Functions, Reciprocity, and the Obstruction to Divisors on Curves

Samir Siksek

15th July 2005

Objective. Develope a practical method which can show that a curve having no rational points does indeed have no rational points (for certain classes of curves).

Example. (Lind) $2Y^2 = X^4 - 17Z^4$ is a counterexample to Hasse principle.

Proof by contradiction. WLOG $X, Y, Z \in \mathbb{Z}$, gcd(X, Z) = 1, Y > 0. If $q|Y, q \neq 2$ is a prime then $\left(\frac{17}{q}\right) = 1 \Rightarrow \left(\frac{q}{17}\right) = 1$ (also $\left(\frac{2}{17}\right) = 1$) $\therefore Y \equiv Y_0^2 \mod 17 \quad \therefore 2Y_0^4 \equiv X^4 \mod 17$. But $2 \notin (\mathbb{F}_{17}^*)^4$. Contradiction.

Question. Can Lind's strategy be applied to other curves?

Answer. For hyperelliptic curves, yes. Suppose $F(X, Z) \in \mathbb{Z}[X, Z]$ is homogenous of *even* degree 2r. Suppose we want to show that $Y^2 = F(X, Z)$ has no points. Argue by contradiction:

Suppose we have a solution with $X, Y, Z \in \mathbb{Z}$, gcd(X, Z) = 1, Z > 0. Choose $\alpha, \beta \in \mathbb{Z}$, $gcd(\alpha, \beta) = 1$, and let $F(\alpha, \beta) = \gamma \delta^2$, γ squarefree. There exists a λ such that $(\lambda X, \lambda Z) \equiv (\alpha, \beta) \mod (\beta X - \alpha Z)$

$$\therefore \gamma \delta^2 \equiv F(\alpha, \beta) \equiv F(\lambda X, \lambda Z) \equiv \lambda^{2r} F(X, Z) \equiv (\lambda^r Y)^2 \mod (\beta X - \alpha Z)$$

 $\therefore \gamma$ is a quadratic residue mod $(\beta X - \alpha Z)$. \therefore Get congruences for $\beta X - \alpha Z$. Repeat with several pairs α, β until we get a contradiction.

Example. First $|\mathbf{III}| > 1$ is 571A for which $|\mathbf{III}| = 4$. Take 2-covering

$$Y^2 = -4X^4 + 4X^3Z + 92X^2Z^2 - 104XZ^3 - 727Z^4$$

ELS but has no rational points.

Proof. WLOG $X, Y, Z \in \mathbb{Z}$, gcd(X, Z) = 1, Z > 0. 2-adic solvability \Rightarrow $Z = Z_0$ or $Z = 2Z_0$ where 2 $/\!\!/Z_0$. If $q|Z_0$ then $\left(\frac{-1}{q}\right) = 1$ $\therefore q \equiv 1 \mod 4$ $\therefore Z_0 \equiv 1 \mod 4$

$$\therefore Z \equiv 1 \mod 4$$
 or $Z \equiv 2 \mod 8$.

Also $F(-53, 16) = -2^2$. Get $|16X + 53Z| \equiv 1 \mod 4$ or 2 mod 8 Real solubility $\Rightarrow 16X + 53Z < 0$ $\therefore 16X + 53Z \equiv 3 \mod 4$ or 6 mod 8.

$$\therefore Z \equiv 3 \mod 4$$
 or $Z \equiv 6 \mod 8$.

Contradiction.

Part II: Functions and Divisors

Let C/K smooth projective curve, $f \in K(C) \setminus K$, $S \subseteq C(K)$ support of f. Define $\text{Div}(\bar{C}) = \{\sum_{P \in C(\bar{K})} n_P P : n_P \in \mathbb{Z}, \text{ almost all } = 0\}$, $\text{Div}(C) = (\text{Div}\,\bar{C})^{\text{Gal}(\bar{K}/K)}$, $(\text{Div}\,C)_S$ divisors that avoid S.

