REPRESENTATION OF INTEGRAL QUADRATIC FORMS BY INTEGRAL QUADRATIC FORMS

JEAN-LOUIS COLLIOT-THÉLÈNE (JOINT WORK WITH XU FEI)

1. EXAMPLES

In the book on quadratic forms by Cassels, one finds the following:

Example 1.1. Let $m \equiv 3 \pmod{8}$. The equation $m^2 = X^2 - 2Y^2 + 64Z^2$ has a primitive solution in \mathbb{Z}_p for each p but no primitive solution in \mathbb{Z} . ("Primitive" means gcd(X, Y, Z) = 1.)

Proof. We leave as an exercise that there exist local solutions. If $x, y, z \in \mathbb{Z}$ satisfy the equation and gcd(x, y, z) = 1, then

$$(m - 8z)(m + 8z) = x^2 - 2y^2 \neq 0.$$

Suppose $p \mid m - 8z$. Then $p \neq 2$. If $\binom{2}{p} = 1$, then $p \equiv \pm 1 \pmod{8}$. If $\binom{2}{p} = -1$ (so $p \equiv \pm 3 \pmod{8}$), then $x \equiv y \equiv 0 \pmod{p}$, so $p \nmid z$, so $p \nmid m + 8z$; therefore $v_p(m - 8z)$ is even, so

$$m - 8z = \prod_{p \equiv \pm 1 \pmod{8}} p^{n_p} \prod_{p \equiv \pm 3 \pmod{8}} p^{2n_p} \equiv 1 \pmod{8}$$

which contradicts the hypothesis on m.

What is going on?

Second proof. We have

$$(m-8z)(m+8z) = x^2 - 2y^2 \neq 0$$

Let $\alpha = (m - 8z, 2) = (m + 8z, 2) \in Br \mathbb{Q}$. We have $\alpha_{\mathbb{R}} = 0$. If $p \neq 2$, and p does not divide both m - 8z and m + 8z, then $\alpha_{\mathbb{Q}_p} = (\text{unit}, \text{unit}) = 0 \in Br \mathbb{Q}_p$. If $p \neq 2$, and p divides both m - 8z and m + 8z, then p|z, and p does not divide both x and y, so $\binom{2}{p} = 1$, so $2 \in \mathbb{Q}_p^{\times 2}$, so $\alpha|_{\mathbb{Q}_p} = 0$. If p = 2, then $\alpha_{\mathbb{Q}_2} = (m - 8z, 2) = (m, 2) = (\pm 3, 2) \neq 0 \in Br \mathbb{Q}_2$. This contradicts the exact sequence

$$\operatorname{Br} \mathbb{Q} \to \bigoplus_p \operatorname{Br} \mathbb{Q}_p \to \mathbb{Q}/\mathbb{Z}.$$

Theorem 1.2 (R. Schulze-Pillot and F. Xu). Suppose that $m, n, k \ge 1$. Then $m^2x^2 + n^{2k}y^2 - nz^2 = 1$ has no solution over \mathbb{Z} if and only if

(n, m) ≠ 1, or
(n, m) = 1 but
either n ≡ 5 (mod 8) and 2 | m

Date: July 24, 2007.

 $- or n \equiv 3 \pmod{8}$ and $4 \mid m$.

2. Representing quadratic forms by quadratic forms

More generally, one can consider the following problem. Consider two quadratic forms over \mathbb{Z} , say g of rank n over \mathbb{Q} and f of rank m over \mathbb{Q} , nondegenerate over \mathbb{Q} . Write $g \prec f$ if there exist linear forms ℓ_i with coefficients in \mathbb{Z} such that

$$g(x_1,\ldots,x_n)=f(\ell_1(x_1,\ldots,x_n),\ldots,\ell_m(x_1,\ldots,x_n)).$$

In the case n = 1, we are asking the classical question of whether a nonzero integer a is representable as $f(x_1, \ldots, x_n)$.

In general, given a scheme \mathcal{X} over \mathbb{Z} , we can ask whether $\mathcal{X}(\mathbb{Z}) \neq \emptyset$. Assume that over each \mathbb{Z}_p we have $g \prec_{\mathbb{Z}_p} f$; does this imply $g \prec_{\mathbb{Z}} f$? This is a question of the type: does $\prod_p \mathcal{X}(\mathbb{Z}_p) \neq \emptyset$ imply $\mathcal{X}(\mathbb{Z}) \neq \emptyset$?

One reason to work with schemes: Let $\mathcal{X}_1 = \operatorname{Spec} \mathbb{Z}[x, y, z]/(f - a)$. Let $\mathcal{X} = \mathcal{X}_1 - \{x = y = z = 0\}$. Then $\mathcal{X}(\mathbb{Z})$ is the set of primitive integer solutions to a = f(x, y, z).

