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ARITHMETIC OF CURVES OVER TWO DIMENSIONAL LOCAL FIELD

BELGACEM DRAOUIL

ABSTRACT. We study the class field theory of curve defined over two dimensional local field.
The approch used here is a combination of the work of Kato-Saito, and Yoshida where the base
field is one dimensional

1. INTRODUCTION

Let k1 be a local field with finite residue field and let X be a proper smooth geometrically
irreducible curve over k1. To study the fundamental group 7% (X), Saito in [9], introduced the
groups SK; (X) and V(X) and constructed the maps o : SK; (X) — 7 (X) and 7 : V(X)
— b (X)9% where w8 (X)9° is defined by the exact sequence

0 — 7 (X)9° — 78 (X) — Gal(k$®/k1)—0
The most important results in this context are:

1) The quotient of 7§* (X) by the closure of the image of ¢ and the cokernel of 7 are both

isomorphic to Z" where r is the rank of the curve.
2) For this integer r, there is an exact sequence

0 — (Q/2)" — H*(K,Q/Z(2)) — B.Q/2— Q/Z —0

where K = K (X) is the function field of X and P designates the set of closed points of X.

These results are obtained by Saito in [9] generalizing the previous work of Bloch where he
is reduced to the good reduction case [9, Introduction]. The method of Saito depends on class
field theory for two-dimensional local ring having finite residue field. He shows these results
for general curve except for the p -primary part in chark = p > 0 case [9, Section II-4]. The
remaining p -primary part had been proved by Yoshida in [12].

There is another direction for proving these results pointed out by Douai in [3]. It consists
to consider for all [ prime to the residual characteristic, the group Coker o as the dual of the
group Wy of the monodromy weight filtration of H'(X,Qy/Zy)

HY(X,Q¢/Z¢) = W2 2 W1 2 Wy 20

where X = X Ok, k1 and k; is an algebraic closure of k1. This allow him to extend the precedent
results to projective smooth surfaces [3].

The aim of this paper is to use a combination of this approach and the theory of the
monodromy-weight filtration of degenerating abelian varieties on local fields explained by Yoshida
in his paper [12], to study curves over two-dimensional local fields (section 3).

Let X be a projective smooth curve defined over two dimensional local field k. Let K be
its function field and P denotes the set of closed points of X. For each v € P, k (v) denotes the
residue field at v € P. A finite etale covering Z — X of X is called a c.s covering, if for any
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closed point x of X,  xx Z is isomorphic to a finite sum of x. We denote by 7{* (X) the
quotient group of 7 (X) which classifies abelian c.s coverings of X.
To study the class field theory of the curve X, we construct the generalized reciprocity map

o0 8K (X) /€ — 7 (X) /1
where SKy (X) /¢ = Coker { K () ¢ % @ Ko (k(0)) /¢ and /15 V(X) /¢ — i (X)° /s

for all £ prime to residual characteristic. The group V(X)) is defined to be the kernel of the norm
map N : SK3 (X) — Kz(k) induced by the norm map Ny (,)/ke : K2 (k(v)) — Ka(k) for all v
and 72 (X)9% by the exact sequence

0 — 7 (X)9° — 7 (X) — Gal(k™/k)—0
The cokernel of o/ is the quotient group of 7§? (X) /¢ that classifies completely split coverings
of X ;thatis; 7n§{*(X) /L.
We begin by proving the exactness of the Kato-Saito sequence (Proposition 4.3) :

0 — 7§ (X)) /f — H*(K,7/((3))
— gPH?’ (k(v),Z/t(2)) — Z/t —0

To determinate the group 7§* (X) /¢, we need to consider a semi stable model of the curve X (
see Section 5 ) and the weight filtration on its special fiber. In fact, we will prove in (Proposition
5.1) that 7{* (X) ® Q; admits a quotient of type Q] where r is the rank of the first crane of this
filtration. )

Now, to investigate the group 7% (X)), we use class field theory of two-dimensional local
field and prove the vanishing of the group H? (k,Q/Z) (theorem 3.1 ). This yields the isomor-
phism

i (X)géo ~ db (Y) an
Finally, by the Grothendick weight filtration on the group ﬂ%b (Y) e and assuming the semi-
géo

stable reduction, we obtain the structure of the group m§* (X)9“’ and information about the

map 7 : V(X) — 70 (X)9

Our paper is organized as follows. Section 2 is devoted to some notations. Section 3 contains
the proprieties which we need concerning two-dimensional local field: duality and the vanishing
of the second cohomology group. In section 4, we construct the generalized reciprocity map and
study the Bloch-Ogus complex associated to X. In section 5, we investigate the group 7{* (X).

