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1. Introduction

The main topic of this lecture course will be various methods that (in favorable
cases) will allow us to determine the set of rational points on a hyperelliptic curve.
In very down-to-earth terms, what we would like to determine is the set of solutions
in rational numbers x and y of an equation of the form

(1.1) y2 = f(x) ,

where f ∈ Z[x] is a polynomial with integral coefficients and without multiple
roots and such that deg f ≥ 5. (If f has multiple roots, then we can write
f = f1h

2 with polynomials f1, h ∈ Z[x] such that h is not constant; then solutions
of y2 = f(x) essentially correspond to solutions of the simpler (in terms of deg f)
equation y2 = f1(x): we get a solution of the former in the form (ξ, h(ξ)η) when
(ξ, η) is a solution of the latter, and all solutions (ξ, η) of the former with h(ξ) 6= 0
have this form.)

We can think of equation (1.1) as defining an affine plane algebraic curve Caff.
Such a curve is said to be hyperelliptic. Then the solutions in rational numbers
correspond to the rational points (i.e., points with rational coordinates) of this
curve Caff. The condition that f has no multiple roots translates into the require-
ment that the curve Caff be smooth: It does not have any singular points, which
are points where both partial derivatives of the defining polynomial y2 − f(x)
vanish.

From a geometric point of view, it is more natural to consider projective curves
(rather than affine ones). We obtain a smooth projective curve C by adding
suitable points at infinity. If deg f is odd, there is just one such point, and it
is always a rational point. If deg f is even, there are two such points, which
correspond to the two square roots of the leading coefficient of f . These points
are rational if and only if this leading coefficient is a square, so that its square
roots are rational numbers. We will give a more symmetric description of C in
the next section. The set of rational points on C is denoted C(Q).

The most important invariant associated to a smooth (absolutely irreducible) pro-
jective curve is its genus, which we will always denote g. The genus is a natu-
ral number. For hyperelliptic curves, it turns out to be g if deg f = 2g + 1 or
deg f = 2g + 2. Note that our definition above implies that g ≥ 2 for the curves
we consider. In general, one can define the genus by considering the set of complex
points of the curve. It forms a compact Riemann surface, which is an orientable
surface (2-dimensional manifold) and therefore ‘looks like’ (meaning: is homeo-
morphic to) a sphere with a certain number of handles attached. This number of
handles is the genus g. For example, the sphere itself has genus 0, since no handle
needs to be attached, and a torus has genus 1.

g = 0 g = 1 g = 2

It has been an important insight that this topological invariant also governs the
nature of the set of rational points, which is an arithmetic invariant of the curve:
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1.1. Theorem. Let C be a smooth projective and absolutely irreducible curve of THM
Structure
of C(Q)

genus g defined over Q.

(1) If g = 0, then either C(Q) = ∅ or C is isomorphic over Q to the projective
line P1. This isomorphism induces a bijection Q∪{∞} = P1(Q)→ C(Q).

(2) If g = 1, then either C(Q) = ∅ or else, fixing a point P0 ∈ C(Q), the set
C(Q) has the structure of a finitely generated abelian group with zero P0.
In this case, (C,P0) is an elliptic curve over Q.

(3) If g ≥ 2, then C(Q) is finite.

The first part of this is quite classical and can be traced back to Diophantus (who
(probably) lived in the third century AD). Here is a sketch: First one can show
that any curve of genus 0 is isomorphic to a conic section (a projective plane curve
of degree 2). If C(Q) = ∅, we have nothing to show. So let P0 ∈ C(Q) and let
l be a rational line not passing through P0. Then projecting away from P0 gives
the isomorphism C → l ∼= P1.
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Projecting the unit circle from the point
P0 = (−1, 0) to the line l (the y-axis)
leads to the parametrization

t 7−→
( 2t

1 + t2
,
1− t2

1 + t2

)
of the rational points on the unit circle.

The second part was proved by Mordell in 19221 (and later generalized by Weil;
L.J. Mordell
1888–1972

we will come back to that).
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The group of rational points on this el-
liptic curve is isomorphic to Z; it is gen-
erated by the point (1, 1) (and the zero
of the group is the point at infinity).

The curve is given by the equation

y2 = x3 − x+ 1 .

The rational points are marked by dots
whose color (from red to blue) and size
(from large to small) change with increas-
ing size of the numerator and denomina-
tor of the coordinates.

In the same paper that contains his proof, Mordell conjectured the third statement
in the theorem above. This was finally proved by Faltings about sixty years later2,

G. Faltings
* 1954

1Louis J. Mordell: On the rational solutions of the indeterminate equation of the third and
fourth degrees, Proc. Cambridge Philos. Soc. 21, 179–192 (1922).

2Gerd Faltings: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Inventiones Math-
ematicae 73:3, 349–366 (1983).
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who was awarded the Fields Medal for this result in 1986 (and remains the only
German to have received this prestigious prize).

Part (3) of the theorem tells us that it is at least possible in principle to give a
complete description of C(Q): we simply list the finitely many rational points.
This then raises the question whether it is always possible to provably do so. Let
us assume that C is a plane curve, with affine part Caff. There are only finitely
many points at infinity (i.e., points in C \ Caff), and it is easy to check which of
them are rational. So we can reduce the problem to that of determining Caff(Q).
Now the set Q×Q of rational points in the affine plane is countable, so we can (in
principle, at least) just enumerate all these points one by one and check for each
point if it is on the curve. Since there are only finitely many rational points on C,
we will eventually find them all. (In practice, this procedure is obviously very
inefficient. It is much better to (say) enumerate the x-coordinates and check if the
resulting equation for y has rational solutions.) In fact, one should expect these
points to be relatively ‘small’ (in terms of a suitable notion of size, and relative to
the size of the coefficients of the equation defining the curve), so that it is usually
no problem to find all the rational points. The difficult part is to prove that the
list is complete. We will discuss several approaches that allow us to do this in
favorable circumstances. However, so far it is an open question whether this is
always possible, i.e., whether there is an algorithm that would construct such a
proof whenever the list is indeed complete.

Another question that arises is whether there might be a bound for the finite
L. Caporaso

J. Harris
* 1951

B. Mazur
* 1937

number of rational points. Since it is easy to construct curves of increasing genus
with more and more rational points — for example, the curve of genus g given by

y2 = x(x− 1)(x− 2) · · · (x− 2g)(x− 2g − 1)

has at least the 2g+ 2 rational points (0, 0), (1, 0), . . . , (2g+ 1, 0) — this question
only makes sense for curves of fixed genus. In this setting, the question is open.
Caporaso, Harris and Mazur3 have shown that the Bombieri-Lang Conjecture on
rational points on varieties of general type would imply that such a bound only
depending on g exists. The latter conjecture is wide open in general (and not even
believed to hold by some people in the field). For curves of genus 2 (which are
always hyperelliptic), the current record is held by a curve that has at least 642
rational points. It is given by the following equation:

y2 = 82342800x6 − 470135160x5 + 52485681x4

+ 2396040466x3 + 567207969x2 − 985905640x+ 247747600

3Lucia Caporaso, Joe Harris, Barry Mazur, Uniformity of rational points, J. Amer. Math.
Soc. 10:1, 1–35 (1997).
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2. Hyperelliptic Curves: Basics

Hyperelliptic curves are special algebraic curves. For reasons of time, we will
avoid going into the general theory of algebraic curves to the extent possible,
which means that part of what we do here will be somewhat ad hoc.

We will essentially only consider projective curves. We begin by introducing a
suitable ambient space.

2.1. Definition. Fix g ∈ Z≥0. The weighted projective plane P2
g = P2

(1,g+1,1) DEF
weighted
projective
plane

is the geometric object whose points over a field k are the equivalence classes of
triples (ξ, η, ζ) ∈ k3 \{(0, 0, 0)}, where triples (ξ, η, ζ) and (ξ′, η′, ζ ′) are equivalent
if there is some λ ∈ k× such that (ξ′, η′, ζ ′) = (λξ, λg+1η, λζ). We write (ξ : η : ζ)
for the corresponding point. The set of k-rational points of P2

g is written P2
g(k).

Its coordinate ring over k is the ring k[x, y, z] with the grading that assigns to x
and z degree 1 and to y degree g + 1. A polynomial f ∈ k[x, y, z] is homogeneous
of total degree d if all its terms have total degree d, so that it has the form

f =
∑

i1,i2,i3 : i1+(g+1)i2+i3=d

ai1,i2,i3x
i1yi2zi3

with coefficients ai1,i2,i3 ∈ k. ♦

For g = 0 we obtain the standard projective plane and the standard notion of
‘homogeneous’ for polynomials.

‘P2
g’ is ad hoc notation used in these notes; the general notation P2

(d1,d2,d3) denotes
a weighted projective plane with coordinates of weights d1, d2 and d3. For our
purposes, the special case (d1, d2, d3) = (1, g + 1, 1) is sufficient.

In a similar way as for the standard projective plane, we see that there is a natural
bijection between the points (ξ : η : ζ) ∈ P2

g(k) with ζ 6= 0 (this is a well-defined
condition, since it does not depend on the scaling) and the points of the affine
plane A2(k) (which are just pairs of elements of k). This bijection is given by

(ξ : η : ζ) 7−→
(ξ
ζ
,
η

ζg+1

)
and (ξ, η) 7−→ (ξ : η : 1) .

In the same way, we obtain a bijection between the points with ξ 6= 0 and A2(k).
We will call these two subsets of P2

g the two standard affine patches of P2
g. Their DEF

affine
patches of P2

g

union covers all of P2
g except for the point (0 : 1 : 0), which we will never need to

consider. (In fact, for g ≥ 1, this point is a singular point on P2
g and is therefore

better avoided in any case.)

2.2. Definition. Fix g ≥ 2. A hyperelliptic curve of genus g over a field k DEF
hyperelliptic
curve

not of characteristic 2 is the subvariety of P2
g defined by an equation of the form

y2 = F (x, z), where F ∈ k[x, z] is homogeneous (in the usual sense) of degree 2g+2
and is squarefree (i.e., not divisible by the square of a homogeneous polynomial
of positive degree).

If C is the curve, then its set of k-rational points is

C(k) = {(ξ : η : ζ) ∈ P2
g(k) | η2 = F (ξ, ζ)} . ♦

When k = Q, we simply say ‘rational point’ instead of ‘Q-rational point’.
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One can also consider hyperelliptic curves over fields of characteristic 2, but then one
has to use more general equations of the form

y2 + H(x, z)y = F (x, z) ,

where H and F are homogeneous of degrees g + 1 and 2g + 2, respectively, and satisfy
a suitable condition corresponding to the squarefreeness of F above.

If the characteristic is not 2, then such an equation can be transformed into the standard
form y2 = 4F (x, z)+H(x, z)2 by completing the square, so in this case we do not obtain
a richer class of curves.

Note that the definition of C(k) makes sense: if (ξ′, η′, ζ ′) is another representative
of the point (ξ : η : ζ), then (ξ′, η′, ζ ′) = (λξ, λg+1η, λζ) for some λ ∈ k×, and

η′
2−F (ξ′, ζ ′) = (λg+1η)2−F (λξ, λζ) = λ2g+2η2−λ2g+2F (ξ, ζ) = λ2g+2

(
η2−F (ξ, ζ)

)
,

so η2 = F (ξ, ζ) ⇐⇒ η′2 = F (ξ′, ζ ′). In the terminology introduced in Defini-
tion 2.1, the defining polynomial y2 − F (x, z) is homogeneous of degree 2g + 2 in
the coordinate ring of P2

g.

