
REPRESENTATION OF INTEGRAL QUADRATIC FORMS BY
INTEGRAL QUADRATIC FORMS

JEAN-LOUIS COLLIOT-THÉLÈNE (JOINT WORK WITH XU FEI)

1. Examples

In the book on quadratic forms by Cassels, one finds the following:

Example 1.1. Let m ≡ 3 (mod 8). The equation m2 = X2 − 2Y 2 + 64Z2 has a primitive
solution in Zp for each p but no primitive solution in Z. (“Primitive” means gcd(X, Y, Z) =
1.)

Proof. We leave as an exercise that there exist local solutions. If x, y, z ∈ Z satisfy the
equation and gcd(x, y, z) = 1, then

(m− 8z)(m + 8z) = x2 − 2y2 6= 0.

Suppose p | m − 8z. Then p 6= 2. If
(

2
p

)
= 1, then p ≡ ±1 (mod 8). If

(
2
p

)
= −1 (so

p ≡ ±3 (mod 8)), then x ≡ y ≡ 0 (mod p), so p - z, so p - m + 8z; therefore vp(m − 8z) is
even, so

m− 8z =
∏

p≡±1 (mod 8)

pnp
∏

p≡±3 (mod 8)

p2np ≡ 1 (mod 8),

which contradicts the hypothesis on m. �

What is going on?

Second proof. We have
(m− 8z)(m + 8z) = x2 − 2y2 6= 0.

Let α = (m− 8z, 2) = (m + 8z, 2) ∈ Br Q. We have αR = 0. If p 6= 2, and p does not divide
both m− 8z and m + 8z, then αQp = (unit, unit) = 0 ∈ Br Qp. If p 6= 2, and p divides both

m−8z and m+8z, then p|z, and p does not divide both x and y, so
(

2
p

)
= 1, so 2 ∈ Q×2

p , so

α|Qp = 0. If p = 2, then αQ2 = (m− 8z, 2) = (m, 2) = (±3, 2) 6= 0 ∈ Br Q2. This contradicts
the exact sequence

Br Q →
⊕

p

Br Qp → Q/Z.

�

Theorem 1.2 (R. Schulze-Pillot and F. Xu). Suppose that m, n, k ≥ 1. Then m2x2+n2ky2−
nz2 = 1 has no solution over Z if and only if

• (n,m) 6= 1, or
• (n,m) = 1 but

– either n ≡ 5 (mod 8) and 2 | m
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– or n ≡ 3 (mod 8) and 4 | m.

2. Representing quadratic forms by quadratic forms

More generally, one can consider the following problem. Consider two quadratic forms
over Z, say g of rank n over Q and f of rank m over Q, nondegenerate over Q. Write g ≺ f
if there exist linear forms `i with coefficients in Z such that

g(x1, . . . , xn) = f(`1(x1, . . . , xn), . . . , `m(x1, . . . , xn)).

In the case n = 1, we are asking the classical question of whether a nonzero integer a is
representable as f(x1, . . . , xn).

In general, given a scheme X over Z, we can ask whether X (Z) 6= ∅. Assume that over
each Zp we have g ≺Zp f ; does this imply g ≺Z f? This is a question of the type: does∏

pX (Zp) 6= ∅ imply X (Z) 6= ∅?
One reason to work with schemes: Let X1 = Spec Z[x, y, z]/(f − a). Let X = X1 − {x =

y = z = 0}. Then X (Z) is the set of primitive integer solutions to a = f(x, y, z).
Let X be a separated scheme of finite type over Z. Let X = X×ZQ. Then X (Z) ↪→ X(Q).

Let X ′ be the schematic closure of X in X . Fact: X ′(Z) = X (Z) and X ′(Zp) = X (Zp).
Concretely, this is saying, for instance, that pf(x, y, z) = pa has the same integral solutions
as f(x, y, z) = a.

Let k be a number field. Let O ⊂ k be the ring of integers. Let Ω be the set of places of
k. Let X/O be a separated flat scheme. Let X = X ×O k. Define the adèles of X as

X(Ak) =
⋃

finite S ⊂ Ω

[∏
v∈S

X(kv)×
∏
v/∈S

X (Ov)

]
⊂
∏
v∈Ω

X(kv).

