Computing Selmer groups of Jacobians

Edward Schaefer Mzuzu University and Santa Clara University

Let C be a curve over K, a number field. We want to determine C(K), the K-rational points on C, when $C(K) \neq \emptyset$.

General program (Bruin, Flynn, Poonen, Schaefer, Stoll, Wetherell, etc.):

Let J be the Jacobian of C. $J = \text{Div}^0(C)/\text{Princ}(C)$.

Note $J = J(\overline{K})$.

Elliptic curves are Jacobians: $E \cong \text{Div}^0(E)/\text{Princ}(E)$ by $P \mapsto [P-0]$.

We know $J(K) \cong \mathbf{Z}^r \oplus J(K)_{\text{tors}}$ where r and $\#J(K)_{\text{tors}}$ are finite.

1. Determine $J(K)_{\text{tors}}$. Easy in practice.

2. Find a Selmer group to give an upper bound for r. (Focus of this talk.)

3. Find independent points of infinite order in J(K) to give a lower bound for r.

If those bounds are the same, then you have r and a set of points in J(K) generating a subgroup of finite index. Let's assume this.

4. Use pseudo-generating points and a Chabauty argument

on C	if $r < \operatorname{genus}(C)$
on covers of C	if $r \ge \operatorname{genus}(C)$
to determine $C(K)$ (not	guaranteed to work).

How to use a Selmer group to find an upper bound for r when $J(K) \cong \mathbb{Z}^r \oplus J(K)_{\text{tors}}$.

Let p be prime. Assume we know $J(K)_{\text{tors}}$. If we knew J(K)/pJ(K) then we'd know r.

There is no known effective algorithm for determining J(K)/pJ(K).

There is an effectively computable (in theory) group called the Selmer group containing this group.

We have an exact sequence

 $0 \to J(\overline{K})[p] \to J(\overline{K}) \xrightarrow{p} J(\overline{K}) \to 0$

of $\operatorname{Gal}(\overline{K}/K)$ -modules.

Taking $\operatorname{Gal}(\overline{K}/K)$ -invariants gives us

 $\dots J(K) \xrightarrow{p} J(K) \xrightarrow{\delta} H^1(\operatorname{Gal}(\overline{K}/K), J[p])$

$$\to H^1(\operatorname{Gal}(\overline{K}/K), J(\overline{K})) \xrightarrow{p} H^1(\operatorname{Gal}(\overline{K}/K), J(\overline{K})) \dots$$

Giving us a short exact sequence $0 \to J(K)/pJ(K) \xrightarrow{\delta} H^1(K, J[p]) \to H^1(K, J)[p] \to 0.$ (Note abbreviation of $\operatorname{Gal}(\overline{K}/K)$ in H^1 .) We'd like to find J(K)/pJ(K).

Equivalently, find its image in $H^1(K, J[p])$. Let S be the set of primes of K containing primes over p, primes of bad reduction of C and if p = 2, infinite primes.

Image of J(K)/pJ(K) is contained in $H^1(K, J[p]; S)$, a finite group.

Approximate image locally.

$$J(K)/pJ(K) \stackrel{\delta}{\hookrightarrow} H^{1}(K, J[p]; S)$$
$$\downarrow \prod \alpha_{\mathfrak{s}} \qquad \downarrow \prod \operatorname{res}_{\mathfrak{s}}$$
$$\prod_{\mathfrak{s} \in S} J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}}) \stackrel{\prod \delta_{\mathfrak{s}}}{\hookrightarrow} \prod_{\mathfrak{s} \in S} H^{1}(K_{\mathfrak{s}}, J[p])$$

Want image of J(K)/pJ(K) in $H^1(K, J[p]; S)$.

Define $S^p(K, J) = \{ \gamma \in H^1(K, J[p]; S) \mid$

 $\operatorname{res}_{\mathfrak{s}}(\gamma) \in \delta_{\mathfrak{s}}(J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}})) \quad \forall \ \mathfrak{s} \in S \}.$

Problems: 1) $H^1(K, J[p]; S)$ hard to work in.

2) $\delta_{\mathfrak{s}}$ hard to evaluate.

Solution: Replace group and map.

Replace $H^1(K, J[p])$.

Let \overline{A} be the étale K-algebra that is the set of maps

from $J[p] \setminus 0$ to \overline{K} .

Let A be its $\operatorname{Gal}(\overline{K}/K)$ -invariants.

What does it look like?

Let $J[p] \setminus 0 = \{T_1, \ldots, T_l\}$.

Concretely, $A \cong \prod^{\diamond} K(T_i)$ where \prod^{\diamond} means take one representative from each $\operatorname{Gal}(\overline{K}/K)$ -orbit of $\{T_1, \ldots, T_l\}$.

Then $\mu_p(\overline{A})$ is the maps from $J[p] \setminus 0$ to μ_p .