Let \mathcal{X} be a separated scheme of finite type over \mathbb{Z} . Let $X = \mathcal{X} \times_{\mathbb{Z}} \mathbb{Q}$. Then $\mathcal{X}(\mathbb{Z}) \hookrightarrow \mathcal{X}(\mathbb{Q})$. Let \mathcal{X}' be the schematic closure of X in \mathcal{X} . Fact: $\mathcal{X}'(\mathbb{Z}) = \mathcal{X}(\mathbb{Z})$ and $\mathcal{X}'(\mathbb{Z}_p) = \mathcal{X}(\mathbb{Z}_p)$. Concretely, this is saying, for instance, that pf(x, y, z) = pa has the same integral solutions as f(x, y, z) = a.

Let k be a number field. Let $\mathcal{O} \subset k$ be the ring of integers. Let Ω be the set of places of k. Let \mathcal{X}/\mathcal{O} be a separated flat scheme. Let $X = \mathcal{X} \times_{\mathcal{O}} k$. Define the adèles of X as

$$X(\mathbb{A}_k) = \bigcup_{\text{finite } S \subset \Omega} \left[\prod_{v \in S} X(k_v) \times \prod_{v \notin S} \mathcal{X}(\mathcal{O}_v) \right] \subset \prod_{v \in \Omega} X(k_v).$$

This is the same as the set of k-morphisms $\operatorname{Spec} \mathbb{A}_k \to X$.

Over an arbitrary field k with char k = 0, if X is a variety over k, then

$$k[X]^{\times} = H^{0}(X, \mathbb{G}_{m})$$

Pic $X = H^{1}_{Zar}(X, \mathbb{G}_{m}) = H^{1}_{\acute{e}t}(X, \mathbb{G}_{m})$ (Hilbert's theorem 90)
Br $X = H^{2}_{\acute{e}t}(X, \mathbb{G}_{m}).$

If X/k is smooth and integral, there is an exact sequence

$$0 \to \operatorname{Br} X \to \operatorname{Br} k(X) \to \bigoplus_{\substack{Y \subset X \\ \text{irreducible codim 1}}} H^1(k(Y), \mathbb{Q}/\mathbb{Z}).$$

For X/k and $F \supset k$, we have

$$X(F) \times \operatorname{Br} X \to \operatorname{Br} F = \operatorname{Br} \operatorname{Spec} F = H^2(\mathcal{G}_F, \overline{F}^{\times}).$$

Now let k be a number field. Suppose $A \in Br X$. We have the basic commutative diagram, where the bottom line is exact:

$$\begin{array}{ccc} X(k) & \longrightarrow & X(\mathbb{A}_k) \\ & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & \downarrow^{\operatorname{ev}_A} \\ & & & & & & & & \downarrow^{\operatorname{ev}_A} & & \downarrow^{\operatorname{ev}$$

Thus (Manin 1970): $X(k) \subset X(\mathbb{A})^{\operatorname{Br}} := \bigcap_{A \in \operatorname{Br} X} \ker \theta_A$. Analogously, we have

$$\mathcal{X}(\mathcal{O}) \subset \left(\prod \mathcal{X}(\mathcal{O}_v)\right)^{\mathrm{Br}}$$

Here Br refers to the Brauer group of X, not (only) of \mathcal{X} .

Let G be a connected linear algebraic group. Let X/k be a homogeneous space of G: this means that we have a group variety action $G \times X \to X$ and $G(\overline{k})$ acts transitively on $X(\overline{k})$. Basic example: X = G/H where H is a subgroup of G (note: forming the quotient variety

is not a trivial operation).

Back to our general problem: Let $\mathcal{X} = \operatorname{Mor}_{\mathcal{O}}(g, f)$. Witt: Then $X = \operatorname{Mor}_{k}(g_{k}, f_{k})$ is a homogeneous space of the orthogonal group $O(f_{k})$.

- If n < m, then X is a homogeneous space of SO(f).
- If n = m and $X(k) \neq \emptyset$, then $X = X_0 \cup X_1$ where X_0 is a homogeneous space of SO(f).

We are assuming $\prod \mathcal{X}(\mathcal{O}_v) \neq \emptyset$. So $\prod X(k_v) \neq \emptyset$. By Hasse's theorem (1924/25), $X(k) \neq \emptyset$. Fix a point $P_0 \in X(k)$; then $X = SO(f)/H_1$, where H_1 is the stabilizer of P_0 .

