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1. What is a torsor?

Let k be a field of characteristic 0, and let k denote an algebraic closure. Let G be an

algebraic group over k, and let X be a smooth variety.

Definition 1.1. (First approach.) An X-torsor under the group G is a surjective morphism

f : Y → X, where Y is equipped with an action of G which preserves the fibres of f , and

which is simply transitive on the fibres.

Equivalently, G acts freely on Y , and X is the space of orbits Y/G. Note however that ‘freely’

should be understood in the scheme-theoretic sense, see Mumford’s “Geometric Invariant

Theory”. The above definition is valid as stated if G is finite, or if G and Y are affine.

Definition 1.2. (Another approach.) A torsor is a morphism f : Y → X together with a

group action of G on Y such that “locally in étale topology”, Y is isomorphic as a scheme

over X to the “trivial torsor” X ×G. More precisely, this means that there exists a family

of étale (quasi-finite, unramified) maps πi : Ui → X whose images cover X, such that

Y ×X Ui
∼= G× Ui ,

where each isomorphism respects the action of G.

When Y → X is finite (equivalently, G is finite), the definition amounts to saying that

the map

Y ×G→ Y ×X Y : (y, g) 7→ (y, gy)

is an isomorphism.

1.1. Examples of torsors. 1) Let X be a point, X = Spec(k). “Y is a k-torsor (or Spec(k)-

torsor) under G” means that G acts on Y in such a way that over k, this is isomorphic to G

acting on itself by translation. For instance Y is a curve of genus 1 and G the Jacobian of

Y . Or, G is the 1-dimensional torus given by x2 − ay2 = 1 and Y is given by x2 − ay2 = c,

for a, c ∈ k×.

2) Suppose that Y is a smooth, proper and geometrically irreducible variety, a connected

reductive group G acts on Y (freely on an open subset of Y ), and there exists a G-linearized

ample invertible sheaf on Y . Let Y s denote the stable points of Y , in the sense of Geometric

Invariant Theory. Then there is a morphism Y s → X which is an X-torsor under G; the

fibres of this morphism are the orbits of G.

3) Given an extension of algebraic groups 1 → G → H → F → 1, then H → F is an

F -torsor under the group G.
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4) Let E be an elliptic curve. An n-covering C → E is an E-torsor under G = E[n].

Further, if D is an mn-covering of E and the covering map factors as D → C → E, then

D → C is a C-torsor under G = E[m] (and C = D/E[m]).

5) Let X and Y be the affine curves defined by

X : y2 = p1(x)p2(x) for polynomials p1 and p2,

Y :

{
y2

1 = αp1(x)

y2
2 =

1

α
p2(x)

for α ∈ k×.

Then the degree 2 map Y → X : (y1, y2, x) 7→ (y1y2, x) is a torsor under G = Z/2.

Similarly, if
X : y2 − az2 = p1(x)p2(x)

Y :

{
y2

1 − az2
1 = αp1(x)

y2
2 − az2

2 =
1

α
p2(x)

then the obvious map Y → X is a torsor under G : y2 − az2 = 1.

2. What is descent?

Torsors are useful in number theory for doing descent.

Given an algebraic group G,

{k-torsors under G}/iso ←→ H1(k, G) := H1
cont(Gal(k/k), G(k)) ,

where G(k) is given discrete topology.

Let f : Y → X be a torsor under G, and let [α] ∈ H1(k, G). Then we can form the twist

of Y by α, denoted fα : Yα → X, which can be described as follows. Note that to give a

quasi-projective variety over k is the same as to give a variety over k together with an action

of Gal(k/k) on it. For Yα, we have Yα = Y , and the twisted Galois action is y 7→ α(γ)γy for

γ ∈ Gal(k/k). The fact that this is a group action amounts to the cocycle condition.

Theorem 2.1. Let f : Y → X be a torsor under G. Then

X(k) =
∐

[α]∈H1(k,G)

fα(Yα(k)) .

Proof. Suppose P ∈ X(k). Then f−1(P )→ P is a k-torsor under G. Take the corresponding

class [α] := [f−1(P )] ∈ H1(k,G). Then f−1
α (P ) contains a k-rational point. �

Note: If X is projective and k is a number field, then only finitely many of the fα(Yα(k))

are nonempty.

Warning: If G is not abelian, then in general Yα is not a torsor under G. (In fact Yα is a

torsor under a certain twisted form of G.)

Define (∏
all v

X(kv)

)f

:=
⋃

[α]∈H1(k,G)

fα

(∏
all v

Yα(kv)

)
⊆
∏
all v

X(kv)
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(the set of “adelic points that survive descent with respect to Y → X”). By Theorem 2.1

this subset of
∏

v X(kv) contains X(k); another such subset is the Brauer set (
∏

v X(kv))
Br.

Thus we have two “competing approaches” to bounding X(k): descent using torsors (the

more classical approach), and the Brauer-Manin obstruction. It has been known for some

time that the information that can be obtained from torsors under abelian groups G can also

be obtained via the Brauer-Manin obstruction. In fact, Colliot-Thélène and Sansuc showed

that for any torsor f : Y → X under an abelian group G,(∏
v

X(kv)

)Br1

⊂

(∏
v

X(kv)

)f

where Br1X := ker(BrX → BrX). For curves and for rational varieties we have Br1X =

BrX.

In the late 90’s examples were found of descents involving torsors under nonabelian G,

which go beyond the Brauer-Manin obstruction.

3. From torsors to the Brauer group

Suppose Y → X is a torsor under an abelian group G, and let [Y/X] be its class in

H1
ét(X, G). Let Ĝ denote the character group Hom(G, Gm). For each c ∈ H1(k, Ĝ) we obtain

an element of BrX via the cup product

H1
ét(X, G)× H1(k, Ĝ) −→ H2

ét(X, Gm) = BrX .

Examples: 1) Assume that PicX has no divisible part, e.g. is torsion free. Let G be the

group dual to PicX, i.e. Ĝ = PicX, and let Y/X be a universal torsor. The cup product

with the class [Y/X] defines a homomorphism H1(k, P icX)→ Br1X, which is a splitting of

the exact sequence

0→ Brk → Br1X → H1(k, P icX)→ 0.

2) Y/X is multiplication by 2 on an elliptic curve E : y2 = (x− c1)(x− c2)(x− c3), so that

k(Y ) = k(X)(
√

x− c1,
√

x− c2). Here G = Ĝ = E[2]. From

(a1, a2) ∈ k×/(k×)2 × k×/(k×)2 ∼= H1(k,E[2]) ,

one obtains the element (x − c1, a1) + (x − c2, a2) ∈ (BrE)[2]. In fact, every element of

(BrE)[2] with trivial value at the origin is of such a form.

3) (Swinnerton-Dyer + A.S.) Consider (the unique minimal smooth projective model of)

the surface

X : z2 = (x− c1)(x− c2)(x− c3)(y − d1)(y − d2)(y − d3) .

X a K3 surface, more precisely the Kummer surface obtained from the product of two elliptic

curves

u2 = (x− c1)(x− c2)(x− c3) and v2 = (y − d1)(y − d2)(y − d3) .

Assume that these curves are not isogenous over k. Then Br1X = Brk. Using Example 2

one shows that (BrX)[2] ' (Z/2)4 is generated by the elements

Aij = ((x− ci)(x− c3), (y − dj)(y − d3)) for i, j ∈ {1, 2}.