Let $w: J[p] \to \mu_p(\overline{A})$ by $P \mapsto (T_i \mapsto e_p(P, T_i)).$

This induces a map $\hat{w} : H^1(K, J[p]) \to H^1(K, \mu_p(\overline{A})).$

Kummer theory induces an isomorphism $k: H^1(K, \mu_p(\overline{A})) \to A^{\times}/(A^{\times})^p.$

Have $H^1(K, J[p]) \xrightarrow{\hat{w}} H^1(K, \mu_p(\overline{A})) \xrightarrow{k} A^{\times}/(A^{\times})^p$.

Concerns: 1) Sure helps if \hat{w} is injective (doesn't have to be, though w is).

2) Need to find image of $H^1(K, J[p])$ in $A^{\times}/(A^{\times})^p$ (can be difficult if smallest Galois-invariant spanning set of J[p] is much larger than a basis).

3) Really need image of $H^1(K, J[p]; S)$ in $A(S, p) \subset A^{\times}/(A^{\times})^p$. Requires class group/unit group information in number fields making up A.

Let's assume \hat{w} is injective and we've found the image of $H^1(K, J[p]; S)$ in A(S, p).

Have isomorphic image of $H^1(K, J[p]; S)$ in

 $A(S,p) \subset A^{\times}/(A^{\times})^p$. Need to replace map

$$J(K)/pJ(K) \xrightarrow{\delta} H^1(K, J[p]) \xrightarrow{\hat{w}} H^1(K, \mu_p(\overline{A})) \xrightarrow{k} A^{\times}/(A^{\times})^p.$$

Since C(K) is non-empty, we can choose divisors D_1, \ldots, D_l ,

with $[D_i] = T_i \in J[p] \setminus 0$ and $pD_i = \operatorname{div}_{f_i}$ and where

 $\{f_i\} \cong J[p] \setminus 0$ as $\operatorname{Gal}(\overline{K}/K)$ -sets.

We call D a good divisor if $D \in \text{Div}^0(C)(K)$ and its support does not intersect any of the div_{f_i} 's.

Define $f: \{ \text{ good divisors } \} \to A^*$

by $D \mapsto (T_i \mapsto f_i(D))$.

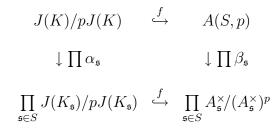
Theorem: The map f induces a well defined homomorphism from $J(K)/pJ(K) \to A(S,p) \subset A^{\times}/(A^{\times})^p$ that is the same as $k\hat{w}\delta$.

Equivalently we have

 $\begin{array}{l} J(K)/pJ(K) \stackrel{\prod^{\diamond} f_i}{\to} \prod^{\diamond} K(T_i)(S,p) \\ \text{where } K(T_i)(S,p) \subset K(T_i)^{\times}/(K(T_i)^{\times})^p. \end{array}$

Note, we have $A(S, p) = \prod^{\diamond} K(T_i)(S, p)$.

Let $A_{\mathfrak{s}} = A \otimes_K K_{\mathfrak{s}}$.



We have $S^p(K, J) = \{ \gamma \in \text{image of } H^1(K, J[p]; S) \text{ in } A(S, p) \mid$

$$\beta_{\mathfrak{s}}(\gamma) \in f(J(K_{\mathfrak{s}})/pJ(K_{\mathfrak{s}})), \ \forall \mathfrak{s} \in S\}.$$

Notes:

1. If have isogeny $\phi : B \to J$ over K where B is an abelian variety then can use this technique to find $S^{\phi}(K, B)$.

2. Instead of using all of $J[p] \setminus 0$ can use a Galois-invariant spanning set of J[p]. Will get lower degree A.

Important related method.

Above, had $\operatorname{div}(f_i) = pD_i$.

What if $\operatorname{div}(f_i) = pD_i - D'$ where D_i effective and D'/K?

Example: Hyperelliptic curve. Generically, a hyperelliptic curve of genus g has equation $y^2 = h(x)$, where h(x) has degree 2g + 2.

Let $h(\alpha_i) = 0$ and consider $f_i = x - \alpha_i$ then

 $\operatorname{div}(f_i) = 2(\alpha_i, 0) - (\infty^+ + \infty^-).$

Note their differences are $\{2(\alpha_i, 0) - 2(\alpha_j, 0)\}$ and the set

 $\{[(\alpha_i, 0) - (\alpha_j, 0)]\}$ spans J[2]. So we have the necessary spanning property. However, the divisors $2(\alpha_i, 0) - (\infty^+ + \infty^-)$ are defined over a field of lower degree than the divisors $2(\alpha_i, 0) - 2(\alpha_j, 0)$.

Let \overline{A} be the set of maps from $\{2(\alpha_i, 0) - (\infty^+ + \infty^-)\}$ to \overline{K} .