Suppose that $m \ge 3$. Then we can also write $SO(f)/H_1 = Spin(f)/H$ for some $H \le Spin(f)$. Write $f \simeq g \perp h$ over k, where f, g, h are of ranks m, n, m - n, respectively.

- If $m n \ge 3$, then H = Spin(h).
- If m n = 2, then $H = R^1_{K/k} \mathbb{G}_m$ where $K = k(\sqrt{-\det f \cdot \det g})$.
- If $m n \leq 1$, then $H = \mu_2$, and X = SO(f).

General situation: Let X = G/H where G is a semisimple simply connected group that is absolutely simple.

For X = G, we have

- $k^{\times} = k[G]^{\times}$
- Pic G = 0
- Br $k \xrightarrow{\sim}$ Br G.

In general,

- $k^{\times} \xrightarrow{\sim} k[X]^{\times}$.
- $\hat{H}(k) \xrightarrow{\sim} \operatorname{Pic} X$, where $\hat{H} := \operatorname{Hom}_{k\operatorname{-groups}}(H, \mathbb{G}_m)$.
- $H^1(\mathcal{G}_k, \hat{H}(\overline{k})) \simeq \ker \left(\operatorname{Br} X \to \operatorname{Br} \overline{X} \right) / \operatorname{Br} k$, where $\overline{X} := X \times_k \overline{k}$.

If H is connected, there is an isomorphism $\operatorname{Pic} H \xrightarrow{\sim} \operatorname{Br} X/\operatorname{Br} k$: these are finite groups. We return to the situation $g \prec f$ with g, f of ranks n, m.

3. General theorem

Theorem 3.1. Let k be a number field. Let X = G/H where G is semisimple, simply connected and absolutely simple, and H is either connected or finite abelian. Assume that v_0 is a place of k such that $G(k_{v_0})$ is not compact: one then says that $G_{k_{v_0}}$ is "isotropic". Suppose \mathcal{X}/\mathcal{O} and $X := \mathcal{X} \times_{\mathcal{O}} k \simeq G/H$. Assume that

$$\left(\prod_{v\in\Omega}\mathcal{X}(\mathcal{O}_v)\right)^{\operatorname{Br} X}\neq\emptyset.$$

Let $\mathcal{O}_{\{v_0\}}$ be the subring of elements of k that are integral away from v_0 . Then $X(\mathcal{O}_{\{v_0\}}) \neq \emptyset$.

We use the Hasse principle for semisimple simply connected groups G:

Theorem 3.2 (Eichler, Kneser, Harder, Chernousov). For a semisimple simply connected group G, the diagonal map

$$H^1(k,G) \to \prod_{v \in \Omega} H^1(k_v,G)$$

is injective.

We also use the strong approximation theorem:

Theorem 3.3 (Eichler, Kneser, Platonov). Let G/k be semisimple simply connected and absolutely simple. If $G(k_{v_0})$ is not compact, then $G(k).G(k_{v_0})$ is dense in $G(\mathbb{A}_k)$.

We also use

Theorem 3.4 (Kottwitz). Let H be connected. Then there is an exact sequence

$$H^1(k, H) \to \bigoplus_{v \in \Omega} H^1(k_v, H) \to \operatorname{Hom}(\operatorname{Pic} H, \mathbb{Q}/\mathbb{Z}).$$

(The last map is constructed from the following, given for k, but which applies also to k_v :

$$H^1(k, H) \times \operatorname{Pic} H \to \operatorname{Br} k$$

defined by using $\operatorname{Ext}(H, \mathbb{G}_m) \xrightarrow{\sim} \operatorname{Pic} H$: an extension

$$1 \to \mathbb{G}_m \to E \to H \to 1$$

induces $H^1(k, H) \to H^2(k, \mathbb{G}_m) = \operatorname{Br} k.$

One can also look at $H^1_{\text{\'et}}(X, H) \times \operatorname{Pic} H \to \operatorname{Br} X$.

For μ finite abelian we have an exact sequence (Poitou, Tate)

$$H^1(k,\mu) \to \prod' H^1(k_v,\mu) \to \operatorname{Hom}(H^1(k,\hat{\mu}),\mathbb{Q}/\mathbb{Z})$$

where $\hat{\mu} := \operatorname{Hom}(\mu, \mathbb{G}_m).$

Proof of Theorem 3.1. Assume H connected. Recall that X = G/H, so $G \to X$ is a torsor under H. We have the diagram

and the bottom map is injective by the Hasse principle.

