorname{coker}(\phi)$, and choose a new ϕ . Consequence: we construct M. Then $A \simeq \operatorname{End}_K M = \operatorname{Mat}_p(K)$.

Remark 2. If $a \in A$ has reducible minimal polynomial $m(x) = m_1(x)m_2(x)$, then $m_1(a)$ is a zerodivisor.

Let K be a number field. Then class field theory (local-global principle) implies that if $A \otimes_K K_v \simeq \operatorname{Mat}_n(K_v)$ for all places v, then $A \simeq \operatorname{Mat}_n(K)$.

Consider the case $K = \mathbb{Q}$ and n = 3.

Step 1: Compute a maximal order $\mathcal{O} \subset A$: this will be conjugate to $Mat_3(\mathbb{Z})$.

Step 2: Trivialise over \mathbb{R} . View $A \subset Mat_3(\mathbb{R})$.

Step 3: Find a shortest vector M in the lattice $\mathcal{O} \subset \operatorname{Mat}_3(\mathbb{R}) = \mathbb{R}^9$.

Theorem 3. M is a zerodivisor.

Proof. We have $\mathcal{O} = P^{-1} \operatorname{Mat}_3(\mathbb{Z}) P$ where $P \in \operatorname{GL}_3(\mathbb{R})$. Therefore \mathcal{O} has covolume 1. So $||M||^2 \leq \gamma_9$, where γ_9 is the Hermite constant: $\gamma_9 < 2.2406...$ Thus $||M||^2 < 3$. Write M = QR, where Q is orthogonal and R is upper triangular with diagonal entries r_1, r_2, r_3 . Then $|\det M|^{2/3} = \left(\prod_{i=1}^3 r_i^2\right)^{1/3} \leq \frac{1}{3} \sum_{i=1}^3 r_i^2 \leq \frac{1}{3} ||M||^2 < 1$. So $|\det M| < 1$. But $\det M \in \mathbb{Z}$. Therefore $\det M = 0$.

Date: July 22, 2007.