2. NOTATIONS

For an abelian group M, and a positive integer n > 1, M /n denotes the group M /nM.

For a scheme Z, and a sheaf F over the étale site of Z, H'(Z,F) denotes the i-th étale
cohomology group. The group H! (Z,7/f) is identified with the group of all continues homo-
morphisms 7% (Z) — Z/¢. If £ is invertible on Z//(1) denotes the sheaf of I-th root of unity
and for any integer i, we denote Z/¢ (i) = ( Z/0(1))®"

For a field L, K; (L) is the i-th Milnor group. It coincides with the i—th Quillen group for
1 < 2. For £ prime to char L, there is a Galois symbol

hy, KL/t — HY(L, Z/(i))

which is an isomorphism for i = 0,1,2 (i = 2 is Merkur’jev-Suslin).
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3. ON TWO-DIMENSIONAL LOCAL FIELD

A local field & is said to be n—dimensional local if there exists the following sequence of fields
k; (1 <i<mn) such that
(i) each k; is a complete discrete valuation field having k;_; as the residue field of the valuation
ring Oy, of k;, and
(ii) ko is a finite field.

For such a field, and for ¢ prime to Char(k), the well-known isomorphism
(3.1) H" M (k,Z/0 (n)) ~Z/)¢

and for each i € {0,...,n + 1} a perfect duality

(3.2) Hi(k,2/0(5)) x H" =k, Z/t(n — j) — H" ™Y (k,Z/0(n)) ~ Z/¢

hold.

The class field theory for such fields is summarized as follows: There is a map

h : Ko (k) — Gal(k®/k) which generalizes the classical reciprocity map for usually local
fields. This map induces an isomorphism K3 (k) /Np, /K2 (L) ~ Gal(L/k) for each finite abelian
extension L of k. Furthermore, the canonical pairing

(3:3) H' (k, Qu/ ) x Ka(k) — H® (k, Qu/Z; (2)) ~ Qi/Z

induces an injective homomorphism

(3.4) H' (k,Qi/Z;) — Hom(K»(k),Q/Z))

It is well-known that the group H? (M, Q/Z) vanishes when M is a finite field or usually local
field. Next, we prove the same result for two-dimensional local field

Theorem 3.1. If k is a two-dimensional local field of characteristic zero, then the group
H? (k,Q/7Z) vanishes.

Proof. We proceed as in the proof of theorem 4 of [11]. It is enough to prove that H? (k,Q;/Z;)
vanishes for all [ and when k contains the group p; of I-th roots of unity. For this, we prove that
multiplication by [ is injective. That is, we have to show that the coboundary map

H' (k,Qu/Z) < H? (k, Z/1Z)
is injective.
By assumption on k, we have

H? (k,ZJ)IZ) ~ H? (k, 1) ~ Z/¢
The last isomorphism is well-known for one-dimensional local field and was generalized to non
archimedian and locally compact fields by Shatz in [7]. The proof is now reduced to the fact
that § # 0;
By class field theory of two dimensional local field, the cohomology group H' (k,Q;/Z;) may

be identified with the group of continuous homomorphisms Ks(k) 2, Qi/7.