So $A \cong K[T]/(h(T))$ and f = x - T.

 $J(K)/2J(K) \stackrel{x-T}{\to} A^{\times}/(A^{\times 2}K^{\times}).$

Has kernel of size 1 or 2, depending on Galois-action on roots of h.

Example:

Let $C: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1.$

Find $C(\mathbf{Q})$.

Easy to find $\{(0, \pm 1), (-3, \pm 1), \infty^+, \infty^-\} \subseteq C(\mathbf{Q}).$

 $#J(\mathbf{F}_3) = 9$ and $#J(\mathbf{F}_5) = 41$ so $J(\mathbf{Q})_{\text{tors}} = 0$. Thus $J(\mathbf{Q}) \cong \mathbf{Z}^r$. We have $A = \mathbf{Q}[T]/(T^6 + 8T^5 + 22T^4 + 22T^3 + 5T^2 + 6T + 1)$, a sextic number field.

Bad primes are $S = \{\infty, 2, 3701\}$.

Define $S_{\text{fake}}^2(\mathbf{Q}, J) = \{ \gamma \in \ker N : A(S, 2) / \mathbf{Q}(S, 2) \rightarrow \mathbf{Q}^{\times} / \mathbf{Q}^{\times 2} \mid \beta_p(\gamma) \in (x - T) (J(\mathbf{Q}_p)), \forall p \in S \}.$

From Galois action on zeros of sextic, turns out $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = \dim_{\mathbf{F}_2} S^2_{\text{fake}}(\mathbf{Q}, J) + 1.$

We have $A = \mathbf{Q}[T]/(T^6 + 8T^5 + 22T^4 + 22T^3 + 5T^2 + 6T + 1)$ - a sextic number field.

Basis of A(S, 2) is $\{-1, u_1, u_2, u_3, \alpha, \beta_1, \beta_2, \beta_3\}$ with norms $\{1, 1, 1, -1, 2^3, 3701, -3701, 3701^3\}$. Basis of ker $N : A(S, 2)/\mathbf{Q}(S, 2) \to \mathbf{Q}^{\times}/\mathbf{Q}^{\times 2}$ is $\{u_1, u_3\beta_1\beta_2\}$. So $S_{\text{fake}}^2(\mathbf{Q}, J) \subseteq \langle u_1, u_3\beta_1\beta_2 \rangle$. The image of $J(\mathbf{Q}_{3701})$ in $A_{3701}^{\times}/(A_{3701}^{\times 2}\mathbf{Q}_{3701}^{\times})$ is generated by the image of $[(-4, \sqrt{185}) - \infty^{-}]$. It is a unit in each component. So $u_3\beta_1\beta_2$ and $u_1u_3\beta_1\beta_2$ do not map to $(x - T)J(\mathbf{Q}_{3701})$. Thus $S_{\text{fake}}^2(\mathbf{Q}, J) \subseteq \langle u_1 \rangle$. The image of $J(\mathbf{Q}_2)$ in $A_2^{\times}/(A_2^{\times 2}\mathbf{Q}_2^{\times})$ is the image of $\langle [(2, \sqrt{881}) - \infty^{-}] \rangle$ and u_1 does not map to that. So $S_{\text{fake}}^2(\mathbf{Q}, J)$ is trivial.

Since $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = \dim_{\mathbf{F}_2} S^2_{\text{fake}}(\mathbf{Q}, J) + 1$,

we have $\dim_{\mathbf{F}_2} S^2(\mathbf{Q}, J) = 1$.

Since $J(\mathbf{Q})/2J(\mathbf{Q}) \subseteq S^2(\mathbf{Q}, J)$,

we have $\dim_{\mathbf{F}_2} J(\mathbf{Q})/2J(\mathbf{Q}) \leq 1$.

It's easy to show that $[\infty^+ - \infty^-]$ has infinite order.

So $1 \leq \dim_{\mathbf{F}_2} J(\mathbf{Q}) / 2J(\mathbf{Q})$.

Thus $\dim_{\mathbf{F}_2} J(\mathbf{Q})/2J(\mathbf{Q}) = 1.$

Since $J(\mathbf{Q}) \cong \mathbf{Z}^r$ we have $J(\mathbf{Q}) \cong \mathbf{Z}$.

Let us use a Chabauty argument to prove that for

 $C: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 5x^2 + 6x + 1,$

we have $C(\mathbf{Q}) = \{(0, \pm 1), (-3, \pm 1), \infty^{\pm}\}.$

Note that r = 1 < g = 2 and g = 2 gives the dimension of J.

 ${\cal J}$ has good reduction at 3.

Let ω be a holomorphic 1-form on $J(\mathbf{Q}_3)$.

Define a homomorphism $\lambda_{\omega} \colon J(\mathbf{Q}_3) \to \mathbf{Q}_3$

by $T \mapsto \int_0^T \omega$.