The intersections of C with the affine patches of P2
g are the standard affine patches

of C. They are affine plane curves given by the equations

y2 = F (x, 1) and y2 = F (1, z) ,

respectively. We will use the notation f(x) = F (x, 1). To keep notation simple, we
will usually just write ‘C : y2 = f(x)’, but will always consider C as a projective
curve as in Definition 2.2. Note that we must have deg f = 2g+1 or deg f = 2g+2,
so that we can reconstruct F (x, z) from f(x).

Let

F (x, z) = f2g+2x
2g+2 + f2g+1x

2g+1z + . . .+ f1xz
2g+1 + f0z

2g+2

and let C be the hyperelliptic curve given by y2 = F (x, z). Then the points
(ξ : η : ζ) ∈ C(k) such that ζ 6= 0 have the form (ξ : η : 1) where η2 = f(ξ):
they correspond to the solutions in k of the equation y2 = f(x), or equivalently, to
the k-rational points on the (first standard) affine patch of C. We will frequently
just write (ξ, η) for such an affine point. The remaining points on C are called
points at infinity . We obtain them by setting z = 0 and x = 1 in the defining DEF

points at
infinity

equation, which then reduces to y2 = f2g+2. So if f2g+2 = 0 (which means that
deg f = 2g+1), then there is one such point, namely (1 : 0 : 0). We will frequently
denote this point simply by ∞. If f2g+2 = s2 is a nonzero square in k, then there
are two k-rational points at infinity, namely (1 : s : 0) and (1 : −s : 0) (denoted
∞s and ∞−s). Otherwise there are no k-rational points at infinity (but there will
be two such points over the larger field k(

√
f2g+2)). Note that the ‘bad’ point

(0 : 1 : 0) is never a point on a hyperelliptic curve.

2.3. Example. Let k = Q and C : y2 = x5+1. Since the degree of the polynomial EXAMPLE
on the right is 5, we have g = 2 and the projective form of the equation is
y2 = x5z + z6. We see that there is one point ∞ = (1 : 0 : 0) at infinity. There
are also the affine points (0, 1), (0,−1) and (−1, 0). One can in fact show that

C(Q) = {∞, (0, 1), (0,−1), (−1, 0)} ,

i.e., these are all the rational points on this curve! ♣
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2.4. Definition. Every hyperelliptic curve C has a nontrivial automorphism: the DEF
hyperelliptic
involution

hyperelliptic
quotient map

hyperelliptic involution ι = ιC . If C is given by the usual equation y2 = F (x, z),
then ι maps the point (ξ : η : ζ) to (ξ : −η : ζ). The fixed points of ι are the 2g+2
points (ξ : 0 : ζ), where (ξ : ζ) ∈ P1 is a root of the homogeneous polynomial F .

We also have the hyperelliptic quotient map π = πC : C → P1, which sends (ξ : η :
ζ) to (ξ : ζ); since (0 : 1 : 0) /∈ C, this is a well-defined morphism. Then ι is the
nontrivial automorphism of the double cover π, and the fixed points of ι are the
ramification points of π. These points are also frequently called Weierstrass points.
(There is a notion of ‘Weierstrass point’ for general curves; in the hyperelliptic
case they coincide with the ramification points.) ♦

Restricting the elements of the coordinate ring of P2
g to C, we obtain the coordinate

ring of C:

2.5. Definition. Let C : y2 = F (x, z) be a hyperelliptic curve of genus g over k. DEF
coordinate
ring of C

function
field of C

rational
function

The coordinate ring of C over k is the quotient ring k[C] := k[x, y, z]/〈y2−F (x, z)〉.
Note that y2 − F (x, z) is irreducible and homogeneous, so k[C] is an integral
domain, which inherits a grading from k[P2

g] = k[x, y, z].

The subfield k(C) of the field of fractions of k[C] consisting of elements of degree
zero is the function field of C over k. Its elements are the rational functions on C
over k. If P = (ξ : η : ζ) ∈ C(k) and φ ∈ k(C) such that φ is represented by a
quotient h1/h2 (of elements of k[C] of the same degree) such that h2(ξ, η, ζ) 6= 0,
then we can define the value of φ at P by φ(P ) = h1(ξ, η, ζ)/h2(ξ, η, ζ); φ is then
said to be regular at P . ♦

One checks easily that φ(P ) does not depend on the coordinates chosen for P or
on the choice of representative of φ (as long as the denominator does not vanish
at P ).

The subring of k(C) consisting of functions that are everywhere (i.e., at all points
in C(k̄), where k̄ is an algebraic closure of k) regular except possibly at the points
at infinity is isomorphic to the ring k[Caff] := k[x, y]/〈y2 − f(x)〉 (Exercise). It
follows that the function field k(C) is isomorphic to the field of fractions of k[Caff],
so that we will usually write down functions in this affine form. Simple examples of
functions on C are then given by 1, x, x2, . . . , y, xy, . . .; they are all regular outside
the points at infinity.

2.6. Definition. Let C be a curve over k and let P ∈ C(k). Then the ring DEF
local ring
at a point

OC,P = {φ ∈ k(C) : φ is regular at P}
is called the local ring of C at the point P . We write

mP = {φ ∈ OC,P : φ(P ) = 0}
for its unique maximal ideal. ♦

Recall that a ring R is said to be local if it has a unique maximal ideal. This
is equivalent to the statement that the complement of the unit group R× is an
ideal M (which is then the unique maximal ideal): any proper ideal I of R must
satisfy I ∩R× = ∅, so I ⊂ R \R× = M . On the other hand, assume that M is the
unique maximal ideal. Take any r ∈ R \ R×. Then r is contained in a maximal
ideal, so r ∈M , showing that R \R× ⊂M . The reverse inclusion is obvious.

In our case, we see that every φ ∈ OC,P \mP is regular at P with φ(P ) 6= 0, which
implies that φ−1 is also regular at P , so φ−1 ∈ OC,P , whence φ ∈ O×C,P .
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2.7. Definition. Let R be a domain (i.e., a commutative ring without zero DEF
DVRdivisors). A discrete valuation on R is a surjective map v : R → Z≥0 ∪ {∞} with

the following properties, which hold for all r, r′ ∈ R:

(1) v(r) =∞ ⇐⇒ r = 0.

(2) v(rr′) = v(r) + v(r′).

(3) v(r + r′) ≥ min{v(r), v(r′)}.

A domain R together with a discrete valuation v on it such that every r ∈ R with
v(r) = 0 is in R× and such that the ideal {r ∈ R : v(r) > 0} is principal is a
discrete valuation ring or short DVR. ♦

2.8. Lemma. Let R be a DVR with discrete valuation v; we can assume without LEMMA
Properties
of DVRs

loss of generality that v(R \ {0}) = Z≥0. Then R is a local ring with unique
maximal ideal M = {r ∈ R : v(r) > 0} and unit group R× = {r ∈ R : v(r) = 0}.
Also, R is a principal ideal domain (PID) with only one prime (up to associates):
let t ∈ R be an element such that v(t) = 1 (such a t is called a uniformizer of R); DEF

uniformizerthen every r ∈ R \ {0} can be written uniquely in the form r = utn with a unit
u ∈ R× and n ∈ Z≥0.

Conversely, every PID with only one prime ideal is a DVR.

Proof. Exercise. q

If R is a DVR with field of fractions K, then v extends to a valuation on K in
a unique way by setting v(r/s) = v(r) − v(s). Then the extended v is a map
v : K → Z ∪ {∞} satisfying the conditions in Definition 2.7. We call (K, v) a
discretely valued field . DEF

discretely
valued field

2.9. Example. Let p be a prime number and let

EXAMPLE
DVR Z(p)Z(p) =

{a
b

: a, b ∈ Z, p - b
}
.

Then Z(p) is a DVR with the discrete valuation given by the p-adic valuation vp
(vp(a/b) = vp(a) = max{n : pn | a}). Its field of fraction is Q, which becomes a
discretely valued field with the valuation vp. ♣

2.10. Example. Let k be any field; we denote by k[[t]] the ring of formal power EXAMPLE
DVR k[[t]]series over k. Its elements are power series

∑
n≥0 ant

n with an ∈ k. This ring is a
DVR with valuation

v
(∑
n≥0

ant
n
)

= min{n ≥ 0 : an 6= 0} . ♣
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2.11. Lemma. Let C : y2 = F (x, z) be a hyperelliptic curve over k and let P = LEMMA
local ring
at P is DVR

(ξ : η : ζ) ∈ C(k). Then the local ring OC,P is a DVR with field of fractions k(C).

Proof. We can assume that ζ = 1, so that P = (ξ, η) is a point on Caff. (The case
ξ = 1 can be dealt with analogously using the other affine chart.)

First assume that η 6= 0. I claim that there is a k-linear ring homomorphism
k[Caff]→ k[[t]] that sends x to ξ + t and y to a power series with constant term η.
For this we only have to check that f(ξ+ t) ∈ k[[t]] has a square root in k[[t]] of the
form ỹ = η + a1t + a2t

2 + . . .. This follows from f(ξ + t) = η2 + b1t + b2t
2 + . . .

and η 6= 0 (writing

(η + a1t+ a2t
2 + . . .)2 = η2 + b1t+ b2t

2 + . . . ,

expanding the left hand side and comparing coefficients, we obtain successive linear
equations of the form 2ηan = . . . for the coefficients of ỹ). It follows that the
homomorphism k[x, y]→ k[[t]] given by x 7→ ξ+ t and y 7→ ỹ has kernel containing
y2−f(x), so it induces a k-linear ring homomorphism α : k[Caff]→ k[[t]]. It has the
property that the constant term of α(φ) is φ(P ). Since the units of k[[t]] are exactly
the power series with non-vanishing constant term, this implies that α extends to a
k-linear ring homomorphism α : OC,P → k[[t]]. We define the valuation vP on OC,P
by vP = v ◦ α, where v is the valuation on k[[t]]. Then if φ ∈ OC,P has vP (φ) = 0,
we have φ(P ) 6= 0, so φ−1 ∈ OC,P . We still have to verify that the maximal ideal
mP is principal. We show that mP is generated by x− ξ. Note that the equation
y2 = f(x) can be written

(y − η)(y + η) = f(x)− η2 = (x− ξ)f1(x)

with a polynomial f1 and that (y + η)(P ) = 2η 6= 0, so that y + η ∈ O×C,P .
This shows that y − η ∈ OC,P · (x − ξ). More generally, we can use this to show
that if h ∈ k[x, y] with h(P ) = 0, then h(x, y) ∈ OC,P · (x − ξ). This in turn
implies that every rational function φ has a representative h1(x, y)/h2(x, y) such
that h1(P ) 6= 0 or h2(P ) 6= 0 (or both). If φ ∈ mP , then we must have h1(P ) = 0
and h2(P ) 6= 0, and we can deduce that φ ∈ OC,P · (x− ξ) as desired. This finally
shows that OC,P is a DVR.

When η = 0, we have f(ξ + a) = f ′(ξ)a + . . . with f ′(ξ) 6= 0. We can then in a
similar way as above solve

t2 = f(ξ + a2t
2 + a4t

4 + . . .)

to obtain a power series x̃ = ξ + a2t
2 + a4t

4 + . . . ∈ k[[t]] such that t2 = f(x̃).
We then obtain a k-linear ring homomorphism α : OC,P → k[[t]] that sends x to x̃
and y to t and conclude in a similar way as before (this time showing that mP is
generated by y, using that (x− ξ)f1(x) = y2 with f1(x) ∈ O×C,P ).