Now, 6(®) = 0 if and only if & is a [—th power, and ® is a [—th power if and only if ® is
trivial on g;. Thus, it is sufficient to construct an homomorphism Ko (k) — Q;/Z; which is non
trivial on py.
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Let i be the maximal natural number such that k contains a primitive I’—th root of unity.
Then, the image £ of a primitive [*—th root of unity under the composite map

k" k™ ~ HY (k, ) ~ H' (k, Z)1Z) — H" (k,Q/Z;)
is not zero. Thus, the injectivity of the map

H' (k, Qu/Z;) — Hom(Ka(k),Qu/Zy)
gives rise to a character which is non trivial on ;. ([

Remark 3.2. This proof is inspired by the proof of Proposition 7 of Kato [5]

4. CURVES OVER TWO DIMENSIONAL LOCAL FIELD

Let k be a two dimensional local field of characteristic zero and X a smooth projective curve
defined over k.
We recall that we denote:
K = K (X) its function field,
P : set of closed points of X, and for v € P,

k (v) : the residue field at v € P

The residue field of k is one-dimensi6nal local field. It is denoted by &y
Let H" (Z/¢(3)) ,n > 1, the Zariskien sheaf associated to the presheaf U — H™ (U,Z/¢(3)).
Its cohomology is calculated by the Bloch-Ogus resolution. So, we have the two exact sequences:

(4.1) H?®(K,Z/t(3)) — §PH2 (k(v),Z/€(2)) — H" (X740, H*(Z/£(3))) — 0

(42) 0 — H'(Xzur HHZ/U3)) — HY(K.Z/U3) — & H(k(v,2/0(2))

4.1. The reciprocity map.
We introduce the group SK (X) /¢ :

SK, (X) /¢ = Coker {K3 (K) J¢ 2% s (k (1)) /z}

where 0, : K3 (K) — Kz (k(v)) is the boundary map in K-Theory. It will play an important
role in class field theory for X as pointed out by Saito in the introduction of [9]. In this section,
we construct a map

o/l:SKy (X))t — 75 (X) /L
which describe the class field theory of X.
By definition of SKj (X) /¢, we have the exact sequence

Ks (K) /t — @PKQ (k(v)) /t — SKy(X)/l — 0
ve
On the other hand, it is known that the following diagram is commutative:

Ky (K) /0 — & Ka(k(v)/!
L h? | B2
H? (K,Z/t(3)) — 2, H? (k(v),Z/¢(2))

where h%, h3 are the Galois symbols. This yields the existence of a morphism
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h:SKy (X) [t — H' (Xzar, HY(Z/0(2)))

taking in account the exact sequence (4.1). This morphism fit in the following commutative
diagram

0— K3 (K) /t — U?P K> (k (v)) /¢ — SKy(X)/t —0
| h3 | h? Lh
0— H3(K,Z/((2) — éep H? (k(v),2/0(2)) — H"(Xzqr, H*(Z/(2))) — 0

By Merkur’jev-Suslin, the map h? is an isomorphism, which imply that h is surjective. On
the other hand the spectral sequence

H? (X747, HU(Z /0 (3))) = HPT9(X,Z/¢(3))

induces the exact sequence

(4.3) 0— H' (Xzar, H*(Z/€(3))) — HY(X,Z/t(3))
— H® (X g0, HHZ/(3))) — H? (X zar, H}(Z/L(3))) = 0

Composing h and e, we get the map

SKy(X) /t — HYX,Z/t(3))

Finally the group H*(X,Z/¢(3)) is identified to the group §* (X) /¢ by the duality [4,II, th
2.1]

HY(X,Z/¢(3)) @ H'(X,Z/0) — H*(X,Z/C(3)) ~ H®(k, Z/{ (2)) = L /¢

Hence, we obtain the map
o/l:SKy (X))t — 7§ (X) JC

Remark 4.1. By the exact sequence (4.2) the group H" (Xzq,, H*(Z/€(3))) coincides with the
kernel of the map

HY(K,Z/0(3)) — vgBPH?’ (k(v),2/(2))

and by localization in étale cohomology

?PH2 (k(v),Z/(2)) — H* (X, Z/L(3)) — H" (K, Z/((3)) 29 H? (k (v), 2/ (2))

and taking in account (4.3), we see that H' (X z4,, H*(Z/€(3))) is the cokernel of the Gysin
map

gpm (k (v),2Z/0(2)) & H* (X, Z/¢(3))

and consequently the morphism g factorize through H' (X zar, H*(Z/( (3))
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& H? (k(v),2/¢(2)) <, H*(X,Z/t(3))