This is the same as the set of k-morphisms Spec Ak → X.
Over an arbitrary field k with char k = 0, if X is a variety over k, then

k[X]× = H0(X, Gm)

Pic X = H1
Zar(X, Gm) = H1

ét(X, Gm) (Hilbert’s theorem 90)

Br X = H2
ét(X, Gm).

If X/k is smooth and integral, there is an exact sequence

0 → Br X → Br k(X) →
⊕
Y⊂X

irreducible codim 1

H1(k(Y ), Q/Z).

For X/k and F ⊃ k, we have

X(F )× Br X → Br F = Br Spec F = H2(GF , F
×
).

Now let k be a number field. Suppose A ∈ Br X. We have the basic commutative diagram,
where the bottom line is exact:

X(k) //

evA

��

X(Ak)
θA

%%LLLLLLLLLL

evA

��

Br k //
⊕

v∈Ω Br kv

P
iv // Q/Z
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Thus (Manin 1970): X(k) ⊂ X(A)Br :=
⋂

A∈Br X ker θA.
Analogously, we have

X (O) ⊂
(∏

X (Ov)
)Br

Here Br refers to the Brauer group of X, not (only) of X .
Let G be a connected linear algebraic group. Let X/k be a homogeneous space of G: this

means that we have a group variety action G×X → X and G(k) acts transitively on X(k).
Basic example: X = G/H where H is a subgroup of G (note: forming the quotient variety

is not a trivial operation).
Back to our general problem: Let X = MorO(g, f). Witt: Then X = Mork(gk, fk) is a

homogeneous space of the orthogonal group O(fk).

• If n < m, then X is a homogeneous space of SO(f).
• If n = m and X(k) 6= ∅, then X = X0 ∪ X1 where X0 is a homogeneous space of

SO(f).

We are assuming
∏
X (Ov) 6= ∅. So

∏
X(kv) 6= ∅. By Hasse’s theorem (1924/25), X(k) 6=

∅. Fix a point P0 ∈ X(k); then X = SO(f)/H1, where H1 is the stabilizer of P0.
Suppose that m ≥ 3. Then we can also write SO(f)/H1 = Spin(f)/H for some H ≤

Spin(f). Write f ' g ⊥ h over k, where f, g, h are of ranks m,n,m− n, respectively.

• If m− n ≥ 3, then H = Spin(h).
• If m− n = 2, then H = R1

K/kGm where K = k(
√
− det f · det g).

• If m− n ≤ 1, then H = µ2, and X = SO(f).

General situation: Let X = G/H where G is a semisimple simply connected group that
is absolutely simple.

For X = G, we have

• k× = k[G]×

• Pic G = 0
• Br k

∼→ Br G.

In general,

• k×
∼→ k[X]×.

• Ĥ(k)
∼→ Pic X, where Ĥ := Homk-groups(H, Gm).

• H1(Gk, Ĥ(k)) ' ker
(
Br X → Br X

)
/ Br k, where X := X ×k k.

If H is connected, there is an isomorphism Pic H
∼→ Br X/ Br k: these are finite groups.

We return to the situation g ≺ f with g, f of ranks n,m.

• If m− n ≥ 3, then
– Pic X = 0
– Br k

∼→ Br X.
• If m− n = 2, then

– If − det f · deg g is a square, then
∗ Pic X = Z
∗ Br k = Br X.

– If not a square, then Br X/ Br k = Z/2Z.
• If m− n ≤ 1, then Br X/ Br k = k×/k×2.
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3. General theorem

Theorem 3.1. Let k be a number field. Let X = G/H where G is semisimple, simply
connected and absolutely simple, and H is either connected or finite abelian. Assume that
v0 is a place of k such that G(kv0) is not compact: one then says that Gkv0

is “isotropic”.
Suppose X/O and X := X ×O k ' G/H. Assume that(∏

v∈Ω

X (Ov)

)Br X

6= ∅.

Let O{v0} be the subring of elements of k that are integral away from v0. Then X(O{v0}) 6= ∅.

