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Objective. Develope a practical method which can show that a curve
having no rational points does indeed have no rational points (for certain
classes of curves).

Example. (Lind) 2Y 2 = X4 − 17Z4 is a counterexample to Hasse prin-
ciple.

Proof by contradiction. WLOG X, Y, Z ∈ Z, gcd(X, Z) = 1, Y > 0. If

q|Y , q 6= 2 is a prime then
(

17
q

)
= 1 ⇒

(
q
17

)
= 1 (also

(
2
17

)
= 1)

∴ Y ≡ Y 2
0 mod 17 ∴ 2Y 4

0 ≡ X4 mod 17. But 2 6∈ (F∗
17)

4. Contradiction.
Question. Can Lind’s strategy be applied to other curves?
Answer. For hyperelliptic curves, yes. Suppose F (X, Z) ∈ Z[X, Z] is

homogenous of even degree 2r. Suppose we want to show that Y 2 = F (X, Z)
has no points. Argue by contradiction:

Suppose we have a solution with X, Y, Z ∈ Z, gcd(X, Z) = 1, Z > 0.
Choose α, β ∈ Z, gcd(α, β) = 1, and let F (α, β) = γδ2, γ squarefree. There
exists a λ such that (λX, λZ) ≡ (α, β) mod (βX − αZ)

∴ γδ2 ≡ F (α, β) ≡ F (λX, λZ) ≡ λ2rF (X, Z) ≡ (λrY )2 mod (βX − αZ)

∴ γ is a quadratic residue mod (βX−αZ). ∴ Get congruences for βX−αZ.
Repeat with several pairs α, β until we get a contradiction.

Example. First |X| > 1 is 571A for which |X| = 4. Take 2-covering

Y 2 = −4X4 + 4X3Z + 92X2Z2 − 104XZ3 − 727Z4

ELS but has no rational points.
Proof. WLOG X,Y, Z ∈ Z, gcd(X, Z) = 1, Z > 0. 2-adic solvability ⇒

Z = Z0 or Z = 2Z0 where 2 6 |Z0. If q|Z0 then
(
−1
q

)
= 1 ∴ q ≡ 1 mod 4

∴ Z0 ≡ 1 mod 4

∴ Z ≡ 1 mod 4 or Z ≡ 2 mod 8.
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Also F (−53, 16) = −22. Get |16X + 53Z| ≡ 1 mod 4 or 2 mod 8 Real
solubility ⇒ 16X + 53Z < 0 ∴ 16X + 53Z ≡ 3 mod 4 or 6 mod 8.

∴ Z ≡ 3 mod 4 or Z ≡ 6 mod 8.

Contradiction.

Part II: Functions and Divisors

Let C/K smooth projective curve, f ∈ K(C) \ K, S ⊆ C(K̄) support of
f . Define Div(C̄) = {

∑
P∈C(K̄) nP P : nP ∈ Z, almost all = 0}, Div(C) =

(Div C̄)Gal(K̄/K), (Div C)S divisors that avoid S.
Extend f : (Div C)S → K∗, f(

∑
nP P ) =

∏
f(P )nP . Suppose g ∈ K(C)\

K such that support(g) ∩ S = ∅. Then by Weil’s reciprocity f(div(g)) =
g(div(f)) =

∏
P∈S g(P )ordP (f) =

∏
P∈S′(Norm(g(P )))ordP (f) where S ′ = Gal(

K̄/K) \ S.
Let Gf =

∏
P∈S′(NormK(P )/K(K(P )∗))ordP (f), ∴ f(Princ(C)S) ⊆ Gf ,

∴ f induces
f : (Div C)S/ Princ(C)S → K∗/Gf .

But Pic C := Div C/ Princ(C) = (Div C)S/ Princ(C)S, ∴ f ∈ K(C) \ K
induces

f : Pic C → K∗/Gf

PartII.V Class Field Theory

Let K number field, L/K finite abelian extension, IK ideles [IK = {(av)v :
av ∈ K∗

v . . .}].
Suppose v is a prime of K, w|v prime of L.
Local Artin Map θv : K∗

v/ Norm(L∗
w) → Gal(L/K).

Artin Map θ : IK/ Norm(IL) → Gal(L/K) given by θ =
∏

θv.
Artin Reciprocity. The sequence K∗ → IK/ Norm(IL) →θ Gal(L/K) is exact.