N /!
HY (Xzar, HY(Z/0(3)))

Then, we deduce the following commutative diagram

K3 (K) /¢ - U?p Ko(k (v))/¢ — SKy(X)/t — 0
| h3 | h? 1A
H3(K,7Z/((3)) — U?P H? (k(v),Z/0(2)) —  H'(Xzar, HYZ/(3))) — 0
lg /e

" (X) /1= H* (X, Z/¢(3))
The surjectivity of the map h implies that the cokernel of
o/l SKy (X))t — 75 (X) /L

coincides with the cokernel of e which is H? (X z4,, H*(Z/€(3))). Hence Cokerc/{ is the dual
of the kernel of the map

(4.4) o (X,2/t) — [ H' (k (v),Z/0)
veP
4.2. The Kato-Saito exact sequence.
Definition 4.2. Let Z be a Noetherian scheme. A finite etale covering f : W — Z is called a
c.s covering if for any closed point z of Z , z xz W is isomorphic to a finite scheme-theoretic

sum of copies of z We denote 7§* (Z) the quotient group of 7’ (Z) which classifies abelian c.s
coverings of Z.

Hence, the group 7{* (X) /¢ is the dual of the kernel of the map
H'(X,2/t) — [] H' (k(v),2/0)
veP

as in [9, section 2, definition and sentence just below]. Now, we are able to calculate the
homologies of the Bloch-Ogus complex associated to X.
Generalizing [10, Theorem 7], we obtain :

Proposition 4.3. Let X be a projective smooth curve defined over k Then for all £, we have
the following exact sequence

0 — 7{*(X)/l — H*(K,7/¢(3))
— ?PHg’ (k(v),Z/t(2)) — Z/t —0.
Proof. Consider the localization sequence on X
EEBPHQ (k(v),Z2/0(2)) 2 H*(X,Z/¢(3)) — H*(K,Z/((3))
— ?PHs (k(v),Z/t(2)) — H®(X,Z/t(3)) — 0

We know that the cokernel of the Gysin map g coincides with 7§* (X) /¢ and we use the iso-
morphism H® (X,Z/¢(3)) ~Z/{ . O
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5. THE GROUP 7§ (X))

In his paper [9], Saito don’t prove the p— primary part in the char k = p > 0 case. This case
was developed by Yoshida in [12]. His method is based on the theory of monodromy-weight
filtration of degenerating abelian varieties on local fields. In this work, we use this approach
to investigate the group 7{* (X). As mentioned by Yoshida in [12, section 2] Grothendieck’s
theory of monodromy-weight filtration on Tate module of abelian varieties are valid where the
residue field is arbitrary perfect field.

We assume the semi-stable reduction and choose a regular model X of X over SpecOy, by
which we mean a two dimensional regular scheme with a proper birational morphism

f X — SpecOy, such that X ®o, k ~ X and if X designates the special fiber X ®o, k1,
then Y = (Xj),¢q is a curve defined over the residue field k; such that any irreducible component
of Y is regular and it has ordinary double points as singularity.

Let Y =Y ®y, k1 , where k; is an algebraic closure of k; and

vy = || v, n¥in---nY,

ip 1 (Y:)ier = collection of irreducible components of Y.
i/<’i1<'“<ip

Let ’ﬂ be a realization of the dual graph I, then the group H'! (!ﬂ ,Ql) coincides with the
group Wo(H" (?, Ql) ) constituted of elements of weight 0 for the filtration

H' (Y,Q)=W12W;20
of H'(Y, Q) deduced from the spectral sequence

Equ = Hq(?[p]v@f) = HP-H](?’ QZ)
For details see [2], [3] and [6]

Now, if we assume further that the irreducible components and double points of Y are defined
over ki, then the dual graph I' of Y go down to k1 and we obtain the injection

Wo(H' (Y, Q) C H' (Y, Qi) — H' (X, Qi)
Proposition 5.1. The group n{* (X) ® Q; admits a quotient of type Q] , where r is the Q;—rank
of the group H' (7 ) )
Proof. We know (4.4) that 7{* (X) ® Qy is the dual of the kernel of the map
a:H' (X,Q) — [[ B (k(v),Q)
veEP