It is clear that the field of fractions of OC,P is contained in k(C). The reverse
inclusion follows, since OC,P contains field generators (x and y if ζ = 1) of k(C)
over k. q

2.12. Definition. The valuation vP and its extension to k(C) (again denoted vP ) DEF
P -adic
valuation

uniformizer
at P

is the P -adic valuation of k(C). Any element t ∈ k(C) such that vP (t) = 1 is
called a uniformizer at P . ♦

The standard choice of uniformizer at P = (ξ, η) is that made in the proof above:
if η 6= 0, we take t = x − ξ, and if η = 0, we take t = y. In terms of the affine
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coordinate functions x and y, a uniformizer at a point (1 : s : 0) at infinity is given
by t = 1/x if s 6= 0 and t = y/xg+1 when s = 0.

2.13. Remark. The results above generalize to arbitrary curves C: if P ∈ C(k) REMARK
is a smooth point, then the local ring OC,P is a DVR. ♠
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3. Digression: p-adic numbers

Before we continue to introduce notions related to hyperelliptic curves, I would
like to introduce the ring of p-adic integers and the field of p-adic numbers. Let p
be a prime number. We had seen in Example 2.9 that Q is a discretely valued field
with respect to the p-adic valuation vp. Now any valuation induces an absolute
value, a notion we define next.

3.1. Definition. Let k be a field. An absolute value on k is a map k → R≥0, DEF
absolute
value

usually written x 7→ |x| or similar, with the following properties (for all a, b ∈ k):

(1) |a| = 0 ⇐⇒ a = 0.

(2) |ab| = |a| · |b|.
(3) |a+ b| ≤ |a|+ |b|.

The absolute value is said to be non-archimedean if we have the stronger property
that

(3′) |a+ b| ≤ max{|a|, |b|}.

Otherwise it is archimedean.

Two absolute values | · |1 and | · |2 on k are said to be equivalent, if there is some
α ∈ R>0 such that |a|1 = |a|α2 for all a ∈ k. ♦

3.2. Examples. The standard absolute value is an archimedean absolute value EXAMPLES
absolute
values

on Q, R and C.

If v : k → Z ∪ {∞} is a discrete valuation, then we obtain a non-archimedean
absolute value | · |v by setting

|a|v =

{
0 if a = 0,

αv(a) if a 6= 0

for some 0 < α < 1. The equivalence class of | · |v does not depend on the choice
of α. ♣

3.3. Definition. The p-adic absolute value | · |p on Q is defined by DEF
p-adic
absolute
value|a|p =

{
0 if a = 0,

p−vp(a) if a 6= 0.

We also write |a|∞ for the standard absolute value |a|. ♦

Taking α = 1/p is the usual choice here. It has the convenient property that the
following holds.
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3.4. Lemma. Let a ∈ Q×. Then LEMMA
Product
formula|a|∞ ·

∏
p

|a|p = 1 ,

where the product runs over all prime numbers.

Proof. The left hand side is multiplicative, so it suffices to check this for a = −1
and a = q a prime number. But any absolute value of −1 is 1, and for a = q we
have |a|∞ = q, |a|q = 1/q and all other |a|p = 1. (In particular, all but finitely
many factors in the product are 1, so that the formally infinite product makes
sense.) q

One possible way of constructing the field R of real numbers starting from the
rational numbers is to define R to be the quotient of the ring of Cauchy sequences
over Q modulo the (maximal) ideal of sequences with limit zero. This construction
works with any absolute value on any field k and produces the completion of k
with respect to the absolute value: the new field is a complete metric space (with
respect to the metric d(a, b) = |a−b|) that contains k as a dense subset. We apply
this to Q and the p-adic absolute value.

3.5. Definition. The completion of Q with respect to the p-adic absolute value DEF
field of p-adic
numbers

ring of p-adic
integers

is the field Qp of p-adic numbers. The closure of Z in Qp is the ring Zp of p-adic
integers. ♦

The p-adic valuation vp and absolute value | · |p extend to Qp; the absolute value
defines the metric and therefore the topology on Qp.

In these terms, Zp = {a ∈ Qp : vp(a) ≥ 0} = {a ∈ Qp : |a|p ≤ 1} is the ‘closed
unit ball’ in Qp.

3.6. Lemma. Zp is compact in the p-adic topology. In particular, Qp is a locally LEMMA
Zp is compactcompact field.

Local compactness is a property that Qp shares with R and C.

Proof. Zp is a closed subset of a complete metric space with the property that
it can be covered by finitely many open ε-balls for every ε > 0. This implies
compactness. We check the second condition: if ε > p−n, then Zp is the union of
the open balls with radius ε centered at the points 0, 1, 2, . . . , pn − 1.

Now note that Zp is also an open subset of Qp (it is the open ball of radius 1 + ε
for any 0 < ε < p − 1), so it is a neighborhood of 0. It follows that a + Zp is a
compact neighborhood of a in Qp, for any a ∈ Qp. q

Zp is a DVR: vp is a discrete valuation on Zp, every element of valuation 0
is a unit, and its maximal ideal is pZp, hence principal. The residue field is
Zp/pZp ∼= Z/pZ = Fp. We usually write a 7→ ā for the reduction homomorphism
Zp → Fp. Every element of Zp can be written uniquely as a ‘power series’ in p
with coefficients taken out of a complete set of representatives of the residue classes
mod p (Exercise). More generally, every power series with coefficients in Zp con-
verges on the ‘open unit ball’ pZp = {a ∈ Qp : |a|p < 1}. This follows from the
following simple convergence criterion for series.
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3.7. Lemma. Let (an)n≥0 be a sequence of elements of Qp. Then the series LEMMA
Convergence
of series

∑∞
n=0 an converges in Qp if and only if an → 0 as n→∞.

This property makes p-adic analysis much nicer than the usual variety over R!

Proof. The terms of any convergent series have to tend to zero. The interesting
direction is the other one. So assume that an → 0 and write sn for the partial sum∑n

m=0 am. For any ε > 0, there is some N ≥ 0 such that |an|p < ε for all n ≥ N .
By the ‘ultrametric’ triangle inequality, this implies that

|sn+m − sn|p =

∣∣∣∣∣
n+m∑
k=n+1

ak

∣∣∣∣∣
p

≤ max
{
|ak|p : n+ 1 ≤ k ≤ n+m

}
< ε ,

so the sequence (sn) of partial sums is a Cauchy sequence and therefore convergent
in the complete metric space Qp. q

If we consider a power series
∑∞

n=0 anx
n with an ∈ Zp, then |anxn|p → 0 as soon as

|x|p < 1 (use that |an|p ≤ 1). In particular,
∑∞

n=0 anp
n converges (and the value

is in Zp).

The following result is important, because it allows us to reduce many questions
about p-adic numbers to questions about the field Fp.

3.8. Theorem. Let h ∈ Zp[x] be a polynomial and let a ∈ Fp such that a is a THM
Hensel’s
Lemma

simple root of h̄ ∈ Fp[x], where h̄ is obtained from h by reducing the coefficients
mod p. Then h has a unique root α ∈ Zp such that ᾱ = a.

More generally, suppose that h̄ = u1u2 with u1, u2 ∈ Fp[x] monic and without
common factors. Then there are unique monic polynomials h1, h2 ∈ Zp[x] such
that h̄1 = u1, h̄2 = u2 and h = h1h2.

Proof. We prove the first statement and leave the second as an exercise.

One approach for showing existence is to use Newton’s method. Let α0 ∈ Zp be
arbitrary such that ᾱ0 = a and define

αn+1 = αn −
h(αn)

h′(αn)
.

Then one shows by induction that h(αn) ∈ pZp, h′(αn) ∈ Z×p and (in a similar way

as for the standard Newton’s method) |αn+1 − αn|p ≤ |αn − αn−1|2p; this uses the

relation h(x + y) = h(x) + yh′(x) + y2h2(x, y) with h2 ∈ Zp[x, y]. Since we have
|α1 − α0| < 1, the sequence (αn)n is a Cauchy sequence in the complete metric
space Zp, hence converges to a limit α ∈ Zp. Since everything is continuous, it
follows that h(α) = 0. To show uniqueness, observe that for β ∈ Zp with h(β) = 0,

0 = h(β)− h(α) = (β − α)
(
h′(α) + (β − α)h2(α, β − α)

)
;

if |β−α|p < 1, then the right hand factor is a unit, and it follows that β = α. q

As a sample application, we have the following.
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3.9. Corollary. Let p be an odd prime and let α = pnu ∈ Qp with u ∈ Z×p . Then COR
squares
in Qp

α is a square in Qp if and only if n is even and ū is a square in Fp.

Proof. That the condition is necessary is obvious. For the sufficiency, we can
reduce to the case n = 0. Consider the polynomial x2 − u. By assumption, its
reduction has a root; this root is simple (since ū 6= 0 and the derivative 2x only
vanishes at 0; here we use that p is odd), so by Hensel’s Lemma, x2−u has a root
in Zp; this means that u is a square. q

If p = 2, the condition is that n is even and u ≡ 1 mod 8 (Exercise).

Now consider a hyperelliptic curve C : y2 = F (x, z) over Qp such that F has coeffi-
cients in Zp. Then we can reduce the coefficients mod p and obtain a homogeneous
polynomial F̄ ∈ Fp[x, z] of degree 2g + 2. If F̄ is squarefree, then we say that C
has good reduction. If C is defined over Q, with F ∈ Z[x, z], then we say that C DEF

good/bad
reduction

has good reduction at p if C has good reduction as a curve over Qp. Otherwise,
we say that C has bad reduction (at p).

In both cases, good reduction is equivalent to p - disc(F ) and p 6= 2 (in char-
acteristic 2 our equations always define singular curves), where disc(F ) is the
discriminant of the binary form F (which is a polynomial in the coefficients of F
and vanishes if and only if F is not squarefree). If C is a curve over Q with
F ∈ Z[x, z], then disc(F ) ∈ Z \ {0} according to our definition of ‘hyperelliptic
curve’, so we see that C can have bad reduction at only finitely many primes p.

Even if C has bad reduction, we can write C̄ for the curve over Fp defined by
y2 = F̄ (x, z). (This is again a hyperelliptic curve of genus g when C has good
reduction). Given a point P = (ξ : η : ζ) ∈ C(Qp), we can scale the coordinates
so that ξ, ζ ∈ Zp and so that ξ and ζ are not both divisible by p. Then η ∈ Zp as
well (since η2 = F (ξ, ζ) ∈ Zp). Then P̄ = (ξ̄ : η̄ : ζ̄) is a point in P2

g(Fp), which

lies on C̄ (note that at least one of ξ̄ and ζ̄ is nonzero). We therefore obtain a
reduction map

ρp : C(Qp) −→ C̄(Fp) , P 7−→ P̄ .

Now Hensel’s Lemma implies the following useful result.

3.10. Corollary. Let C : y2 = F (x, z) be a hyperelliptic curve over Qp such that COR
lifting
smooth points

F ∈ Zp[x, z]. Consider the curve C̄ : y2 = F̄ (x, z) over Fp. If Q ∈ C̄(Fp) is a
smooth point, then there are points P ∈ C(Qp) such that P̄ = Q.