Example. K = Q, L = Q(i). Identify Gal(L/K) = µ2 = {1,−1}. Local

Artin map θp : Q∗
p → {1,−1}, θp(α) =

{
1 if α = x2 + y2 with x, y ∈ Qp

−1 otherwise.

III Reciprocity Joint with Martin Bright

Let K number field, C/K curve, L/K finite abelian extension. Suppose
div(f) =

∑
σ∈Gal(L/K) Dσ where supp(D) ⊆ C(L). Then we get Gf ⊆
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Norm(L∗). So f induces

Pic C
f- K∗/ Norm L∗

∏
v

Pic(Cv)

i

?
f- IK/ Norm(IL)

?
θ- Gal(L/K)

1

-

where θ is the Artin map.
Get

∏
v

Pic(Cv)

Pic(C)
1 -

i

-

Gal(L/K)

θ◦f

-

Lemma. ∃ a finite computable set B such that∏
v

Pic(Cv)
θ◦f - Gal(L/K)

∏
v∈B

Pic(Cv)

θ◦
f

-

--

commutes.

Get ∏
v∈B

Pic(Cv)

Pic(C)
1 -

i

-

Gal(L/K)

θ◦f

-
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Let n = # Gal(L/K) then ∏
v∈B

Pic(Cv)/n Pic(Cv)

Pic(C)/n Pic(C)
1 -

-

Gal(L/K)

θ◦f

-

and
∏

v∈B Pic(Cv)/n Pic(Cv) is finite and computable.
If Pv ∈ C(Kv) then Pic(Cv)/n Pic(Cv) = (Z/nZ)Pv ⊕ J(Kv)/nJ(Kv).

Lemma. Suppose 0 < r < n. Let (Pic(Cv)/n Pic(Cv))r = subset of
elements with degree r mod n.

Suppose that the “kernel” of
∏

v∈B(Pic(Cv)/n Pic(Cv))r
θ◦f- Gal(L/K)

is empty, then Picr(C) = Picr+n(C) = Picr+2n(C) = . . . = ∅.

Hyperelliptic Curves

C : y2 = g(x), g(x) ∈ Z[x], K = Q.
How to construct a suitable f?
Suppose x1, x2 ∈ Q such that g(x1) = dy2

1, g(x2) = dy2
2 for some d ∈

Z \ {0}, d square-free, y1, y2 ∈ Q∗. Let f = x−x1

x−x2
. Then

div(f) = (x1, y1

√
d)− (x2, y2

√
d) + conjugate

Previous theory applies with L = Q(
√

d).
Example. C : y2 = −727x4 − 104x3 + 92x2 + 4x− 4︸ ︷︷ ︸

g(x)

g(0) = −1 · 22, g(−16
53

) = −1·22

534 , f = 1
x
(x + 16

53
), L = Q(i).

B = {∞, 2}

Primes Basis for Pic(Cp)/2 Pic(Cp) f(P ) (θp ◦ f)(P )

p = ∞ P0 = (−0.3 . . . , 0.0003 . . .) -0.00028 -1

p = 2
P0 = (2−1, 2−

2
+1+2+ · · · ) 1 + 25 + · · · 1

P1 = (2−4 + · · · , 2−8 + · · · ) 1 + 28 + · · · 1

“Kernel” of (
∏

p Pic(Cp)/2 Pic(Cp))1 → {1,−1} is empty. ∴ C(Q) = ∅.
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Generalization

C curve /K number field. f ∈ K(C) \K, S = supp(f).
Suppose ∃P ∈ supp(f) such that ordP (f) = ±1.
Define ClK = IK/K∗ idèle class group. Then by class field theory ∃

abelian extension L/K such that Norm(ClL) =
∏

Norm(ClK(P ))
ordP (f). Can

extend f to Pic(C) → K∗/ Norm(L∗). We call f anti-Hasse if L/K is non-
trivial.

Open Problem 1. For a given class of curves, find the anti-Hasse func-
tions.

Open Problem 2. Can we get “arithmetic” information from the non-
anti-Hasse functions using Pic(C) → K∗/Gf?

Example. (S. S. and A. Skorobogatov)

X :

{
v2 = −(3u2 + 12u + 13)(u2 + 12u + 39),
z2 = 2u2 + 6u + 5.

Theorem. X does not have divisor classes of odd degree over Q(
√
−13)

(even though it is ELS).
Proof. Proof uses a function f plus X → Y where Y : v2 = −(3u2 +

12u + 13)(u2 + 12u + 39).
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The diagrams were drawn with Paul Taylor’s commutative diagrams package.
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