We use the Hasse principle for semisimple simply connected groups G:

Theorem 3.2 (Eichler, Kneser, Harder, Chernousov). For a semisimple simply connected
group G, the diagonal map

H1(k,G) →
∏
v∈Ω

H1(kv, G)

is injective.

We also use the strong approximation theorem:

Theorem 3.3 (Eichler, Kneser, Platonov). Let G/k be semisimple simply connected and
absolutely simple. If G(kv0) is not compact, then G(k).G(kv0) is dense in G(Ak).

We also use

Theorem 3.4 (Kottwitz). Let H be connected. Then there is an exact sequence

H1(k,H) →
⊕
v∈Ω

H1(kv, H) → Hom(Pic H, Q/Z).

(The last map is constructed from the following, given for k, but which applies also to kv:

H1(k,H)× Pic H → Br k

defined by using Ext(H, Gm)
∼→ Pic H: an extension

1 → Gm → E → H → 1

induces H1(k,H) → H2(k, Gm) = Br k.)

One can also look at H1
ét(X, H)× Pic H → Br X.

For µ finite abelian we have an exact sequence (Poitou, Tate)

H1(k, µ) →
′∏

H1(kv, µ) → Hom(H1(k, µ̂), Q/Z)

where µ̂ := Hom(µ, Gm).
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Proof of Theorem 3.1. Assume H connected. Recall that X = G/H, so G → X is a torsor
under H. We have the diagram

G(k) //

��

G(Ak)

��
X(k) //

��

X(Ak)
Manin //

��

Hom(Br X/ Br k, Q/Z)

��
H1(k,H) //

��

⊕
v∈Ω H1(kv, H)

Kottwitz //

��

Hom(Pic H, Q/Z)

H1(k, G) //
∏

v∈Ω H1(kv, G)

and the bottom map is injective by the Hasse principle.
Easy: If (Mv) ∈ X(A)Br, then there exist M ∈ X(k) and (gv) ∈ G(Ak) such that gvM =

Mv ∈ X(kv) for each v. Use (Mv) ∈
∏
X (Ov) and the fact that G(k0)G(k) is dense in G(Ak)

(strong approximation) to find some g0 ∈ G(k) such that g0M ∈ X (Ov) for any v 6= v0.
One can play the same game with G/µ for µ finite abelian, using a sequence from class

field theory. �

Effectivity: Can we check the hypothesis(∏
v∈Ω

X (Ov)

)Br X

6= ∅?

Suppose that we are in the case where H is connected. The group Pic H ' Br X/ Br k is
finite for purely algebraic reasons. If one chooses S ⊂ Ω large enough, where X ×O OS '
G/H, then it is enough to decide whether the map∏

v∈S

X (Ov) → Hom(Pic H, Q/Z)

has a nontrivial kernel.
Now suppose instead that we are in the case X = G/µ with µ finite abelian. Let S be big

enough for µ. Then we have the exact sequence

H1
ét(OS, µ) →

∏
v∈S

H1(k, µ) → Hom(H1
ét(OS, µ̂), Q/Z).

Here again one may restrict attention to the kernel of the map∏
v∈S

X (Ov) → Hom(H1
ét(OS, µ̂), Q/Z),

but the finiteness of the group H1
ét(OS, µ̂) comes from Dirichlet’s theorem and finiteness of

the class number.
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4. Application to quadratic forms

We want to know whether g ≺ f over O, where the ranks are n and m, with m ≥ 3.
If m− n ≥ 3, then Br X/ Br k = 0. Then

∏
v∈ΩX (Ov) 6= ∅ implies X (O{v0}) 6= ∅ if fkv0

is
isotropic; over Q, if we can take v0 = ∞, then we get an integral representation.

Suppose m− n = 2. Consider m = 3, n = 1. We want to solve a = f(x, y, z) with a 6= 0.
This defines X . Let X = X ×O k. Then Br X/ Br k is 0 if d := −a · det f is a square, and
Z/2Z if d is not a square. Consider the latter case.∏

v∈Ω

X (Ov) → Z/2Z

(Mv) 7→
∑

v

evA(Mv).