Easy: If $(M_v) \in X(\mathbb{A})^{\mathrm{Br}}$, then there exist $M \in X(k)$ and $(g_v) \in G(\mathbb{A}_k)$ such that $g_v M = M_v \in X(k_v)$ for each v. Use $(M_v) \in \prod \mathcal{X}(\mathcal{O}_v)$ and the fact that $G(k_0)G(k)$ is dense in $G(\mathbb{A}_k)$ (strong approximation) to find some $g_0 \in G(k)$ such that $g_0 M \in \mathcal{X}(\mathcal{O}_v)$ for any $v \neq v_0$.

One can play the same game with G/μ for μ finite abelian, using a sequence from class field theory.

Effectivity: Can we check the hypothesis

$$\left(\prod_{v\in\Omega}\mathcal{X}(\mathcal{O}_v)\right)^{\operatorname{Br} X}\neq\emptyset?$$

Suppose that we are in the case where H is connected. The group Pic $H \simeq \operatorname{Br} X/\operatorname{Br} k$ is finite for purely algebraic reasons. If one chooses $S \subset \Omega$ large enough, where $\mathcal{X} \times_{\mathcal{O}} \mathcal{O}_S \simeq \underline{G/H}$, then it is enough to decide whether the map

$$\prod_{v \in S} \mathcal{X}(\mathcal{O}_v) \to \operatorname{Hom}(\operatorname{Pic} H, \mathbb{Q}/\mathbb{Z})$$

has a nontrivial kernel.

Now suppose instead that we are in the case $X = G/\mu$ with μ finite abelian. Let S be big enough for μ . Then we have the exact sequence

$$H^1_{\mathrm{\acute{e}t}}(\mathcal{O}_S,\mu) \to \prod_{v \in S} H^1(k,\mu) \to \mathrm{Hom}(H^1_{\mathrm{\acute{e}t}}(\mathcal{O}_S,\hat{\mu}),\mathbb{Q}/\mathbb{Z}).$$

Here again one may restrict attention to the kernel of the map

$$\prod_{v \in S} \mathcal{X}(\mathcal{O}_v) \to \operatorname{Hom}(H^1_{\operatorname{\acute{e}t}}(\mathcal{O}_S, \hat{\mu}), \mathbb{Q}/\mathbb{Z}),$$

but the finiteness of the group $H^1_{\text{\acute{e}t}}(\mathcal{O}_S, \hat{\mu})$ comes from Dirichlet's theorem and finiteness of the class number.

4. Application to quadratic forms

We want to know whether $g \prec f$ over \mathcal{O} , where the ranks are n and m, with $m \geq 3$. If $m - n \geq 3$, then $\operatorname{Br} X/\operatorname{Br} k = 0$. Then $\prod_{v \in \Omega} \mathcal{X}(\mathcal{O}_v) \neq \emptyset$ implies $\mathcal{X}(\mathcal{O}_{\{v_0\}}) \neq \emptyset$ if $f_{k_{v_0}}$ is isotropic; over \mathbb{Q} , if we can take $v_0 = \infty$, then we get an integral representation.

Suppose m - n = 2. Consider m = 3, n = 1. We want to solve a = f(x, y, z) with $a \neq 0$. This defines \mathcal{X} . Let $X = \mathcal{X} \times_{\mathcal{O}} k$. Then $\operatorname{Br} X/\operatorname{Br} k$ is 0 if $d := -a \cdot \det f$ is a square, and $\mathbb{Z}/2\mathbb{Z}$ if d is not a square. Consider the latter case.

$$\prod_{v \in \Omega} \mathcal{X}(\mathcal{O}_v) \to \mathbb{Z}/2\mathbb{Z}$$
$$(M_v) \mapsto \sum_v \operatorname{ev}_A(M_v).$$

How to find $A \in \operatorname{Br} X$? Since $\prod \mathcal{X}(\mathcal{O}_v) \neq \emptyset$, we have $\prod X(k_v) \neq \emptyset$, so we can find a point $P_0 \in X(k)$. Let $Y \subset \mathbb{P}^3_k$ be defined by $q(x, y, z) - at^2 = 0$. Let $0 = \ell_1(x, y, z, t)$ be the tangent plane to Y at P_0 . We can show that $f(x, y, z) - at^2 = \ell_1\ell_2 + c(\ell_3^2 - \ell_4^2)$. Define $A \in \operatorname{Br} k(X)$ by $A = \left(\frac{\ell_1(x, y, z, t)}{t}, d\right)$. We check that $A \in \operatorname{Br} X \setminus \operatorname{Br} k$. Let $K = k(\sqrt{d})$. Check the kernel of the map Θ obtained as the composition

$$\prod_{v \in \Omega} \mathcal{X}(\mathcal{O}_v) \to \bigoplus_{v \in \Omega} \frac{k_v^{\times}}{NK_v^{\times}} \to \mathbb{Z}/2\mathbb{Z}$$

where the first map sends M_v to $(\ell_1/t)(M_v)$. Assuming there exists an archimedean v_0 where f_{v_0} is isotropic, we have $\mathcal{X}(\mathcal{O}) \neq \emptyset$ if and only if there is a point in the kernel of Θ .