We will prove that Wo(H?! (7, QZ)) C Kera. The group Wy = Wy (H! (?, Ql)) is calculated as
the homology of the complex

BT, Q) — H (7, Q) — 0
Hence Wy = HO(Y ,Q )/ Im{H°(Y Yl , Qo) — HO(?M,Qg)}. Thus, it suffices to prove the
vanishing of the composing map
[l

O, Q) — Wy € H (v, Q) = H' (X, Q) — H' (k (v), Q)

for all v € P.

Let z, be the 0— cycle in Y obtained by specializing v, which induces a map zq[)l] — 7[1].
Consequently, the map H° (?[1],(@@) — H' (k (v),Q) factors as follows
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vl Q)  — H'(k),Q)
N /!
HO (Z’t[)l] ’ QZ)

But the trace zl[,l] of vyl on z, is empty. This implies the vanishing of H O(ZLI],Qg). O

Let V(X) be the kernel of the norm map N : SK (X) — Ka(k) induced by the norm map
Ni(o)y ke Ka (k(v)) — Ka(k) for all v . Then, we obtain a map 7/l : V(X)/l — w{? (X)9% /¢
and a commutative diagram

V(X)/¢ — SKy(X)/t — Ky (k)/t
L7/l Lo/t Lh/l
T (X)) — wP(X) /0 = Gal(k®/k)/I

where the map h/l : K (k) /I — Gal(k®/k)/l is the one obtained by class field theory of
k (section 3). From this diagram we see that the group Coker 7/l is isomorphic to the group
Cokero/l. Next, we investigate the map 7/I.

We start by the following result which is a consequence of the structure of the two-dimensional
local field k

Lemma 5.2. There is an isomorphism
Ti? (X)9 = nf? (X).,

where w§® (X) . is the group of coinvariants under Gy, = Gal(k*/k).

Gy

Proof. As in the proof of Lemma 4.3 of [12], this is an immediate consequence of (Theorem
3.1). O
Finally, we are able to deduce the structure of the group (X )géo

Theorem 5.3. The group m (X)9° @ Q is isomorphic to Q; and the map
7 V(X) — 7% (X)9 is a surjection onto (w8 (X)%) ..

Proof. By the preceding lemma, we have the isomorphism ﬂfb (X )géo ~ ﬂ(fb (Y) G On the other
hand the group 7% (Y) a ® Q¢ admits the filtration [12,Lemma 4.1 and section 2]

Wo(ni® (X) g, @ Q) = 71" (X) g, © Q 2 Wor(nf? (X) g, © Q1) 2 Wea(nf” (X) , @ Qi)

But; by assumption; the curve X admits a semi-stable reduction, then the group
Gro(m§® (X)Gk ®Q;) = Wo(ns® (X)G]C ®Q)/W_1 (b (X) G ®@Q;) has the following structure

0 — Gro(m%® (Y)Gk ® Q))tor — Gro(n® (Y)Gk ® Q) — @T —0

where 1’ is the k —rank of X. This is confirmed by Yoshida [12, section 2], independently of the
finitness of the residue field of k considered in his paper. The integer r’ is equal to the integer
r=H' (|I‘ ,Ql) = H' (|T'], Q) by assuming that the irreducible components and double points

of Y are defined over k;.
On the other hand, the exact sequence

0 — Wi (mf® (X)) — i (X) g, — Gro(af® (X)) — 0
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and (Proposition 5.1) allow us to conclude that the group W_ (7% (Y) is finite and the map

z ’ Gk:)
7: V(X) — 78 (X)9% is a surjection onto (7§® (X)?)ser as established by Yoshida in [12] for
curve over usually local fields. ([

Remark 5.4. If we apply the same method of Saito to study curves over two-dimensional local
fields, we need class field theory of two-dimensional local ring having one-dimensional local field
as residue field. This is done by myself in [1]. Hence, one can follow Saito ’s method to obtain
the same results.
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