Extend $f : (\text{Div } C)_S \to K^*, f(\sum n_P P) = \prod f(P)^{n_P}$. Suppose $g \in K(C) \setminus K$ such that $\text{support}(g) \cap S = \emptyset$. Then by Weil's reciprocity $f(\text{div}(g)) = g(\text{div}(f)) = \prod_{P \in S} g(P)^{\text{ord}_P(f)} = \prod_{P \in S'} (\text{Norm}(g(P)))^{\text{ord}_P(f)}$ where $S' = \text{Gal}(\overline{K/K}) \setminus S$.

Let $G_f = \prod_{P \in S'} (\operatorname{Norm}_{K(P)/K}(K(P)^*))^{\operatorname{ord}_P(f)}, \quad \therefore f(\operatorname{Princ}(C)_S) \subseteq G_f,$ $\therefore f$ induces

 $f: (\operatorname{Div} C)_S / \operatorname{Princ}(C)_S \to K^* / G_f.$

But $\operatorname{Pic} C := \operatorname{Div} C / \operatorname{Princ}(C) = (\operatorname{Div} C)_S / \operatorname{Princ}(C)_S, \quad \therefore f \in K(C) \setminus K$ induces

$$f: \operatorname{Pic} C \to K^*/G_f$$

PartII.V Class Field Theory

Let K number field, L/K finite abelian extension, I_K ideles $[I_K = \{(a_v)_v : a_v \in K_v^* \dots\}]$. Suppose v is a prime of K, w|v prime of L. Local Artin Map $\theta_v : K_v^* / \operatorname{Norm}(L_w^*) \to \operatorname{Gal}(L/K)$. Artin Map $\theta : I_K / \operatorname{Norm}(I_L) \to \operatorname{Gal}(L/K)$ given by $\theta = \prod \theta_v$. Artin Reciprocity. The sequence $K^* \to I_K / \operatorname{Norm}(I_L) \xrightarrow{\theta} \operatorname{Gal}(L/K)$ is exact. **Example.** $K = \mathbb{Q}, L = \mathbb{Q}(i)$. Identify $\operatorname{Gal}(L/K) = \mu_2 = \{1, -1\}$. Local

Example. $K = \mathbb{Q}, L = \mathbb{Q}(i)$. Identify $\operatorname{Gal}(L/K) = \mu_2 = \{1, -1\}$. Local Artin map $\theta_p : \mathbb{Q}_p^* \to \{1, -1\}, \theta_p(\alpha) = \begin{cases} 1 & \text{if } \alpha = x^2 + y^2 \text{ with } x, y \in \mathbb{Q}_p \\ -1 & \text{otherwise.} \end{cases}$

III Reciprocity Joint with Martin Bright

Let K number field, C/K curve, L/K finite abelian extension. Suppose $\operatorname{div}(f) = \sum_{\sigma \in \operatorname{Gal}(L/K)} D^{\sigma}$ where $\operatorname{supp}(D) \subseteq C(L)$. Then we get $G_f \subseteq$

 $Norm(L^*)$. So f induces

where θ is the Artin map.

Get

Lemma. \exists a finite computable set B such that

commutes.

 Get

Let $n = \# \operatorname{Gal}(L/K)$ then

and $\prod_{v \in B} \operatorname{Pic}(C_v)/n \operatorname{Pic}(C_v)$ is finite and computable. If $P_v \in C(K_v)$ then $\operatorname{Pic}(C_v)/n \operatorname{Pic}(C_v) = (\mathbb{Z}/n\mathbb{Z})P_v \oplus J(K_v)/nJ(K_v)$.

Lemma. Suppose 0 < r < n. Let $(\operatorname{Pic}(C_v)/n \operatorname{Pic}(C_v))_r$ = subset of elements with degree $r \mod n$.

Suppose that the "kernel" of $\prod_{v \in B} (\operatorname{Pic}(C_v)/n \operatorname{Pic}(C_v))_r \xrightarrow{\theta \circ f} \operatorname{Gal}(L/K)$ is *empty*, then $\operatorname{Pic}^r(C) = \operatorname{Pic}^{r+n}(C) = \operatorname{Pic}^{r+2n}(C) = \ldots = \emptyset$.