How to find A ∈ Br X? Since
∏
X (Ov) 6= ∅, we have

∏
X(kv) 6= ∅, so we can find a point

P0 ∈ X(k). Let Y ⊂ P3
k be defined by q(x, y, z) − at2 = 0. Let 0 = `1(x, y, z, t) be the

tangent plane to Y at P0. We can show that f(x, y, z) − at2 = `1`2 + c(`2
3 − `2

4). Define

A ∈ Br k(X) by A =
(

`1(x,y,z,t)
t

, d
)
. We check that A ∈ Br X \Br k. Let K = k(

√
d). Check

the kernel of the map Θ obtained as the composition∏
v∈Ω

X (Ov) →
⊕
v∈Ω

k×v
NK×

v

→ Z/2Z

where the first map sends Mv to (`1/t)(Mv). Assuming there exists an archimedean v0 where
fv0 is isotropic, we have X (O) 6= ∅ if and only if there is a point in the kernel of Θ.

Let us apply this to

m2x2 + n2ky2 − nz2 = 1.

This is solvable over each Zp if and only if (n, m) = 1; let us assume this. There is an obvious
rational point, namely P0 := (0,−1/nk, 0). Write the equation as

(1 + nky)(1− nky) = m2x2 − nz2.

The tangent plane at P0 is 1 + nky = 0. In Br X, we have A = (1 + nky, n) (the number n
is the old d). We have

X (Zp) → Br Qp.

If p 6= 2, then evA(X (Zp)) = 0 always. If p = 2, then evA(X (Z2)) = 1 in Z/2Z if and only if
n ≡ 5 (mod 8) and 2 | m, or n ≡ 3 (mod 8) and 4 | m.

Exercise 4.1 (Schulze-Pillot). Take k = Q(
√

35). If p is a prime such that
(

p
7

)
= 1, then

7p2 = a2 + b2 + c2 over each Ov but not over O = Z[
√

35]. Prove that this is given by a
Brauer-Manin obstruction.

Exercise 4.2. Fix f(x, y, z). The elements a ∈ Z such that a ≺ f over each Zp but not over
Z fall into finitely many classes in Q×/Q×. (The same holds over any number field.)

We now consider the case m = n+2 with m ≥ 3. So X = Spin(f)/T where T := R1
K/kGm

is given by an equation NK/k( ) = 1, where K = k(
√

d) (which we assume is a field), where
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d := − det f · det g. We have Pic T = Z/2Z. What, concretely, is the map∏
v∈Ω X(kv) //

((QQQQQQQQQQQQQ

⊕
v∈Ω H1(kv, T ) // Hom(Pic T, Q/Z)

k×v /NK×
v

// Z/2Z?

Use
1

��
1 // µ2 //

��

T //

��

T1

��

// 1

1 // µ2 // Spin(f) //

��

SO(f) //

��

1

X

��

X

0

where T1 ' T . We have

SO(f)(F ) //

��

F×/F×2

��
X(F ) // H1(F, T ) F×/N(F.K)×

where the top map is the spinor norm sending a product of (an even number of) reflections∏
τvi

to
∏

f(vi).
Application to an example of Siegel:

x2 + 32y2 ≺ x2 + 128y2 + 128yz + 544z2 − 64t2

over each Zp but not over Z.

Classical problem: Suppose we have a quadratic space (V/k, fk) with fk nondegenerate,
and we have N, M ⊂ V where M is a full lattice: Nk ⊂ V and Mk = V . Assume that
f(M) ⊂ O and f(N) ⊂ O, and that g := f |Nk

is nondegenerate. Let Hom((N, g), (M, f))(A)
be the set of linear φ : NA → MA such that φ∗(f) = g. Define X = Hom((N, g), (M, f)).
We are given P0 ∈ X(k). The group O(f)(A) acts on the full lattices in (V, fk).

“N is represented by the proper class of M” translates as X (O) 6= ∅.
“N is represented by the genus of M” translates as

∏
v X (Ov) 6= ∅.

“N is represented by the proper spinor genus of M” translates as (
∏

v X (Ov))
Br X 6= ∅.

There is also a strong approximation statement analogous to our Brauer-Manin obstruction
statement for the integral Hasse principle.
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