TORSORS, DESCENT AND THE BRAUER GROUP - LECTURE BY
ALEXEI SKOROBOGATOV

NOTES TAKEN BY STEVE DONNELLY

1. WHAT IS A TORSOR?

Let k be a field of characteristic 0, and let k denote an algebraic closure. Let G be an
algebraic group over k, and let X be a smooth variety.

Definition 1.1. (First approach.) An X-torsor under the group G is a surjective morphism
f:Y — X, where Y is equipped with an action of G which preserves the fibres of f, and
which is simply transitive on the fibres.

Equivalently, G acts freely on Y, and X is the space of orbits Y/G. Note however that ‘freely’
should be understood in the scheme-theoretic sense, see Mumford’s “Geometric Invariant
Theory”. The above definition is valid as stated if G is finite, or if G and Y are affine.

Definition 1.2. (Another approach.) A torsoris a morphism f : Y — X together with a
group action of G on Y such that “locally in étale topology”, Y is isomorphic as a scheme
over X to the “trivial torsor” X x . More precisely, this means that there exists a family
of étale (quasi-finite, unramified) maps ; : U; — X whose images cover X, such that

Y X x Uz =G x UZ ,
where each isomorphism respects the action of G.

When Y — X is finite (equivalently, G is finite), the definition amounts to saying that
the map
VX G =Y xxY:(y9)—(y,99)

is an isomorphism.

1.1. Examples of torsors. 1) Let X be a point, X = Spec(k). “Y is a k-torsor (or Spec(k)-
torsor) under G” means that G acts on Y in such a way that over k, this is isomorphic to G
acting on itself by translation. For instance Y is a curve of genus 1 and G the Jacobian of
Y. Or, G is the 1-dimensional torus given by 2 —ay? = 1 and Y is given by 2? — ay® = ¢,
for a,c € k*.

2) Suppose that Y is a smooth, proper and geometrically irreducible variety, a connected
reductive group G acts on Y (freely on an open subset of V'), and there exists a G-linearized
ample invertible sheaf on Y. Let Y* denote the stable points of Y, in the sense of Geometric
Invariant Theory. Then there is a morphism Y* — X which is an X-torsor under G; the
fibres of this morphism are the orbits of G.

3) Given an extension of algebraic groups 1 - G — H — F — 1, then H — F'is an

F-torsor under the group G.
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4) Let E be an elliptic curve. An n-covering C' — E is an E-torsor under G = E|[n].
Further, if D is an mn-covering of E and the covering map factors as D — C' — E, then
D — C'is a C-torsor under G = E[m] (and C' = D/E[m)).

5) Let X and Y be the affine curves defined by

X :y?* = pi(x)pa(x) for polynomials p; and po,
yi = opi()
Y

1 for o € k™.
y% = ap2($)

Then the degree 2 map Y — X : (y1,¥2, %) — (y1y2, x) is a torsor under G = Z/2.
Similarly, if
X y® —az® = pi(x)pa(z)
2

{ yi — azi = apy(x)
Y:

2 2
—az5s = —po(x
Yo 2 osz( )

then the obvious map Y — X is a torsor under G : y* — az? = 1.

2. WHAT IS DESCENT?

Torsors are useful in number theory for doing descent.
Given an algebraic group G,

{k-torsors under G}/iso «— H'(k,G) :=H}

cont

(Gal(k/k), G(k)).,

where G(k) is given discrete topology.

Let f:Y — X be a torsor under G, and let [a] € H'(k,G). Then we can form the twist
of Y by a, denoted f, : Y, — X, which can be described as follows. Note that to give a
quasi-projective variety over k is the same as to give a variety over k together with an action
of Gal(k/k) on it. For Y,, we have Y, = Y, and the twisted Galois action is y +— a(v)yy for
v € Gal(k/k). The fact that this is a group action amounts to the cocycle condition.

Theorem 2.1. Let f:Y — X be a torsor under G. Then
X(ky=" [ falYa(k)).
[a]eH! (k,G)
Proof. Suppose P € X (k). Then f~!(P) — P is a k-torsor under G. Take the corresponding
class [a] := [f~'(P)] € H'(k,G). Then f;'(P) contains a k-rational point. O

Note: 1If X is projective and k is a number field, then only finitely many of the f, (Y, (k))
are nonempty.

Warning: If G is not abelian, then in general Y, is not a torsor under G. (In fact Y, is a
torsor under a certain twisted form of G.)

Define
f
(HX(kv)> = U Ja <H Ya(kv>> C HX(kv)
k,G)

all v [a}eHl( all v all v
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(the set of “adelic points that survive descent with respect to Y — X”). By Theorem 2.1
this subset of [, X (k,) contains X (k); another such subset is the Brauer set (], X (k,))"".
Thus we have two “competing approaches” to bounding X (k): descent using torsors (the
more classical approach), and the Brauer-Manin obstruction. It has been known for some
time that the information that can be obtained from torsors under abelian groups G can also
be obtained via the Brauer-Manin obstruction. In fact, Colliot-Thélene and Sansuc showed
that for any torsor f:Y — X under an abelian group G,

(1) = ()

where Bri X := ker(BrX — BrX). For curves and for rational varieties we have Bri X =
BrX.

In the late 90’s examples were found of descents involving torsors under nonabelian G,
which go beyond the Brauer-Manin obstruction.

3. FROM TORSORS TO THE BRAUER GROUP

Suppose Y — X is a torsor under an abelian group G, and let [Y/X] be its class in
H}, (X, Q). Let G denote the character group Hom(G, G,,). For each ¢ € H'(k, G) we obtain
an element of BrX via the cup product

H. (X,G) x H'(k,G) — H4(X,G,,) = BrX .

Ezamples: 1) Assume that PicX has no divisible part, e.g. is torsion free. Let G be the
group dual to PicX, i.e. G = PicX, and let Y/X be a universal torsor. The cup product
with the class [Y/X] defines a homomorphism H'(k, PicX) — Br; X, which is a splitting of
the exact sequence

0 — Brk — BriX — H'(k, PicX) — 0.

2) Y/X is multiplication by 2 on an elliptic curve E : y* = (x —¢1)(x — ¢2)(z — ¢3), so that

k(YY) =k(X)(\/xr —c1,v/r — ¢3). Here G = G = E[2]. From
(a1,a2) € K™ /(K*)* x & /(k*)* = H'(k, E[2]),

one obtains the element (z — ¢1,a;1) + (x — ¢9,a2) € (BrE)[2]. In fact, every element of
(BrE)[2] with trivial value at the origin is of such a form.
3) (Swinnerton-Dyer + A.S.) Consider (the unique minimal smooth projective model of)

the surface

X:2Z2=@—c)(r—c)(x—c3)(y—di)(y —da)(y — ds).
X a K3 surface, more precisely the Kummer surface obtained from the product of two elliptic
curves

u=(r—c)(r—c)(w—c3) and v = (y—di)(y—do)(y—ds).
Assume that these curves are not isogenous over k. Then Bri X = Brk. Using Example 2
one shows that (BrX)[2] ~ (Z/2)* is generated by the elements

Aij = ((x = i)z = ¢3),(y = dj)(y — d3)) ford,j € {1,2}.