Let us apply this to

$$m^2x^2 + n^{2k}y^2 - nz^2 = 1.$$

This is solvable over each \mathbb{Z}_p if and only if (n, m) = 1; let us assume this. There is an obvious rational point, namely $P_0 := (0, -1/n^k, 0)$. Write the equation as

$$(1 + n^k y)(1 - n^k y) = m^2 x^2 - nz^2.$$

The tangent plane at P_0 is $1 + n^k y = 0$. In Br X, we have $A = (1 + n^k y, n)$ (the number n is the old d). We have

$$\mathcal{X}(\mathbb{Z}_p) \to \operatorname{Br} \mathbb{Q}_p.$$

If $p \neq 2$, then $ev_A(\mathcal{X}(\mathbb{Z}_p)) = 0$ always. If p = 2, then $ev_A(\mathcal{X}(\mathbb{Z}_2)) = 1$ in $\mathbb{Z}/2\mathbb{Z}$ if and only if $n \equiv 5 \pmod{8}$ and $2 \mid m$, or $n \equiv 3 \pmod{8}$ and $4 \mid m$.

Exercise 4.1 (Schulze-Pillot). Take $k = \mathbb{Q}(\sqrt{35})$. If p is a prime such that $\left(\frac{p}{7}\right) = 1$, then $7p^2 = a^2 + b^2 + c^2$ over each \mathcal{O}_v but not over $\mathcal{O} = \mathbb{Z}[\sqrt{35}]$. Prove that this is given by a Brauer-Manin obstruction.

Exercise 4.2. Fix f(x, y, z). The elements $a \in \mathbb{Z}$ such that $a \prec f$ over each \mathbb{Z}_p but not over \mathbb{Z} fall into finitely many classes in $\mathbb{Q}^{\times}/\mathbb{Q}^{\times}$. (The same holds over any number field.)

We now consider the case m = n + 2 with $m \ge 3$. So X = Spin(f)/T where $T := R^1_{K/k} \mathbb{G}_m$ is given by an equation $N_{K/k}() = 1$, where $K = k(\sqrt{d})$ (which we assume is a field), where $d := -\det f \cdot \det g$. We have $\operatorname{Pic} T = \mathbb{Z}/2\mathbb{Z}$. What, concretely, is the map

Use

where $T_1 \simeq T$. We have

$$\begin{array}{ccc} \mathrm{SO}(f)(F) & \longrightarrow & F^{\times}/F^{\times 2} \\ & & & & \downarrow \\ & & & & \downarrow \\ & & & & X(F) & \longrightarrow & H^1(F,T) = & F^{\times}/N(F.K)^{\times} \end{array}$$

where the top map is the spinor norm sending a product of (an even number of) reflections $\prod \tau_{v_i}$ to $\prod f(v_i)$.

Application to an example of Siegel:

$$x^2 + 32y^2 \prec x^2 + 128y^2 + 128yz + 544z^2 - 64t^2$$

over each \mathbb{Z}_p but not over \mathbb{Z} .

Classical problem: Suppose we have a quadratic space $(V/k, f_k)$ with f_k nondegenerate, and we have $N, M \subset V$ where M is a full lattice: $N_k \subset V$ and $M_k = V$. Assume that $f(M) \subset \mathcal{O}$ and $f(N) \subset \mathcal{O}$, and that $g := f|_{N_k}$ is nondegenerate. Let $\operatorname{Hom}((N,g), (M,f))(A)$ be the set of linear $\phi \colon N_A \to M_A$ such that $\phi^*(f) = g$. Define $\mathcal{X} = \operatorname{Hom}((N,g), (M,f))$. We are given $P_0 \in X(k)$. The group $O(f)(\mathbb{A})$ acts on the full lattices in (V, f_k) .

"N is represented by the proper class of M" translates as $\mathcal{X}(\mathcal{O}) \neq \emptyset$.

"N is represented by the genus of M" translates as $\prod_v \mathcal{X}(\mathcal{O}_v) \neq \emptyset$.

"N is represented by the proper spinor genus of M" translates as $(\prod_v \mathcal{X}(\mathcal{O}_v))^{\operatorname{Br} X} \neq \emptyset$.

There is also a strong approximation statement analogous to our Brauer-Manin obstruction statement for the integral Hasse principle.