8-DESCENT ON ELLIPTIC CURVES

TOM FISHER

Example 1. (Stoll 2002) The rank 1 elliptic curve $y^2 = x^3 + 7823$ has a 4-covering

$$
C_4 = \left\{ \begin{array}{l} 2x_1x_2 + x_1x_3 + x_1x_4 + x_2x_4 + x_3^2 - 2x_4^2 = 0\\ x_1^2 + x_1x_3 - x_1x_4 + 2x_2^2 - x_2x_3 + 2x_2x_4 - x_3^2 - x_3x_4 + x_4^2 = 0 \end{array} \right\} \subset \mathbb{P}^3.
$$

Searching for rational points we find

 $(116: 207: 474: -332) \in C_4(\mathbb{Q}).$

This point maps to a generator $(r/t^2, s/t^3)$ for $E(\mathbb{Q})$, where

 $t = 11981673410095561$ $r = 2263582143321421502100209233517777$ $s = 186398152584623305624837551485596770028144776655756.$

This is a point of canonical height $77.617...$

Suppose that $C_n \subset \mathbb{P}^{n-1}$ is a genus 1 normal curve. Let $E = \text{Jac } C_n$. Then C_n is a torsor under E. The action of $E[n]$ on C_n extends to an action of $E[n]$ on \mathbb{P}^{n-1} . Over \mathbb{C} , we can choose coordinates such that generators of $E[n]$ act on \mathbb{P}^{n-1} by the matrices

$$
\begin{pmatrix} 1 & & & \\ & \zeta & & \\ & & \ddots & \\ & & & \zeta^{n-1} \end{pmatrix}, \quad \begin{pmatrix} & 1 & & \\ & & \ddots & \\ & & & 1 \\ 1 & & & \end{pmatrix}
$$

where $\zeta = e^{2\pi i/n}$.

Idea of reduction: Make a choice of coordinates such the action of n -torsion is given by matrices close to those above.

The Heisenberg group H_n is defined by

Date: July 22, 2007.

Then $\rho: H_n \to GL_n$ is an irreducible *n*-dimensional representation of H_n . By the Weyl unitary trick there is a unique H_n -invariant inner product \langle , \rangle on \mathbb{C}^n . This is the inner product we use for reduction.

Problem: Compute \langle , \rangle .

Suppose we have locally soluble coverings $C_4 \to C_2 \to E$, where C_4 is $Q_1 = Q_2 = 0$ in \mathbb{P}^3 , and C_2 is $y^2 = g(x)$ mapping to \mathbb{P}^1 . Each Q_i corresponds to a symmetric 4×4 matrix A_i , and $g(x) = \det(xA_1 + A_2)$.

The map $C_4 \to \mathbb{P}^1$ is given by quadrics T_1, T_2 . Let $F = \mathbb{Q}[x]/(g(x)) = \mathbb{Q}(\theta)$. (Assume for this talk that F is a field. The general case is similar.)

$$
T_1 - \theta T_2 = \xi z^2 \pmod{I(C_4)}
$$

where $\xi \in F^{\times}$ and $z \in F[x_1, \ldots, x_4]$ is a linear form. The form z has conjugates $z_1, \ldots, z_4 \in$ $\mathbb{C}[x_1,\ldots,x_4]$, and θ has conjugates θ_1,\ldots,θ_4 , and ξ has conjugates ξ_1,\ldots,ξ_4 . Then \langle , \rangle is determined by

(1)
$$
|\xi_i|\langle z_i, z_j\rangle = \delta_{ij}|g'(\theta_i)|^{1/2}.
$$

Eight-descent (Stamminger): Let $Q_{\theta} = \theta Q_1 + Q_2$. This is the equation of a (cone over a) conic. By an explicit form of the Hasse principle we can find an F-rational point on this conic. Let $L \in F[x_1, \ldots, x_4]$ be a linear form defining the tangent to the cone at this point.

$$
C_4(\mathbb{Q}) \to F^\times/F^{\times 2}\mathbb{Q}^\times
$$

$$
P \mapsto L(P)
$$

Then im $C_4(\mathbb{Q}) \subset S \subset F^{\times}/F^{\times 2} \mathbb{Q}^{\times}$, where S is a finite set computed by Stamminger.

Problem: Given $\xi \in F^{\times}$, representing an element of S, compute equations for a 2-covering of C_4 .