Proof. We prove this more generally for affine plane curves (in the setting of the
statement, we first restrict to an affine patch whose reduction contains Q). By
shifting coordinates, we can assume that Q = (0, 0) ∈ F2

p, and by switching
coordinates if necessary, we can assume that C is given by f(x, y) = 0 with
f ∈ Zp[x, y] such that p - ∂f

∂y
(0, 0) (this comes from the condition that Q is smooth

on C̄). Scaling f by a p-adic unit, we can even assume that the partial derivative
is 1. Then

f(0, y) = pa0 + y + a2y
2 + . . .+ any

n

with a0, a2, a3, . . . , an ∈ Zp. This is a polynomial in y whose reduction mod p
has the simple root 0, so by Hensel’s Lemma, f(0, y) has a root η ∈ pZp. Then
P = (0, η) ∈ C(Qp) is a point reducing to Q. q



§ 3. Digression: p-adic numbers 15

The proof shows more generally that

{P ∈ C(Qp) : P̄ = Q} −→ pZp , (ξ, η) 7−→ ξ

is a bijection (in the situation of the proof: Q = (0, 0) and ∂f/∂y(Q) 6= 0). The
inverse map is given by ξ 7→ (ξ, ỹ(ξ)) where ỹ ∈ Zp[[t]] is a power series, which
converges on pZp (since its coefficients are p-adic integers). Compare the proof of
Lemma 2.11, where similar power series were constructed.

Regarding curves over finite fields, there is the following important result.

3.11. Theorem. Let C be a smooth and absolutely irreducible projective curve THM
Hasse-Weil
Theorem

of genus g over a finite field F with q elements. Then

|#C(F )− (q + 1)| ≤ 2g
√
q .

Helmut Hasse proved this for elliptic curves, André Weil generalized it to curves
of arbitrary genus.

3.12. Corollary. Let C : y2 = F (x, z) be a hyperelliptic curve of genus g such COR
C(Qp) 6= ∅that F ∈ Z[x, z] and let p > 4g2 − 2 be a prime such that C has good reduction

at p. Then C(Qp) 6= ∅.

Proof. Let C̄ be the reduction mod p of C. Since C has good reduction at p, C̄
is a hyperelliptic curve of genus g, so it is in particular smooth, projective and
absolutely irreducible. By the Hasse-Weil Theorem, we have

#C̄(Fp) ≥ p+ 1− 2g
√
p > 0 ,

since p > 4g2 − 2 implies p2 + 1 > p2 > (4g2 − 2)p, so (p + 1)2 = p2 + 2p + 1 >
4g2p = (2g

√
p)2. So C̄(Fp) 6= ∅. Since C̄ is smooth, any point Q ∈ C̄(Fp)

is smooth, so by Corollary 3.10 there are points P ∈ C(Qp) reducing to Q; in
particular, C(Qp) 6= ∅. q

The condition that C has good reduction is necessary. To see this, take a monic
polynomial f ∈ Z[x] of degree 2g + 2 whose reduction mod p is irreducible and
consider the curve C : y2 = pf(x). Then for any ξ ∈ Zp, we have p - f(ξ),
so vp(pf(ξ)) = 1, and f(ξ) cannot be a square. If ξ ∈ Qp \ Zp, then we have
vp(f(ξ)) = −2g − 2 (the term x2g+2 dominates), and vp(pf(ξ)) is odd, so f(ξ)
cannot be a square again. So C(Qp) = ∅.
Another type of example is given by polynomials F whose reduction has the form
F̄ (x, z) = cH(x, z)2 with c ∈ F×p a non-square and H ∈ Fp[x, z] such that H has

no roots in P1(Fp). Then F (ξ, ζ) ∈ Z×p for all coprime (i.e., not both divisible

by p) pairs (ξ, ζ) ∈ Z2
p, and the reduction is a non-square, so F (ξ, ζ) is never a

square.

If F is not divisible by p and the reduction of F does not have the form cH2 as
above, then it is still true that for p large enough, C(Qp) 6= ∅ (Exercise).

Why is this interesting? Well, obviously, if C(Qp) = ∅ for some p (or C(R) = ∅),
then this implies that C(Q) = ∅ as well. So checking for ‘local points’ (this means
points over Qp or R) might give us a proof that our curve has no rational points.
The Corollary above now shows that we have to consider only a finite number of
primes p, since for all sufficiently large primes of good reduction, we always have
Qp-points.
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For a prime p that is not covered by the Corollary, we can still check explicitly
whether C(Qp) is empty or not. We compute C̄(Fp) as a first step.

• If C̄(Fp) is empty, then C(Qp) must be empty (since any point in C(Qp) would
have to reduce to a point in C̄(Fp)).
• If C̄(Fp) contains smooth points, then C(Qp) is non-empty by Corollary 3.10.

• Otherwise, we consider each pointQ ∈ C̄(Fp) in turn. After a coordinate change,
we can assume that Q = (0, η̄) on the standard affine patch. We assume p 6= 2
for simplicity; the case p = 2 is similar, but more involved. If C is given by
y2 = f(x), then f̄ must have a multiple root at zero (otherwise Q would be
smooth), so η̄ = 0, and we can write

f(x) = pa0 + pa1x+ a2x
2 + a3x

3 + . . .+ a2g+2x
2g+2

with aj ∈ Zp. If p - a0, then vp(f(ξ)) = 1 for all ξ ∈ pZp, so Q does not lift to a
point in C(Qp). Otherwise, replace f by

f1(x) = p−2f(px) = p−1a0 + a1x+ a2x
2 + pa3x

3 + . . .+ p2ga2g+2x
2g+2 .

Now we are looking for ξ ∈ Zp such that f1(ξ) is a square in Zp. In effect,
we look for points in C1(Qp) with x-coordinate in Zp, where C1 : y2 = f1(x);
this curve is isomorphic to C. So we apply the method recursively to the new
equation. This recursion has to stop eventually, since otherwise f would have
to have a multiple root (as one can show), and either shows that Q does not lift
or that it does. If one of the points Q ∈ C̄(Fp) lifts, then C(Qp) 6= ∅; otherwise
C(Qp) is empty.

3.13. Definition. We say that a (hyperelliptic) curve C over Q has points ev- DEF
points
everywhere
locally

erywhere locally, if C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p. ♦

As noted earlier, a curve that has rational points must also have points everywhere
locally.

3.14. Theorem. Let C be a hyperelliptic curve of genus g over Q, given by an THM
checking
for local
points

equation y2 = F (x, z) with F ∈ Z[x, z]. Then we can check by a finite procedure
whether C has points everywhere locally or not.

Proof. First C(R) = ∅ is equivalent to F having no roots in P1(R) and negative
leading coefficient; both conditions can be checked.

Now let p be a prime. There are only finitely many p such that C has bad reduction
at p or p ≤ 4g2−2; for all other p we know that C(Qp) 6= ∅ by Corollary 3.12. For
the finitely many remaining primes we can use the procedure sketched above. q

One can show that for every genus g ≥ 2, there is a certain positive ‘density’ of
hyperelliptic curves of genus g over Q that fail to have points everywhere locally,
in the following sense. Let Fg(X) be the set of binary forms F (x, z) ∈ Z[x, z]
of degree 2g + 2 and without multiple factors, with coefficients of absolute value
bounded by X. Then

ρg = lim
X→∞

#{F ∈ Fg(X) : y2 = F (x, z) fails to have points everywhere locally}
#Fg(X)

exists and is positive. For example, ρ2 is about 0.15 to 0.16 (and the limit is
approached rather quickly).
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3.15. Example. The curve EXAMPLE

C : y2 = 2x6 − 4

has no rational points. This is because there are no Q2-points: If ξ ∈ 2Z2, then
2ξ6 − 4 ≡ −4 mod 27, and so f(ξ) = 4u with u ≡ −1 mod 8, so f(ξ) is not a
square. If ξ ∈ Z×2 , then v2(f(ξ)) = 1, so f(ξ) is not a square. If ξ ∈ Q2 \ Z2, then
v2(f(ξ)) = 1 + 6v2(ξ) is odd, so f(ξ) is not a square. And since 2 is not a square
in Q2, the two points at infinity are not defined over Q2 either.

On the other hand, C(R) 6= ∅ (the points at infinity are real) and C(Qp) 6= ∅ for
all primes p 6= 2: 2 and 3 are the only primes of bad reduction (the discriminant
of F is 221 · 36), there is a Q3-point with ξ = 1 (−2 is a square in Q3), there are
Qp-points with ξ = 0 for p = 5 and 13, with ξ = 1 for p = 11 and with ξ =∞ for
p = 7. For all p > 13, we have C(Qp) 6= ∅ by Corollary 3.12. ♣
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4. Divisors and the Picard group

If k is a field, we write ksep for its separable closure; this is the subfield of the
algebraic closure k̄ consisting of all elements that are separable over k. The group
of k-automorphisms of ksep is the absolute Galois group of k, written Gal(k).

Now consider a (hyperelliptic) curve C over k. Then Gal(k) acts on the set C(ksep)
of ksep-points on C via the natural action of Gal(k) on the coordinates.

4.1. Definition. Let C be a smooth, projective and absolutely irreducible curve DEF
divisor
group

divisor

degree

effective

support

over a field k. The free abelian group with basis the set of ksep-points on C is
called the divisor group of C, written DivC . Its elements, which are formal integral
linear combinations of points in C(ksep), are divisors on C. We will usually write
a divisor D as

D =
∑

P∈C(ksep)

nP · P ,

where nP ∈ Z and nP = 0 for all but finitely many points P . We also denote
nP by vP (D). The degree of such a divisor is deg(D) =

∑
P nP ; this defines

a homomorphism deg : DivC → Z. The set of divisors of degree zero forms a
subgroup Div0

C of DivC . We write D ≥ D′ if vP (D) ≥ vP (D′) for all points P .
A divisor D such that D ≥ 0 is said to be effective. The support of D is the set
supp(D) = {P ∈ C(ksep) : vP (D) 6= 0} of points occurring in D with a nonzero
coefficient. ♦

The action of Gal(k) on C(ksep) induces an action on DivC by group automor-
phisms.

4.2. Definition. A divisor D ∈ DivC is k-rational if it is fixed by the action DEF
rational
divisor

of Gal(k). We write DivC(k) (Div0
C(k)) for the subgroup of k-rational divisors (of

degree zero) on C. ♦

4.3. Example. Let C : y2 = f(x) be hyperelliptic over k. Then for every ξ ∈ k EXAMPLE
rational
divisor

the divisor Dξ = (ξ, η) + (ξ,−η) is k-rational, where η ∈ ksep is a square root
of f(ξ): either η ∈ k, then both points in the support are fixed by the Galois
action, or else k(η) is a quadratic extension of k and an element σ ∈ Gal(k) either
fixes both points or interchanges them, leaving Dξ invariant in both cases. ♣

Now if φ ∈ ksep(C)× is a nonzero rational function on C, then it is easy to see
(considering a representative quotient of polynomials) that φ has only finitely
many zeros and poles on C. The following definition therefore makes sense.

4.4. Definition. Let φ ∈ ksep(C)×. We set DEF
principal
divisor

Picard
group

linear
equivalence

div(φ) =
∑
P

nP (φ) · P

and call this the divisor of φ. A divisor of this form is said to be principal. We
write PrincC for the subgroup of principal divisors. The quotient group

PicC = DivC /PrincC

is the Picard group of C. Two divisors D,D′ are said to be linearly equivalent
if D − D′ is principal; we write D ∼ D′. We usually write [D] for the linear
equivalence class of a divisor D ∈ DivC , i.e., for the image of D in PicC . ♦
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4.5. Example. All divisors Dξ in Example 4.3 are linearly equivalent, since EXAMPLE
linearly
equivalent
divisors

div
( x− ξ
x− ξ′

)
= Dξ −Dξ′ . ♣

Note that by the properties of valuations, the map

div : ksep(C)× −→ DivC

is a group homomorphism, so its image PrincC is a subgroup.

The absolute Galois group Gal(k) acts on ksep(C) (via the action on the coefficients
of the representing quotients of polynomials); the map div is equivariant (i.e.,
compatible) with the actions of Gal(k) on both sides. This implies that div(φ) ∈
DivC(k) if φ ∈ k(C)×. We also obtain an action of Gal(k) on the Picard group; as
usual, we write PicC(k) for the subgroup of elements fixed by the action and say
that they are k-rational.