Hyperelliptic Curves

 $C: y^2 = g(x), \ g(x) \in \mathbb{Z}[x], \ K = \mathbb{Q}.$

How to construct a suitable f?

Suppose $x_1, x_2 \in \mathbb{Q}$ such that $g(x_1) = dy_1^2$, $g(x_2) = dy_2^2$ for some $d \in \mathbb{Z} \setminus \{0\}$, d square-free, $y_1, y_2 \in \mathbb{Q}^*$. Let $f = \frac{x-x_1}{x-x_2}$. Then

$$\operatorname{div}(f) = (x_1, y_1\sqrt{d}) - (x_2, y_2\sqrt{d}) + \operatorname{conjugate}$$

Previous theory applies with $L = \mathbb{Q}(\sqrt{d})$. **Example.** $C: y^2 = \underbrace{-727x^4 - 104x^3 + 92x^2 + 4x - 4}_{g(x)}$ $g(0) = -1 \cdot 2^2, \ g(\frac{-16}{53}) = \frac{-1 \cdot 2^2}{53^4}, \ f = \frac{1}{x}(x + \frac{16}{53}), \ L = \mathbb{Q}(i).$

 $B = \{\infty, 2\}$

Primes	Basis for $\operatorname{Pic}(C_p)/2\operatorname{Pic}(C_p)$	f(P)	$(\theta_p \circ f)(P)$
$p = \infty$	$P_0 = (-0.3, 0.0003)$	-0.00028	-1
p = 2	$P_0 = (2^{-1}, 2^{-2} + 1 + 2 + \cdots)$	$1+2^5+\cdots$	1
	$P_1 = (2^{-4} + \cdots, 2^{-8} + \cdots)$	$1+2^8+\cdots$	1

"Kernel" of $(\prod_p \operatorname{Pic}(C_p)/2\operatorname{Pic}(C_p))_1 \to \{1, -1\}$ is *empty*. $\therefore C(\mathbb{Q}) = \emptyset$.

Generalization

C curve /K number field. $f \in K(C) \setminus K$, S = supp(f).

Suppose $\exists P \in \operatorname{supp}(f)$ such that $\operatorname{ord}_P(f) = \pm 1$.

Define $Cl_K = I_K/K^*$ idèle class group. Then by class field theory \exists abelian extension L/K such that $\operatorname{Norm}(Cl_L) = \prod \operatorname{Norm}(Cl_{K(P)})^{\operatorname{ord}_P(f)}$. Can extend f to $\operatorname{Pic}(C) \to K^*/\operatorname{Norm}(L^*)$. We call f anti-Hasse if L/K is non-trivial.

Open Problem 1. For a given class of curves, find the anti-Hasse functions.

Open Problem 2. Can we get "arithmetic" information from the nonanti-Hasse functions using $\operatorname{Pic}(C) \to K^*/G_f$?

Example. (S. S. and A. Skorobogatov)

$$X: \begin{cases} v^2 = -(3u^2 + 12u + 13)(u^2 + 12u + 39), \\ z^2 = 2u^2 + 6u + 5. \end{cases}$$

Theorem. X does not have divisor classes of odd degree over $\mathbb{Q}(\sqrt{-13})$ (even though it is ELS).

Proof. Proof uses a function f plus $X \to Y$ where $Y : v^2 = -(3u^2 + 12u + 13)(u^2 + 12u + 39).$

References

- [1] S. Siksek, Sieving for rational points on hyperelliptic curves, *M. Corp.* 2001.
- [2] S. Siksek, Descent on Picard groups using functions on curves, Bull. Austral. Math. Soc. 2002.
- [3] S. Siksek, and A. Skorobogatov, On a Shimura curve that is a counterexample to the Hasse principle, *Bull. London. Math. Soc.* 2003.
- [4] S. Siksek, and M. Bright, Functions, Reciprocity and the Obstruction to divisors on curves, in preparation.

Samir Siksek University of Warwick, UK http://www.maths.warwick.uk/ siksek

The diagrams were drawn with Paul Taylor's commutative diagrams package.