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Let C be a curve over K, a number field. We want to determine C(K), the K-rational points
on C, when C(K) 6= ∅.

General program (Bruin, Flynn, Poonen, Schaefer, Stoll, Wetherell, etc.):

Let J be the Jacobian of C. J = Div0(C)/Princ(C).

Note J = J(K).

Elliptic curves are Jacobians: E ∼= Div0(E)/Princ(E) by P 7→ [P − 0].

We know J(K) ∼= Zr ⊕ J(K)tors where r and #J(K)tors are finite.

1. Determine J(K)tors. Easy in practice.

2. Find a Selmer group to give an upper bound for r. (Focus of this talk.)

3. Find independent points of infinite order in J(K) to give a lower bound for r.

If those bounds are the same, then you have r and a set of points in J(K) generating a
subgroup of finite index. Let’s assume this.

4. Use pseudo-generating points and a Chabauty argument

on C if r < genus(C)
on covers of C if r ≥ genus(C)

to determine C(K) (not guaranteed to work).

How to use a Selmer group to find an upper bound for r when J(K) ∼= Zr ⊕ J(K)tors.

Let p be prime. Assume we know J(K)tors. If we knew J(K)/pJ(K) then we’d know r.

There is no known effective algorithm for determining J(K)/pJ(K).

There is an effectively computable (in theory) group called the Selmer group containing this
group.

We have an exact sequence

0 → J(K)[p] → J(K)
p→ J(K) → 0

of Gal(K/K)-modules.

Taking Gal(K/K)-invariants gives us

. . . J(K)
p→ J(K)

δ→ H1(Gal(K/K), J [p])
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→ H1(Gal(K/K), J(K))
p→ H1(Gal(K/K), J(K)) . . .

Giving us a short exact sequence

0 → J(K)/pJ(K)
δ→ H1(K, J [p]) → H1(K, J)[p] → 0.

(Note abbreviation of Gal(K/K) in H1.)

We’d like to find J(K)/pJ(K).

Equivalently, find its image in H1(K, J [p]). Let S be the set of primes of K containing
primes over p, primes of bad reduction of C and if p = 2, infinite primes.

Image of J(K)/pJ(K) is contained in H1(K, J [p]; S), a finite group.

Approximate image locally.

J(K)/pJ(K)
δ

↪→ H1(K, J [p]; S)

↓
∏

αs ↓
∏

ress

∏
s∈S

J(Ks)/pJ(Ks)
∏

δs

↪→
∏
s∈S

H1(Ks, J [p])

Want image of J(K)/pJ(K) in H1(K, J [p]; S).

Define Sp(K, J) = {γ ∈ H1(K, J [p]; S) |

ress(γ) ∈ δs

(
J(Ks)/pJ(Ks)

)
∀ s ∈ S}.

Problems: 1) H1(K, J [p]; S) hard to work in.

2) δs hard to evaluate.

Solution: Replace group and map.

Replace H1(K, J [p]).

Let A be the étale K-algebra that is the set of maps

from J [p] \ 0 to K.

Let A be its Gal(K/K)-invariants.

What does it look like?

Let J [p] \ 0 = {T1, . . . , Tl} .

Concretely, A ∼=
∏♦ K(Ti) where

∏♦ means take one representative from each Gal(K/K)-
orbit of {T1, . . . , Tl}.

Then µp(A) is the maps from J [p] \ 0 to µp.

Let w : J [p] → µp(A) by P 7→
(
Ti 7→ ep(P, Ti)

)
.
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This induces a map ŵ : H1(K, J [p]) → H1(K, µp(A)).

Kummer theory induces an isomorphism
k : H1(K, µp(A)) → A×/(A×)p.

Have H1(K, J [p])
ŵ→ H1(K, µp(A))

k→ A×/(A×)p.

Concerns: 1) Sure helps if ŵ is injective (doesn’t have to be, though w is).

2) Need to find image of H1(K, J [p]) in A×/(A×)p ( can be difficult if smallest Galois-invariant
spanning set of J [p] is much larger than a basis).

3) Really need image of H1(K, J [p]; S) in A(S, p) ⊂ A×/(A×)p. Requires class group/unit
group information in number fields making up A.

Let’s assume ŵ is injective and we’ve found the image of H1(K, J [p]; S) in A(S, p).

Have isomorphic image of H1(K, J [p]; S) in

A(S, p) ⊂ A×/(A×)p. Need to replace map

J(K)/pJ(K)
δ→ H1(K, J [p])

ŵ→ H1(K, µp(A))
k→ A×/(A×)p.