4.6. Example. Let C : y2 = f(x) as usual. The divisor of the function x is EXAMPLE
divisors of
functionsdiv(x) = (0,

√
f(0)) + (0,−

√
f(0))−∞s −∞−s

where s is a square root of the coefficient of x2g+2 in f . The divisor of y is

div(y) =
∑

α : f(α)=0

(α, 0)− (g + 1)(∞s +∞−s)

if deg(f) = 2g + 2 and

div(y) =
∑

α : f(α)=0

(α, 0)− (2g + 1) · ∞

if deg(f) = 2g + 1.

Note that any polynomial in x and y is regular on Caff, so the only points occurring
with negative coefficients in the divisor of such a function are the points at infinity.

♣

These examples already hint at the following fact.

4.7. Lemma. Let φ ∈ ksep(C)×. Then deg div(φ) = 0. LEMMA
PrincC
⊂ Div0

CProof. We prove this for hyperelliptic curves. One can prove it in a similar way
for arbitrary curves, using some morphism C → P1.

The hyperelliptic involution acts on ksep(C)× and on DivC (by sending (x, y) to
(x,−y) and by its action on the points, respectively). Let ι∗φ be the image of φ un-
der this action. Then deg div(ι∗φ) = deg div(φ), so deg div(φ · ι∗φ) = 2 deg div(φ).
φ is represented by a function on P2

g of the form h1(x) + h2(x)y (this is because

y2 = f(x)); then ι∗φ = h1(x)− h2(x)y and

φ · ι∗φ = h1(x)2 − h2(x)2y2 = h1(x)2 − h2(x)2f(x) ∈ ksep(x)

is a function of x alone. Writing this projectively as a quotient of homogeneous
polynomials in x and z of the same degree, one sees that this has the same number
of zeros and poles (counted with multiplicity), so the degree above is zero. q

This means that PrincC is contained in Div0
C , so that deg descends to a homo-

morphism PicC → Z. We denote its kernel by Pic0
C .

We now state an important fact, whose proof is beyond the scope of this course.
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4.8. Theorem. Let C be a smooth, projective and absolutely irreducible curve of THM
Existence
of the
Jacobian

genus g over some field k. Then there exists an abelian variety J of dimension g
over k such that for each field k ⊂ L ⊂ ksep, we have J(L) = Pic0

C(L).

4.9. Definition. The abelian variety J is called the Jacobian variety (or just DEF
Jacobian
variety

Jacobian) of the curve C. ♦

An abelian variety A is a smooth projective group variety, i.e., a variety that
carries a group structure that is compatible with the geometry: the group law
A × A → A and the formation of inverses A → A are morphisms of algebraic
varieties. It can be shown that on a projective group variety, the group structure
is necessarily abelian. Therefore one usually writes the group additively (which fits
well with the notation we have introduced for the Picard group). One-dimensional
abelian varieties are exactly elliptic curves.

Since J is a projective variety, it can be embedded in some projective space PN
over k. One can show that N = 4g − 1 always works for hyperelliptic curves (in a
natural way). Already for g = 2, this is (mostly) too large for practical purposes.
The advantage of the identification of the Jacobian with the group Pic0 is that we
can represent points on J by divisors on C. We can also use this representation
to do computations in the group J(k) (say).

Note that if P0 ∈ C(k), then we obtain a natural map i : C → J , given by sending
a point P ∈ C to the class of the divisor P − P0. This map turns out to be a
morphism of algebraic varieties, which is injective when g > 0. (If i(P ) = i(Q),
then [P − P0] = [Q − P0], hence [Q − P ] = 0. So there is a rational function φ
on C such that φ has a simple zero at Q and a simple pole at P . φ extends to a
morphism C → P1, which is bijective on points — the divisor of φ− c must be of
the form [Qc−P ] for some Qc ∈ C — and since C is smooth, φ is an isomorphism,
so the genus of C is that of P1, which is zero.) The problem of finding the set C(k)
of k-rational points on C can now be stated equivalently in the form ‘find the set
J(k)∩ i(C)’. The advantage of this point of view is that we can use the additional
(group) structure we have on J to obtain information on C(k). A very trivial
instance of this is that J(k) = {0} implies C(k) = {P0}. That J(k) is not ‘very
large’ in the cases of interest is reflected by the following result that we also state
without proof.

4.10. Theorem. Let k be a number field and let J be the Jacobian of a curve THM
Mordell-
Weil
Theorem

over k. Then the group J(k) is a finitely generated abelian group.

This was proved by Mordell4 in 1922 for elliptic curves over Q and generalized by
Weil5 a few years later.

By the structure theorem for finitely generated abelian groups, as a group J(k)
is isomorphic to Zr × T , where T = J(k)tors is the finite torsion subgroup of J(k)
and r ∈ Z≥0 is the rank of J(k). So at least in principle, there is a finite explicit
description of J(k), given by divisors representing the generators of the free abelian
part Zr, together with divisors representing generators of the torsion subgroup.

To know how we can represent points on J by divisors, we need another result.
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4.11. Definition. Let C be a smooth, projective, absolutely irreducible curve DEF
Riemann-
Roch
space

over a field k and let D ∈ DivC(k) be a divisor. The Riemann-Roch space of D is
the k-vector space

L(D) = {φ ∈ k(C)× : div(φ) +D ≥ 0} ∪ {0} . ♦

If D is effective, say D = n1P1 + . . . + nmPm with nj > 0, then the condition
div(φ)+D ≥ 0, or equivalently, div(φ) ≥ −D, says that φ must be regular outside
the support of D, with poles of orders at most n1, . . . , nm at the points P1, . . . ,
Pm. If D is not effective, then we also have conditions that require φ to have a
zero of at least a certain order at each point occurring with a negative coefficient
in D.

Since deg div(φ) = 0, we see immediately that L(D) = {0} if degD < 0. If
degD = 0, then L(D) 6= {0} means that there is some φ ∈ k(C)× with divisor
div(φ) = −D, so that D = − div(φ) = div(φ−1) is principal. More generally, if D
and D′ are linearly equivalent, so that there is some φ ∈ k(C)× with D − D′ =
div(φ), then multiplication by φ induces an isomorphism L(D) → L(D′). The
space L(0) consists of the functions that are regular everywhere, which are just
the constants, so L(0) = k. Another simple property is that D ≥ D′ implies
L(D) ⊃ L(D′).

4.12. Theorem. Let C be a smooth, projective, absolutely irreducible curve of THM
Riemann-
Roch
Theorem

genus g over a field k. There is a divisor W ∈ DivC(k) such that for every
D ∈ DivC(k) we have that dimk L(D) is finite and

dimk L(D) = degD − g + 1 + dimk L(W −D) .

In particular, dimk L(W ) = g, degW = 2g−2, the class of W in PicC is uniquely
determined, and we get the equality

dimk L(D) = degD − g + 1

for degD ≥ 2g − 1.

Proof. The proof is again beyond the scope of this course. The divisor W can be
constructed using differentials (see later). The idea of the proof is to first show
the equality for D = 0 and then check that it remains true if one adds or subtracts
a point to or from D.

For D = 0, we obtain

1 = dimk k = dimk L(0) = 0− g + 1 + dimk L(W ) ,

so dimk L(W ) = g. Then for D = W , we find

g = dimk L(W ) = degW − g + 1 + dimk L(0) = degW − g + 2 ,

so degW = 2g− 2. If W ′ is another divisor with the properties of W , then taking
D = W ′, we find that dimk L(W−W ′) = 1, which, since deg(W−W ′) = 0, implies
that W and W ′ are linearly equivalent. Finally, if degD ≥ 2g − 1 > degW , then
deg(W −D) < 0, so dimk L(W −D) = 0 and the relation simplifies. q
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4.13. Example. Consider an hyperelliptic curve C : y2 = f(x) of odd degree and EXAMPLE
RR spaces
on hyp.
curves

genus g. Then the set of rational functions on C that are regular away from ∞
is the coordinate ring k[x, y] of Caff. Using the curve equation, we can eliminate
all powers of y strictly larger than the first, and we see that k[x, y] has the k-
basis 1, x, x2, . . . , y, xy, x2y, . . .. From Example 4.6 we know that v∞(x) = −2 and
v∞(y) = −(2g + 1). This implies v∞(xn) = −2n and v∞(xny) = −(2n + 2g + 1),
so that the basis elements have pairwise distinct valuations at ∞. This in turn
means that the valuation of a linear combination of the basis elements is the
minimal valuation occurring among the basis elements with nonzero coefficient.
We therefore obtain

L(0) = 〈1〉
L(∞) = 〈1〉

L(2 · ∞) = 〈1, x〉
L(3 · ∞) = 〈1, x〉

...
...

L(2n · ∞) = 〈1, x, x2, . . . , xn〉 if n ≤ g

L((2n+ 1) · ∞) = 〈1, x, x2, . . . , xn〉 if n < g

...
...

L(2g · ∞) = 〈1, x, x2, . . . , xg〉
L((2g + 1) · ∞) = 〈1, x, x2, . . . , xg, y〉
L((2g + 2) · ∞) = 〈1, x, x2, . . . , xg, y, xg+1〉

...
...

L(2n · ∞) = 〈1, x, x2, . . . , xg, y, xg+1, xy, . . . , xn−g−1y, xn〉 if n ≥ g + 1

L((2n+ 1) · ∞) = 〈1, x, x2, . . . , xg, y, xg+1, xy, . . . , xn, xn−gy〉 if n ≥ g

...
...

For the dimensions, we have

dimL(n · ∞) =


0, if n < 0;

bn/2c+ 1, if 0 ≤ n ≤ 2g;

n− g + 1, if 2g + 1 ≤ n.

Note that bn/2c+ 1 = n− g + 1 for n = 2g − 1 and n = 2g, so this confirms the
last statement in Theorem 4.12. ♣

4.14. Corollary. Let C be as above and fix a k-rational point P0 ∈ C(k). Then COR
Represen-
tation of
points on J

for each Q ∈ J(k), there is a unique effective divisor DQ ∈ DivC(k) of minimal
degree such that Q = [DQ − (degDQ) · P0]. We have degDQ ≤ g.

Proof. Let D ∈ Div0
C be any divisor such that Q = [D]. We first work over ksep.

Consider the spaces Ln = L(D + n · P0) for n = −1, 0, 1, 2, . . .. We have {0} =
L−1 ⊂ L0 ⊂ L1 ⊂ . . . with dimLn+1 − dimLn ∈ {0, 1} (from the Riemann-Roch

4L.J. Mordell, On the rational solutions of the indeterminate equations of the third and fourth
degrees, Cambr. Phil. Soc. Proc. 21, 179–192 (1922).

5A. Weil, L’arithmétique sur les courbes algébriques, Acta Math. 52, 281–315 (1929).
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formula; the degree increases by 1, and the dimension of L(W − D − n · P0)
cannot increase). This implies that there is a unique smallest n ∈ Z≥0 such that
dimLn = 1. Let φ be a nontrivial element of Ln. Then div(φ) = DQ −D − n · P0

(with DQ ≥ 0) does not depend on the choice of φ, and

Q = [D] = [D + div(φ)] = [DQ − n · P0] .

It is clear that DQ is unique with these properties and that there is no such divisor
of smaller degree. It remains to show that DQ is k-rational. Let σ ∈ Gal(k). Then
(since Q ∈ J(k) and P0 ∈ C(k)) we have

[σ(DQ)−n ·P0] = [σ(DQ−n ·P0)] = σ([DQ−n ·P0]) = σ(Q) = Q = [DQ−n ·P0] .