(Can be defined on a neighborhood of 0 using the formal group, and then extended linearly to all of $J(\mathbf{Q}_3)$.)

We have $J(\mathbf{F}_3) \cong \mathbf{Z}/9\mathbf{Z}$.

Map $\iota: C \hookrightarrow J$ by $R \mapsto [R - (0, 1)]$.

Of the 9 elements of $J(\mathbf{F}_3)$, exactly 4 are in the image

of $\iota C(\mathbf{F}_3)$, namely the reductions of

 $\{(0,\pm 1), \infty^{\pm}\}.$

So if $R \in C(\mathbf{Q})$ then R is in the same residue class

mod 3 of one of those 4 points.

We'll bound the number of points in $C(\mathbf{Q})$ in the residue class of each of those 4 points.

Closure of $J(\mathbf{Q})$ in $J(\mathbf{Q}_3)$ has dimension 1 so let's find a

1-form ω on $J(\mathbf{Q}_3)$ killing $J(\mathbf{Q})$ and hence $C(\mathbf{Q})$.

A basis for the space of holomorphic differentials on C is $\omega_1 = \frac{dx}{2y}$ and $\omega_2 = \frac{xdx}{2y}$.

Express each as element of $\mathbf{Q}_3[[x]] dx$ (x is unif'r at (0, 1)).

Compute $9[(0, -1) - (0, 1)] = [P_1 + P_2 - 2(0, 1)]$, where $P_1 + P_2 \equiv 2(0, 1) \pmod{3}$. (Note all the points are in a neighborhood of (0, 1).)

Then for j = 1, 2, we compute

$$\begin{split} &\int_{0}^{[P_{1}+P_{2}-2(0,1)]} \iota_{*}\omega_{j} \\ &= \int_{(0,1)}^{P_{1}} \omega_{j} + \int_{(0,1)}^{P_{2}} \omega_{j} \in \mathbf{Q}_{3}. \\ &\text{Find } a, b \text{ such that } a \int_{0}^{[P_{1}+P_{2}-2(0,1)]} \iota_{*}\omega_{1} + b \int_{0}^{[P_{1}+P_{2}-2(0,1)]} \iota_{*}\omega_{2} = 0. \\ &\text{So } \eta = \frac{adx+bxdx}{2y} \in \mathbf{Q}_{3}[[x]] \, dx \text{ kills } J(\mathbf{Q}). \\ &\text{Let } R \in C(\mathbf{Q}) \text{ with } R \equiv (0,1) (\text{mod } 3). \\ &\text{Have } 0 = \int_{0}^{[R-(0,1)]} \iota_{*}\eta = \int_{(0,1)}^{R} \eta \\ &= \alpha_{1}x(R) + \alpha_{2}x(R)^{2} + \dots \\ &= \alpha_{1}3t + \alpha_{2}(3t)^{2} + \dots, \text{ with } \alpha_{i} \in \mathbf{Z}_{3}. \end{split}$$

Let i be the greatest index of the coefficients with the minimum 3-adic valuation.

From Strassman's theorem, the number of zeros of this power series in \mathbb{Z}_3 is at most *i*.

Here i = 2 unit). So only there are exactly two zeros, coming from (0, 1) and (-3, 1). So there are only two points of $C(\mathbf{Q})$ in the residue class of $(0, 1) \mod 3$.

Do the same thing for P = (0, -1), ∞^{\pm} , using $\eta = \frac{adx+bxdx}{2y}$, expanded each time respect to a uniformizer at P.

For P = (0, -1) we find there are two points of $C(\mathbf{Q})$ in that residue class, namely (0, -1) and (-3, -1). For $P = \infty^{\pm}$ we find there is only one point in the residue class of each.

Since the image of $C(\mathbf{F}_3)$ in $J(\mathbf{F}_3)$ by $R \mapsto [R - (0, 1)]$ was equal to the image of the known rational points,

we have $C(\mathbf{Q}) = \{(0, \pm 1), (-3, \pm 1), \infty^{\pm}\}.$

References.

General case:

Schaefer, E.F. Computing a Selmer group of a Jacobian using functions on the curve, Mathematische Annalen, **310**, 1998, 447–471.

 $y^2 = f(x)$ case:

Flynn, E.V., Poonen, B. and Schaefer, E.F. Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Mathematical Journal, **90**, 1997, 435–463.

$$y^p = f(x)$$
 case:

Poonen, B. and Schaefer, E.F. *Explicit Descent for Jacobians of cyclic covers of the projective line*, Journal für die reine und angewandte Mathematik, **488**, 1997, 141–188.

There isn't really a good reference on the Chabauty looking like what I did yet. Eventually, when Poonen, Schaefer, Stoll (on $X^2 + Y^3 = Z^7$) comes out, there will be.