Since C(K) is non-empty, we can choose divisors D1, . . . , Dl,

with [Di] = Ti ∈ J [p] \ 0 and pDi = divfi
and where

{fi} ∼= J [p] \ 0 as Gal(K/K)-sets.

We call D a good divisor if D ∈ Div0(C)(K) and its support does not intersect any of the
divfi

’s.

Define f : { good divisors } → A∗

by D 7→
(
Ti 7→ fi(D)

)
.

Theorem: The map f induces a well defined homomorphism from J(K)/pJ(K) → A(S, p) ⊂
A×/(A×)p that is the same as kŵδ.

Equivalently we have

J(K)/pJ(K)
∏♦ fi→

∏♦ K(Ti)(S, p)
where K(Ti)(S, p) ⊂ K(Ti)

×/(K(Ti)
×)p.

Note, we have A(S, p) =
∏♦ K(Ti)(S, p).

Let As = A⊗K Ks.
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J(K)/pJ(K)
f

↪→ A(S, p)

↓
∏

αs ↓
∏

βs

∏
s∈S

J(Ks)/pJ(Ks)
f

↪→
∏
s∈S

A×
s/(A

×
s )p

We have Sp(K, J) = {γ ∈ image of H1(K, J [p]; S) in A(S, p) |

βs(γ) ∈ f
(
J(Ks)/pJ(Ks)

)
, ∀s ∈ S}.

Notes:

1. If have isogeny φ : B → J over K where B is an abelian variety then can use this
technique to find Sφ(K, B).

2. Instead of using all of J [p] \ 0 can use a Galois-invariant spanning set of J [p]. Will get
lower degree A.

Important related method.

Above, had div(fi) = pDi.

What if div(fi) = pDi −D′ where Di effective and D′/K?

Example: Hyperelliptic curve. Generically, a hyperelliptic curve of genus g has equation
y2 = h(x), where h(x) has degree 2g + 2.

Let h(αi) = 0 and consider fi = x− αi then

div(fi) = 2(αi, 0)− (∞+ +∞−).

Note their differences are {2(αi, 0)− 2(αj, 0)} and the set
{[(αi, 0) − (αj, 0)]} spans J [2]. So we have the necessary spanning property. However, the
divisors 2(αi, 0) − (∞+ + ∞−) are defined over a field of lower degree than the divisors
2(αi, 0)− 2(αj, 0).

Let A be the set of maps from {2(αi, 0)− (∞+ +∞−)} to K.

So A ∼= K[T ]/(h(T )) and f = x− T .

J(K)/2J(K)
x−T→ A×/(A×2K×).

Has kernel of size 1 or 2, depending on Galois-action on roots of h.

Example:

Let C : y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1.

Find C(Q).

Easy to find {(0,±1), (−3,±1), ∞+,∞−} ⊆ C(Q).
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#J(F3) = 9 and #J(F5) = 41 so J(Q)tors = 0. Thus J(Q) ∼= Zr.

We have
A = Q[T ]/(T 6 + 8T 5 + 22T 4 + 22T 3 + 5T 2 + 6T + 1),
a sextic number field.

Bad primes are S = {∞, 2, 3701}.

J(Q)/2J(Q)
x−T→ A×/(A×2Q×)

↓ ↓
∏

βp∏
p∈S

J(Qp)/2J(Qp)
x−T→

∏
p∈S

A×
p /(A×2

p Q×
p )

Define S2
fake(Q, J) = {γ ∈ kerN : A(S, 2)/Q(S, 2) →

Q×/Q×2 | βp(γ) ∈ (x− T )
(
J(Qp)

)
, ∀p ∈ S}.

From Galois action on zeros of sextic, turns out
dimF2S

2(Q, J) = dimF2S
2
fake(Q, J) + 1.

We have A = Q[T ]/(T 6 + 8T 5 + 22T 4 + 22T 3 + 5T 2 + 6T + 1) - a sextic number field.

J(Q)/2J(Q)
x−T→ A×/(A×2Q×)

↓ ↓
∏

βp∏
p∈S

J(Qp)/2J(Qp)
x−T→

∏
p∈S

A×
p /(A×2

p Q×
p )

Basis of A(S, 2) is {−1, u1, u2, u3, α, β1, β2, β3} with norms {1, 1, 1,−1, 23, 3701,−3701, 37013}.

Basis of kerN : A(S, 2)/Q(S, 2) → Q×/Q×2 is {u1, u3β1β2}.