Solution 1: Write $L = \xi z^2$ as

$$
L(x_1,...,x_4)=(\xi_0+\xi_1\theta+\xi_2\theta^2+\xi_3\theta^3)(z_0+z_1\theta+z_2\theta^2+z_3\theta^3)^2,
$$

expand to get four equations, each of which equates a linear form in the x_i with a quadratic form in z_0, z_1, z_2, z_3 . Linear algebra expresses each x_i as a quadratic form in z_0, z_1, z_2, z_3 . Substitute into Q_1 and Q_2 to get two quartics in z_0, z_1, z_2, z_3 . These define the union of two 8-coverings in \mathbb{P}^3 , say $C_8^+ \cup C_8^- \subset \mathbb{P}^3$. But we would like equations defining these 8-coverings individually. Here the norm conditions come in. Let L_1, \ldots, L_4 be the conjugates of L. Then $\prod_{i=1}^4 L_i = cQ_3^2 \pmod{I(C_4)}$ for some $c \in \mathbb{Q}^\times$ and $Q_3 \in \mathbb{Q}[x_1, \ldots, x_4]$ quadratic. From $L = \xi z^2$, we have $N(\xi)N(z)^2 = \prod_{i=1}^4 L_i = cQ_3^2$. Since $\xi \in S$, without loss of generality $N(\xi) = c$. We get $N(z) = \pm Q_3$. This gives a third quartic.

But a genus one normal curve $C_8 \subset \mathbb{P}^7$ of degree 8 is defined by 20 quadrics in 8 variables.

Solution 2: Parametrise the conic! $Q_{\theta} = \text{const}(LL' - M^2)$ where L, L', M are linear forms. Write $L = \xi z^2$ and $L' = \xi (z')^2$ and $M = \xi zz'$. Get 12 equations equating a linear form in x_1, \ldots, x_4 with a quadratic form in z_1, \ldots, z_4 ; this leads to 8 quadrics in $z_0, \ldots, z_3, z'_0, \ldots, z'_3$. It turns out that using the norm condition we can get a further 12 quadrics.

We have found a formula analogous to (1) defining the reduction inner product on the 8-covering, relative to the basis $z_0, \ldots, z_3, z'_0, \ldots, z'_3$.

Using these methods, we found a 2-covering of the curve C_4 in Example 1. On this 8-covering of E we found the rational point

$$
(0:0:0:0:0:0:0:1).
$$

Example 2. (from the Stein-Watkins database) Let E be the rank 2 elliptic curve

$$
y^2 + xy + y = x^3 - 3961560x - 3035251137
$$

of prime conductor $N_E = 3801444643$. We find $E(\mathbb{Q}) = \langle P_1, P_2 \rangle$ where

 $P_1 = (-10343/9, 15502/27)$

has canonical height $2.946...$ To find the second generator we first compute the everywhere locally soluble 4-coverings of E. One of these is

$$
C_4 = \left\{ \begin{array}{ll} x_1x_2 + x_1x_4 + x_2^2 + 3x_2x_3 - 7x_2x_4 + x_3^2 - 2x_3x_4 + x_4^2 & = & 0 \\ 6x_1^2 - x_1x_2 + 2x_1x_3 + 4x_1x_4 - 6x_2x_3 + 4x_3^2 + 15x_3x_4 + 9x_4^2 & = & 0 \end{array} \right\} \subset \mathbb{P}^3.
$$

We then computed a 2-covering $C_8 \to C_4$, given by equations $q_1, \ldots q_{20}$ where e.g.

$$
q_1 = -x_1^2 - x_1x_4 + 2x_1x_5 - x_1x_6 + x_1x_7 - x_1x_8 - x_2x_4 - x_2x_7 + x_2x_8 + x_3x_7 - x_4x_5 + x_4x_6 + x_4x_7 - 2x_4x_8 - x_5^2 + x_5x_6 - x_5x_7 - x_5x_8 - x_6x_7 - x_7x_8 - x_8^2.
$$

Magma's PointSearch function finds a point on C_8 :

(1271949 : 796042 : 358611 : −1843491 : 513534 : 2531537 : −2330994 : −1142028) which then maps down to a point on C_4 :

(6208516310474059 : −59514597662857514 : −9255924243407388 : −11423017679615138). This in turn maps down to a point $(r/t^2, s/t^3)$ on E where

- $t = 57204436729631275386786939121147787660092078210368817$ 6713689179795703
- $r = 10919607812201754697433435297074399487856433325041687$ 77513308874330935296419878516832700736490562061911804\ 136764933056933866846234988591589617
- $s = -2737797182928405968303947456146746283903090578548158$ 61014680910657479930315094343194702609558488223853230\ 08062298231051955202642360966377771000745512359951954\ 684959327693598798477975887445889344314286351998997810.

This is a point of canonical height 325.048 , and is independent of P_1 . (We earlier found this second generator using 12-descent, but using 8-descent is much quicker.)