Since DQ is the unique effective divisor of degree n satisfying Q = [DQ − n · P0],
it follows that σ(DQ) = DQ. So DQ is fixed by the action of the Galois group,
hence it is k-rational.

We have dimLg = g − g + 1 + dimL(W −D − g · P0) ≥ 1, so n ≤ g. q

We will make this more concrete for hyperelliptic curves of odd degree. In this
case, there is always the point ∞ ∈ C(k), so it is natural to use this as our
basepoint P0.

4.15. Definition. Let C : y2 = f(x) be a hyperelliptic curve of odd degree and DEF
divisor
in general
position

genus g over k. A divisor D ∈ DivC is said to be in general position if D is
effective,∞ /∈ supp(D), and there is no point P ∈ C such that D ≥ P + ι(P ). ♦

The latter condition means that D contains each ramification point (ξ, 0) with
coefficient 0 or 1 and that supp(D) cannot contain a point (ξ, η) with η 6= 0
together with its ‘opposite’ (ξ,−η).

4.16. Lemma. Let C be as above and let D be a divisor in general position on C. LEMMA
Mumford
representation

Then there are unique polynomials a, b ∈ k[x] such that

(1) a is monic of degree d = deg(D);

(2) deg(b) < d;

(3) f ≡ b2 mod a;

(4) if P = (ξ, η) ∈ Caff, then P ∈ supp(D) ⇐⇒ a(ξ) = 0, b(ξ) = η, and in
this case, vP (D) is the multiplicity of ξ as a root of a.

Conversely, such a pair (a, b) determines a divisor D in general position.

This representation of D by a pair of polynomials is the Mumford representation DEF
Mumford
representation

of D.

Proof. Write π(D) =
∑

P vP (D) · π(P ) ∈ DivP1 , where π : C → P1 is the hyperel-
liptic quotient map. Since D is in general position, we have

vQ(π(D)) = max{vP (D) : π(P ) = Q} for Q ∈ P1.

Properties (1) and (4) then imply that a =
∏

ξ : vξ(π(D)) 6=0(x− ξ)vξ(π(D)); this shows

that a is uniquely determined; also a ∈ k[x] since π(D) is defined over k. We obtain
b essentially as the polynomial interpolating the points in the support of D. More
precisely, let (ξ, η) ∈ supp(D). Then f ≡ η2 mod (x − ξ). If η 6= 0, by a variant
of Hensel’s Lemma, we can construct a (mod (x− ξ)n unique) bξ ∈ k[x] such that
f ≡ b2

ξ mod (x − ξ)n and b(ξ) = η, where n = vξ(π(D)) = v(ξ,η)(D). If η = 0,
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we just set bξ = 0 (note that n = 1 in this case). We then obtain b from the bξ
via the Chinese Remainder Theorem, which also implies that b is unique (and has
therefore coefficients in k) if we require deg(b) < deg(a) = d.

For the converse, we set D =
∑

ξ : a(ξ)=0 v(x−ξ)(a) · (ξ, b(ξ)). Then D is effective

and of degree d = deg(a), and the support of D does not contain both a non-
ramification point and its opposite. For a ramification point P = (ξ, 0), we note
that f ≡ b2 mod a and b(ξ) = 0, f(ξ) = 0 together imply that ξ is a simple root
of a, since it is a simple root of f . q

4.17. Lemma. Let C : y2 = f(x) be a hyperelliptic curve of odd degree and LEMMA
representation
of points
in J(k)

of genus g over k. Denote its Jacobian as usual by J . Then for every point
P ∈ J(k) there is a unique divisor D ∈ DivC(k) in general position and of degree
d = deg(D) ≤ g such that P = [D − d · ∞].

Proof. By Corollary 4.14 there is a unique effective divisor D of minimal degree d
such that P = [D − d · ∞]. We must show that D is in general position and
that any D′ in general position, of degree d′ ≤ g and such that P = [D′ − d′ · ∞]
equals D.

If D were not in general position, then D ≥ Dξ for some ξ or D ≥ ∞. But Dξ is
linearly equivalent to 2 · ∞ = D∞, so

P = [D − d · ∞] = [(D −Dξ)− (d− 2) · ∞] ,

contradicting the minimality of d. If D ≥ ∞, then

P = [D − d · ∞] = [(D −∞)− (d− 1) · ∞] ,

again contradicting the minimality of d.

If D′ is in general position, of degree d′ ≤ g and such that [D′−d′ ·∞] = [D−d·∞],
then D′−D ∼ (d′− d) ·∞, which implies that D′ + ι(D) ∼ (d′ + d) ·∞. So there
is a function φ ∈ L((d′ + d) · ∞) such that D′ + ι(D) is its divisor of zeros. But
d′ + d ≤ 2g, so this Riemann-Roch space is contained in 〈1, x, x2, . . . , xg〉, which
implies that φ is a polynomial in x. But then div(φ) is a linear combination of
divisors of the form Dξ, which (since both D′ and ι(D) are in general position) is
only possible when D′ = ι(ι(D)) = D. q

The upshot of these considerations is that we can represent every P ∈ J(k)
uniquely by a pair of polynomials in k[x] as in Lemma 4.16. We will now dis-
cuss how we can perform addition in J(k) using this representation.

4.18. Theorem. Let C : y2 = f(x) a hyperelliptic curve of odd degree and genus g THM
Addition
on J

over k; denote its Jacobian by J . Let the points P1, P2 ∈ J(k) be given by the
Mumford representations (a1, b1) and (a2, b2), respectively. Then we can compute
the Mumford representation of P1 + P2 as follows:

1. (Composition — add the divisors and subtract Dξ whenever possible)
(i) Let d = gcd(a1, a2, b1 + b2).

(ii) Set a = a1a2/d
2.

(iii) Let b be the unique polynomial of degree < deg(a) such that b ≡ b1 mod
a1/d, b ≡ b2 mod a2/d and f ≡ b2 mod a.

Then (a, b) represents a divisor D such that P1 + P2 = [D − (degD) · ∞].

2. (Reduction — replace D by a divisor of degree ≤ g)
While deg(a) > g, do the following:
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(i) Write f − b2 = λac with λ ∈ k× and c ∈ k[x] monic.
(ii) Replace a by c. Note that deg(c) < deg(a).

(iii) Replace b by the remainder of −b mod (the new) a.
Now (a, b) represents a divisor D such that P1 + P2 = [D − (degD) · ∞] and
deg(D) ≤ g.

Proof. Let (aj, bj) represent the divisor Dj, so that Pj = [Dj − (degDj) · ∞].
Let D′ be the largest effective divisor that is a sum of divisors of the form Dξ

and such that D′ ≤ D1 + D2. Then the divisor D obtained after part (1) of the
procedure is D = D1 +D2−D′. To see this, write D′ = Dξ1 + . . .+Dξn . Since D1

and D2 are in general position, for every 1 ≤ j ≤ n, there must be ηj such that
(ξj, ηj) ∈ supp(D1) and (ξj,−ηj) ∈ supp(D2). We deduce that d =

∏n
j=1(x − ξj)

(if d(ξ) = 0, then a1(ξ) = a2(ξ) = 0 and b2(ξ) = −b1(ξ), so Dξ ≤ D1 + D2,
and conversely; the claim follows by induction on n), so that a describes the
projection of D to P1. The claim then follows, if we can show that b exists. We
have b2

1 ≡ f ≡ b2
2 mod gcd(a1, a2), so gcd(a1, a2) divides (b1 + b2)(b1 − b2). Since

gcd(a1, a2, b1 + b2) = d, it follows that gcd(a1, a2)/d = gcd(a1/d, a2/d) divides
b1 − b2. So by the Chinese Remainder Theorem, there is b′ such that

b′ ≡ b1 mod a1/d and b′ ≡ b2 mod a2/d ,

so f ≡ b′2 mod a1a2/(d gcd(a1, a2)). A variant of Hensel’s Lemma lets us lift b′

uniquely (mod a) to a b satisfying f ≡ b2 mod a.

The relation f−b2 = λac implies that (c,−b) represents some divisor D′ in general
position, with (c, b) corresponding to ι(D′). Then

D + ι(D′)− deg(ac) · ∞ = div(y − b(x))

is principal, implying that [D − deg(a) · ∞] = [D′ − deg(c) · ∞]. We obtain
the Mumford representation of D′ by reducing −b mod c as prescribed in the
algorithm. We have deg(b) ≤ deg(a)− 1, hence

deg(f − b2) ≤ max{2g + 1, 2 deg(a)− 2} ,
which is < 2 deg(a) if deg(a) > g. Since deg(c) = deg(f−b2)−deg(a), this implies
deg(c) < deg(a) as claimed. In particular, this part of the algorithm terminates,
and upon termination we must have deg(a) ≤ g. q

This algorithm is described in a paper by D.G. Cantor6

4.19. Example. Let us compute the multiples of P = [(0, 1)−∞] ∈ J(Q), where EXAMPLE
Multiples
of a point

J is the Jacobian of C : y2 = x5 + 1, which has genus 2.

P is represented by (a1, b1) = (x, 1). In the computation of 2P , we first obtain
d = gcd(x, x, 2) = 1, and we have to find b such that

b ≡ 1 mod x and x5 + 1 ≡ b2 mod x2 .

The first condition (plus deg(b) < 2) says that b = 1+βx; the second then implies
β = 0. So 2P is given by (a2, b2) = (x2, 1).

To get 3P , we add P and 2P . This gives d = gcd(x, x2, 2) = 1 and (in a similar
way as for 2P ) (a, b) = (x3, 1). Now deg(a) > 2, so we need a reduction step. We
have f − b2 = x5 = x3 · x2, so c = x2 and we obtain (a3, b3) = (x2,−1) as the
representation of 3P .

6David G. Cantor: Computing the Jacobian of a hyperelliptic curve, Math. Comput. 48,
95–101 (1987).
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Now we add P and 3P . This time, d = gcd(x, x2, 0) = x is nontrivial. We have
a = x, and b must satisfy b ≡ 1 mod 1, b ≡ −1 mod x and x5 + 1 ≡ b2 mod x,
which means that b = −1. So 4P is represented by (a4, b4) = (x,−1).

For the addition of P and 4P , we obtain d = gcd(x, x, 0) = x, so a = 1 and b = 0,
so that 5P is represented by (1, 0), which corresponds to the zero element of J .
This shows that P has exact order 5 in J(Q). ♣

An important consequence of the fact that Pic0
C can be represented by an abelian

variety J is the following.

4.20. Lemma. Let C be a hyperelliptic curve over Q, with Jacobian J , and let LEMMA
Reduction
of J

p be a prime of good reduction for C. Denote the Jacobian of C̄ by J̄ . Then there
is a reduction map J(Q)→ J̄(Fp) that is actually a group homomorphism.