So S2
fake(Q, J) ⊆ 〈u1, u3β1β2〉.

The image of J(Q3701) in A×
3701/(A

×2
3701Q

×
3701) is generated

by the image of [(−4,
√

185)−∞−]. It is a unit in each

component. So u3β1β2 and u1u3β1β2 do not map to
(x− T )J(Q3701). Thus S2

fake(Q, J) ⊆ 〈u1〉.

The image of J(Q2) in A×
2 /(A×2

2 Q×
2 ) is the image of

〈[(2,
√

881)−∞−]〉 and u1 does not map to that.

So S2
fake(Q, J) is trivial.

Since dimF2S
2(Q, J) = dimF2S

2
fake(Q, J) + 1,

we have dimF2S
2(Q, J) = 1.

Since J(Q)/2J(Q) ⊆ S2(Q, J),

we have dimF2J(Q)/2J(Q) ≤ 1.
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It’s easy to show that [∞+ −∞−] has infinite order.

So 1 ≤ dimF2J(Q)/2J(Q).

Thus dimF2J(Q)/2J(Q) = 1.

Since J(Q) ∼= Zr we have J(Q) ∼= Z.

Let us use a Chabauty argument to prove that for

C : y2 = x6 + 8x5 + 22x4 + 22x3 + 5x2 + 6x + 1,

we have C(Q) = {(0,±1), (−3,±1), ∞±}.

Note that r = 1 < g = 2 and g = 2 gives the dimension of J .

J has good reduction at 3.

Let ω be a holomorphic 1-form on J(Q3).

Define a homomorphism λω : J(Q3) → Q3

by T 7→
∫ T

0
ω.

(Can be defined on a neighborhood of 0 using the formal group, and then extended linearly
to all of J(Q3).)

We have J(F3) ∼= Z/9Z.

Map ι : C ↪→ J by R 7→ [R− (0, 1)].

Of the 9 elements of J(F3), exactly 4 are in the image

of ιC(F3), namely the reductions of

{(0,±1), ∞±}.

So if R ∈ C(Q) then R is in the same residue class

mod 3 of one of those 4 points.

We’ll bound the number of points in C(Q) in the residue class of each of those 4 points.

Closure of J(Q) in J(Q3) has dimension 1 so let’s find a

1-form ω on J(Q3) killing J(Q) and hence C(Q).

A basis for the space of holomorphic differentials on C is ω1 = dx
2y

and ω2 = xdx
2y

.

Express each as element of Q3[[x]] dx (x is unif’r at (0, 1)).

Compute 9[(0,−1)− (0, 1)] = [P1 + P2 − 2(0, 1)], where P1 + P2 ≡ 2(0, 1)(mod 3). (Note all
the points are in a neighborhood of (0, 1).)

Then for j = 1, 2, we compute
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∫ [P1+P2−2(0,1)]

0
ι∗ωj

=
∫ P1

(0,1)
ωj +

∫ P2

(0,1)
ωj ∈ Q3.

Find a, b such that a
∫ [P1+P2−2(0,1)]

0
ι∗ω1 + b

∫ [P1+P2−2(0,1)]

0
ι∗ω2 = 0.

So η = adx+bxdx
2y

∈ Q3[[x]] dx kills J(Q).

Let R ∈ C(Q) with R ≡ (0, 1)(mod 3).

Have 0 =
∫ [R−(0,1)]

0
ι∗η =

∫ R

(0,1)
η

= α1x(R) + α2x(R)2 + . . .

= α13t + α2(3t)
2 + . . ., with αi ∈ Z3.

Let i be the greatest index of the coefficients with the minimum 3-adic valuation.

From Strassman’s theorem, the number of zeros of this power series in Z3 is at most i.

Here i = 2 unit). So only there are exactly two zeros, coming from (0, 1) and (−3, 1). So
there are only two points of C(Q) in the residue class of (0, 1) mod 3.

Do the same thing for P = (0,−1), ∞±, using η = adx+bxdx
2y

, expanded each time respect to

a uniformizer at P .

For P = (0,−1) we find there are two points of C(Q) in that residue class, namely (0,−1)
and (−3,−1). For P = ∞± we find there is only one point in the residue class of each.

Since the image of C(F3) in J(F3) by R 7→ [R− (0, 1)] was equal to the image of the known
rational points,

we have C(Q) = {(0,±1), (−3,±1), ∞±}.
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There isn’t really a good reference on the Chabauty looking like what I did yet. Eventually,
when Poonen, Schaefer, Stoll (on X2 + Y 3 = Z7) comes out, there will be.