If we fix a basepoint P0 ∈ C(Q) and denote the induced embedding of C into J
by i : P 7→ [P − P0], then there is also the embedding ī : C̄ → J̄ that sends P to
[P − P̄0], and the following diagram commutes:

C(Q)
i //

ρp,C
��

J(Q)

ρp,J
��

C̄(Fp)
ī // J̄(Fp)

Proof. This is a consequence of the fact that the construction of the Jacobian
is ‘functorial’. In fairly down-to-earth terms, the reduction map on J is given
by ‘reducing mod p’ the points in the support of a divisor representing a given
point in J(Q); one checks that the reduction of divisors respects principal divisors,
which shows that one gets a well-defined group homomorphism. That the final
diagram commutes is then clear. (This works in fact for any smooth, projective
and absolutely irreducible curve over Q.) q

The statement above also works with Qp instead of Q, so that the reduction
mod p map can be defined on J(Qp). Its kernel is called the kernel of reduction DEF

kernel of
reduction

J(Qp)1. If p > 2 (which follows from the ‘good reduction’ assumption when C is
hyperelliptic), then one can show that J(Qp)1

∼= Zgp as groups, which implies that
J(Qp)1 is torsion-free. (Behind this is the theory of ‘formal groups’. One obtains
a homomorphism logp,J : J(Qp) → Qg

p with kernel the (finite) torsion subgroup
J(Qp)tors. One can arrange that the image of J(Qp)1 is (pZp)g. There is an
inverse map expp,J : (pZp)g → J(Qp)1 when p > 2. In general, expp,J is given by
power series that converge on g-tuples whose entries have vp > 1/(p− 1); we need
convergence as soon as vp ≥ 1, so we need p > 2.) As a consequence we have the
following result. Recall the notation J(Q)tors for the torsion subgroup of J(Q).

4.21. Theorem. Let C be a hyperelliptic curve over Q, with Jacobian J , and THM
Reduction
of torsion

let p be a prime of good reduction for C. Then the reduction map J(Q) → J̄(Fp)
restricts to an injective group homomorphism on J(Q)tors.

Proof. Let P ∈ ker
(
J(Q)tors → J̄(Fp)

)
. Then P is also in J(Qp)1. Since this group

has no nontrivial elements of finite order, it follows that P = 0. q



§ 4. Divisors and the Picard group 27

The theorem and proof extend to J(Qp)tors → J̄(Fp) (showing in particular that
J(Qp)tors is finite). This map actually restricts to an isomorphism on the subgroups
of elements of order not divisible by p (this is essentially an application of Hensel’s
Lemma again).

4.22. Example. Consider C : y2 = x5+1 again. We have the points [(−1, 0)−∞] EXAMPLE
Order of
J(Q)tors

of order 2 and [(0, 1) − ∞] of order 5 in J(Q), so #J(Q)tors ≥ 10. On the
other hand, p = 3 is a prime of good reduction and #J̄(F3) = 10 (exercise), so
Theorem 4.21 implies #J(Q)tors ≤ 10. We conclude that J(Q)tors

∼= Z/10Z. ♣

4.23. Example. Now consider C : y2 = x5−x+1. 3 and 5 are both good primes, EXAMPLE
J(Q)tors

trivial
and #J̄(F3) = 29, #J̄(F5) = 71. Since J(Q)tors can be embedded in a group of
order 29 and in a group of order 71 by Theorem 4.21, it follows that J(Q)tors = {0}
(gcd(29, 71) = 1). ♣

The preceding two examples show how one can use Theorem 4.21 to determine
the torsion subgroup of J(Q): Take the first few primes p of good reduction
and compute n(p) = #J̄(Fp). Then #J(Q)tors must divide the greatest common
divisor of the numbers n(p). Usually this gcd is 1, which shows that J(Q) is
torsion-free. In any case, we obtain an upper bound for the size of the torsion
subgroup. To get lower bounds, we have to find suitable torsion points in J(Q).
In some cases, we can get a sharper bound by looking at the actual structure
of the groups J̄(Fp) instead of just at their size. For example, if we find that
J̄(F3) ∼= Z/2Z×Z/6Z = G3 and J̄(F5) ∼= Z/20Z = G5, then we can conclude that
J(Q)tors has order at most 2 (since Z/2Z is the only nontrivial group that can be
embedded into both G3 and G5), whereas gcd(#G3,#G5) = 4.

4.24. Example. We continue working with C : y2 = x5 − x + 1. The point EXAMPLE
point of
infinite
order

P = [(0, 1) −∞] ∈ J(Q) is nontrivial, hence must be of infinite order. Another
possibility for showing this (which does not require the torsion group to be trivial)
is to find the orders of the images of P in J̄(F3) and J̄(F5). They turn out to be
29 and 71 (not very surprisingly). If P were a torsion point, then Theorem 4.21
would imply that P̄ ∈ J̄(Fp) has the same order as P for every good prime p > 2.
So P cannot have finite order. ♣
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5. The 2-Selmer group

We have seen that it is usually possible to find the rational torsion subgroup of
the group J(Q), where J is the Jacobian of a hyperelliptic curve. It is much more
difficult to determine the rank of the free abelian part of this group. We can
obtain lower bounds by exhibiting points in J(Q) (in the form of rational divisors
representing them, say) and checking that they are independent. The hard part
is to get a good upper bound on the rank. The standard way of doing this is to
compute the so-called 2-Selmer group.

Let C : y2 = f(x) be a hyperelliptic curve of genus g over Q, as usual. We will
assume that deg(f) is odd and f is monic, since this leads to somewhat simpler
statements. Let A = Q[x]/〈f〉 be the quotient ring; we write θ for the image
of x in A, then A = Q[θ]. If f is irreducible, then A is an algebraic number field
(i.e., a field extension of Q of finite degree). In general, if f = f1f2 · · · fm is the
factorization of f into monic irreducible factors (which are all distinct, since f
is squarefree), then by the Chinese Remainder Theorem, A is isomorphic to the
direct product of the number fields Q[x]/〈fj〉.
Now consider a divisor D in general position, with Mumford representation (a, b).
Assume for now that gcd(a, f) = 1. Then we can define δ(D) = (−1)deg(a)a(θ) ∈
A×. For a divisor Dξ (with f(ξ) 6= 0), we set δ(Dξ) = (θ − ξ)2. If we set
Ā = Q̄[x]/〈f〉 = Q̄[θ] and D =

∑
P nP · P , then we have δ(D) =

∏
P (x(P )− θ)nP

(recall that a(x) =
∏

P (x−x(P ))nP ) in Ā×, but the result is in A×, of course. We

also set δ(∞) = 1. In this way, we obtain a group homomorphism Div⊥C(Q)→ A×,
where Div⊥C(Q) denotes rational divisors whose support does not contain one of
the ramification points of C other than ∞.

If D−deg(D) ·∞ = div(φ) is a principal divisor, where φ is some polynomial in x
and y, say (without loss of generality) φ = h1(x) + h2(x)y, then a = λ(h2

1 − h2
2f)

with some λ ∈ Q×, hence δ(D) = (−1)deg(a)a(θ) = (−1)deg(a)λh1(θ)2, since f(θ) =
0. Since f has odd degree, there is no cancellation in the leading term in h2

1−h2
2f ,

and since a and f are monic, we have that λ is a square when deg(a) is even and
−λ is a square when deg(a) is odd. So δ(D) is a square in A in both cases. The
homomorphism theorem for groups then gives us an induced homomorphism

δ :
Div⊥C(Q)

Div⊥C(Q) ∩ PrincC(Q)
−→ A×

(A×)2
,

where (A×)2 denotes the subgroup of squares in A×. Now one can show that it is
always possible to represent a point in J(Q) by a divisor in Div⊥C(Q), which finally
gives us

δ : J(Q) −→ A×/(A×)2 .

We can write a divisor in general position as a sum of divisors Dj with Mumford
representations (aj, bj) such that aj is irreducible. If aj does not divide f , then we
compute δ([Dj − deg(Dj) · ∞]) as above as the coset of (−1)deg(aj)aj(θ) modulo
squares. If aj does divide f , then we write f = aja

′
j, and it turns out that

δ([Dj − deg(Dj) · ∞]) = (−1)deg(aj)aj(θ) + (−1)deg(a′j)a′j(θ) ,

so we can evaluate δ easily at any point in J(Q) given in Mumford representation.

5.1. Lemma. The homomorphism δ : J(Q) −→ A×/(A×)2 has kernel 2J(Q). LEMMA
kernel of δ
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Proof. It is clear that 2J(Q) ⊂ ker(δ), since δ(2P ) = δ(P )2 becomes trivial modulo
squares. We have to show that the kernel is not larger. Let P be in the kernel and
let (a, b) be the Mumford representation of P with deg(a) ≤ g. For simplicity, we
assume that gcd(a, f) = 1 (the general case is similar, but more involved). Then
(−1)deg(a)a(θ) is a square, which we can write as s(θ)2 with a polynomial s ∈ Q[x]
of degree at most 2g. For polynomials q, u and v, consider the following system
of congruences:

v ≡ qs mod f , v ≡ ub mod a .

We claim that this system has a nontrivial solution (q, u, v) such that deg(q) ≤ g,
deg(u) < deg(a)/2, deg(v) ≤ g + deg(a)/2 and q is monic. To see that there is a
solution as claimed, write the congruences as a system of linear equations for the
coefficients q0, . . . , qg, u0, . . . , uddeg(a)/2e−1, v0, . . . , vg+bdeg(a)/2c of q, u and v. There
are

(g + 1) + ddeg(a)/2e+ (g + bdeg(a)/2c+ 1) = 2g + 2 + deg(a)

such coefficients in total and deg(f) + deg(a) = 2g + 1 + deg(a) homogeneous
equations, so nontrivial solutions must exist. If q were zero, then it would follow
that v = 0 (since deg(v) < deg(f)) and then also u = 0 (since under our assump-
tion on a, we have gcd(a, b) = 1 and deg(u) < deg(a)), which is not possible. We
can then scale all three polynomials so that q is monic. Now we have (recall that
f ≡ b2 mod a)

u2f ≡ u2b2 ≡ v2 mod a

and (recall that ±a(θ) = s(θ)2, which means that ±a ≡ s2 mod f)

v2 ≡ q2s2 ≡ (−1)deg(a)aq2 mod f .

Together (and using gcd(a, f) = 1 again) these two imply

u2f ≡ v2 − (−1)deg(a)aq2 mod af ,

and since the degrees of all terms are less than deg(af) = deg(a) + 2g+ 1, we find
the relation

(5.1) u2f = v2 − (−1)deg(a)aq2 .

We see that we can assume that q and u are coprime; otherwise we can divide q,
u and v by gcd(q, u) (which has to divide v). If u = 0, then a must be a square;
indeed, q = 1, so a = v2, and P = 2Q with Q = (v, b). Otherwise let r ∈ Q[x] be
such that ru ≡ −v mod q; then Q = (q, r) satisfies P = 2Q: (5.1) implies

u2f ≡ v2 ≡ u2r2 mod q ,

and since u and q are coprime, we have f ≡ r2 mod q, so that Q = (q, r) really
defines a point in J(Q). The divisor of the function u(x)y − v(x) ∈ Q(C)× is
(a, b)+2 ·(q,−r)−n ·∞ (with n = deg(a)+2 deg(q)): its norm is u2f−v2 = ±aq2,
and ub ≡ v mod a, −ur ≡ v mod q. This implies P = 2Q. We see that in both
cases, P ∈ 2J(Q). q

This tells us that δ(J(Q)) ∼= J(Q)/2J(Q) ∼= J(Q)tors/2J(Q)tors × (Z/2Z)r when r
is the rank of J(Q). Writing the finite abelian group J(Q)tors as a product of cyclic
groups of prime power order, we see that J(Q)tors/2J(Q)tors

∼= (Z/2Z)m, where
m is the number of factors of 2-power order. This is the same as the dimension
of J(Q)[2] as a vector space over F2, where for an abelian group G and n ∈ Z>0,
G[n] denotes the subgroup {g ∈ G : ng = 0} of elements of order dividing n. The
next lemma tells us how to find m.
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5.2. Lemma. Let C : y2 = f(x) be a hyperelliptic curve of odd degree over the LEMMA
dimension
of J(k)[2]

field k. Let f = cf1f2 · · · fn be the factorization of f into irreducible factors with
fj monic and c ∈ k×. Then the points Pj with Mumford representation (fj, 0)
generate the 2-torsion subgroup J(k)[2], with the only relation P1 + . . . + Pn = 0.
In particular, dimF2 J(k)[2] = n− 1.

Proof. If P ∈ J [2], then P = −P and conversely. If (a, b) is the Mumford repre-
sentation of P ∈ J(k)[2], then (a,−b) is that of −P ; since the representation is
unique, we have P = −P if and only if b = 0. This implies that a divides f , so
(since a ∈ k[x]), a is a product of some subset of the fj, of degree ≤ g, the genus
of C. This shows that the Pj generate J(k)[2] (P is the sum of the Pj correspond-
ing to the factors occurring in a) and that the order of J(k)[2] is 2n−1 (which is
the number of subsets S ⊂ {1, 2, . . . , n} such that

∑
j∈S deg(fj) ≤ g — note that

exactly one of S and its complement has this property). So dimF2 J(k)[2] = n− 1
and there must be exactly one relation among the n generators Pj. Since div(y)
is the sum of the divisors (fj, 0) minus (2g + 1) · ∞, there is a relation as stated,
which must then be the unique such relation. q

So if we can get an upper bound s on dimF2 δ(J(Q)) (or equivalently, a bound 2s

on the size of the image), we can conclude that r ≤ s−m. We first show that the
image of δ is contained in a certain subgroup H of A×/(A×)2.

5.3. Definition. Let k be a field and let A be a finite-dimensional commutative DEF
norm
A→ k

k-algebra (a commutative ring A together with a ring homomorphism k → A,
which can be used to define a scalar multiplication with elements of k, thus turn-
ing A into a k-vector space, whose dimension we assume to be finite). Then for ev-
ery a ∈ A, the mapma : A→ A, x 7→ ax, is k-linear, and we setNA/k(a) = det(ma)
and call it the norm of a. ♦

Since determinants are multiplicative, we see that the map NA/k : A→ k satisfies
NA/k(aa

′) = NA/k(a)NA/k(a
′). In particular, we obtain a group homomorphism

NA/k : A× → k×.

5.4. Example. Let k be a field and consider a quadratic k-algebra A, so that EXAMPLE
norm
k(C)→ k(x)

A = k[y]/〈y2− a〉 (if k has characteristic 2, this is not the most general quadratic
algebra). Let α ∈ A be the image of y, so that α2 = a. Then (1, α) is a k-basis of A.
Let z = z1 + z2α ∈ A with z1, z2 ∈ k. Then the matrix of the multiplication-by-z
map mz with respect to the basis (1, α) is

M =

(
z1 az2

z2 z1

)
,

so NA/k(z) = det(M) = z2
1 − az2

2 .

A special case of this is k(C) as a quadratic algebra over k(x), when C : y2 = f(x)
is a hyperelliptic curve. For a function φ = h1(x) + h2(x)y ∈ k(C), we get that
Nk(C)/k(x)(φ) = h1(x)2 − h2(x)2f(x). ♣
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5.5. Example. Let k be a field and let f ∈ k[x] be a monic polynomial EXAMPLE
normof degree n; consider A = k[x]/〈f〉 and let θ be the image of x in A, then

(1, θ, θ2, . . . , θn−1) is a k-basis of A. We have NA/k(a − θ) = f(a) for all a ∈ k.
One way of seeing this is to realize that the matrix of mθ with respect to the basis
above is the companion matrix of f , whose characteristic polynomial is just f .
Now let s(θ) ∈ A be arbitrary, where s ∈ k[x]. Working over k̄, we can write
s = c

∏m
j=1(x− σj) and f =

∏n
i=1(x− θi). Then

NA/k(s(θ)) = cn
m∏
j=1

NĀ/k̄(θ − σj)

= (−1)mncn
m∏
j=1

f(σj) = cn
m∏
j=1

n∏
i=1

(θi − σj) =
n∏
i=1

s(θi)

is the resultant Res(s, f) of s and f . ♣

For the following, note that the homomorphism δ : J(Q) → A×/(A×)2 can be
constructed in the same way for any other field k (not of characteristic 2) in place
of Q.

Also note that since the norm is multiplicative, we get an induced homomorphism
A×/(A×)2 → k×/(k×)2, which we again denote by NA/k.

5.6. Lemma. Let C : y2 = f(x) be a hyperelliptic curve of odd degree over a LEMMA
im of δ
in kernel
of norm

field k, with Jacobian J , and define A = k[x]/〈f〉 and δ : J(k) → A×/(A×)2

as above. Then the image of δ is contained in the kernel of the homomorphism
NA/k : A×/(A×)2 → k×/(k×)2.

Proof. We can represent any point P ∈ J(k) in the form [D−deg(D)·∞], where D
is a divisor in general position avoiding the ramification points in its support (we
do not assume that deg(D) ≤ g here). Let (a, b) be the Mumford representation

of D. Then, with a =
∏d

j=1(x− ξj) and using Example 5.5 above,

NA/k(δ(D)) = NA/k((−1)da(θ)) =
d∏
j=1

f(ξj) =
d∏
j=1

b(ξj)
2 = Res(b, a)2

is a (non-zero) square in k, which is equivalent to saying thatNA/k(P ) is trivial. q

We now consider a hyperelliptic curve C of odd degree over Q again. Write H for
the kernel of NA/k : A×/(A×)2 → k×/(k×)2. For a prime p, we set Ap = Qp[x]/〈f〉
and Hp for the corresponding kernel. We extend this to p = ∞, where Q∞ = R.
The inclusion Q → Qp induces a homomorphism ρp : H → Hp. We write δp for
the map J(Qp)→ Hp (which is the δ map for C considered as a curve over Qp).

5.7. Definition. Let C : y2 = f(x) be a hyperelliptic curve of odd degree over Q, DEF
2-Selmer
group

with Jacobian J . With the notations just introduced, we define the 2-Selmer group
of J to be

Sel(2)(J) = {α ∈ H | ∀p : ρp(α) ∈ im(δp)} . ♦

The 2-Selmer group gives us an upper bound on the rank r as the following result
shows.
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5.8. Theorem. Let C : y2 = f(x) be a hyperelliptic curve of odd degree over Q, THM
2-Selmer
group
is finite

with Jacobian J . Then δ(J(Q)) ⊂ Sel(2)(J), and the 2-Selmer group is finite and
computable.

Proof. For every p (a prime or ∞), we have the following commutative diagram:

J(Q)
δ //

� _

��

H

ρp

��
J(Qp)

δp // Hp

This shows that for all P ∈ J(Q) and all p, ρp(δ(P )) = δp(P ), so δ(P ) ∈ Sel(2)(J).

We give the proof of the finiteness of the Selmer group in the special case that
f splits into linear factors over Q. The general case is essentially similar; it uses
finiteness results for algebraic number fields (the group of units of the ring of
integers is finitely generated, the ideal class group is finite) that are trivial for Q.
So assume that f splits completely over Q. By scaling the variables, we can assume
that f is monic and all its roots are integers; let t1, . . . , t2g+1 be the roots. Then
A ∼= Q2g+1, and the canonical map Q[x] → A is simply s 7→ (s(t1), . . . , s(t2g+1)),
the norm map is (a1, . . . , a2g+1) 7→ a1 · · · a2g+1, so

H = {(α1, . . . , α2g+1) : α1, . . . , α2g+1 ∈ Q×/(Q×)2, α1 · · ·α2g+1 = 1} .

An element of Q×/(Q×)2 can be uniquely represented by a squarefree integer.
Let H ′ be the subgroup of H such that the squarefree integers representing the
components of its elements are only divisible by primes dividing tj − ti for some
1 ≤ i < j ≤ 2g + 1 (note: this includes the prime 2, since there must be two
of the tj that have the same parity). Then H ′ is clearly finite. So to prove that
the Selmer group is finite, it suffices to show that it is contained in H ′. This
follows from the following statement: If p does not divide any of the differences
ti − tj, then the image of δp is contained in the subgroup of Hp whose elements
can be represented by tuples of p-adic units. (Note that ρp(α) is in that subgroup
if and only if α can be represented using squarefree integers not divisible by p.)
So let P ∈ J(Qp), represented by D− deg(D) · ∞ with D in general position and
avoiding the ramification points and with Mumford representation (a, b). Then
δp(D) = ±(a(t1), . . . , a(t2g+1)). We can assume that a is irreducible (otherwise
factor a and write D as a sum of divisors (aj, b)). If a has coefficients in Zp, then
a(tj) can be divisible by p for at most one j (otherwise a factors by the factorization
version of Hensel’s Lemma). So for all but at most one j, vp(a(tj)) = 0, and since
the sum of the valuations must be even (this comes from the ‘kernel of the norm’
condition), all of them are even, so the a(tj) are units up to square factors. If
a has non-integral coefficients, then one can show that all roots of a in Q̄p have
the same negative valuation (one can extend vp uniquely to vp : Q̄×p → Q), which
implies that all a(tj) have the same (negative) valuation. Since there is an odd
number of roots of f and the sum of the valuations must be even, each individual
valuation is even, which is what we need.

For the computability, one shows that for the p discussed above, the image δp(J(Qp))
is indeed exactly the subgroup represented by units, which means that the condi-
tions from these primes amount exactly to the condition α ∈ H ′. It remains to
find the conditions coming from the remaining primes (including ∞). The key to
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this is the formula

dimF2 δp(J(Qp)) = dimF2 J(Qp)[2] +


0 if p 6= 2,∞,

g if p = 2,

−g if p =∞.

(This formula also implies the statement about the image of δp at the ‘good’
primes, since it shows that the image has the same dimension as the subgroup
coming from the units.) For p 6= 2,∞, this follows from the fact that J(Qp) has
a finite-index subgroup isomorphic to Zgp (which can be taken to be the kernel of
reduction J(Qp)1 if p is a good prime): Let Q be the quotient group. Since 2 is
invertible in Zp, we get that

δp(J(Qp)) ∼= J(Qp)/2J(Qp) ∼= Q/2Q ∼= Q[2] ∼= J(Qp)[2] ,

where the isomorphism Q/2Q ∼= Q[2] is not canonical and uses that Q is finite.
For p = 2, one gets an adjustment of g coming from the fact that Z2/2Z2

∼= Z/2Z.
For p = ∞, one can check the formula fairly directly. In any case, knowing
the dimension of the image (recall that dimF2 J(k)[2] can be computed from the
factorization of f ; if f splits completely, then this is 2g), it suffices to compute δp
of randomly chosen points in J(Qp) until the images generate a subspace of the
correct dimension. This gives us the image of δp in Hp; then the computation of
the Selmer group as a subgroup of H ′ is a matter of linear algebra. q

5.9. Example. Consider C : y2 = x(x − 1)(x − 2)(x − 5)(x − 6). The primes EXAMPLE
2-Selmer
group

dividing differences of the roots are p = 2, 3, 5. The image of J(Q)[2] in H ′ is
generated by

(15,−1,−2,−5,−6), (1,−5,−1,−1,−5), (2, 1, 6,−3,−1), (5, 1, 3,−15,−1)

(we can evaluate −a = tj − x at all other tj; then we use that the product of the
entries must be a square). The image of δ∞ has dimension 2; it is generated by

(1,−1,−1,−1,−1) and (1, 1, 1,−1,−1) ;

this tells us which combinations of signs are possible for elements of the Selmer
group.

The image of J(Q)[2] under δ3 is generated by (using 1,−1, 3,−3 as representatives
of Q×3 /(Q×3 )2)

(−3,−1, 1, 1, 3), (1, 1,−1,−1, 1), (−1, 1,−3,−3,−1), (−1, 1, 3, 3,−1) ;

these elements generate a subspace of dimension 3, so we need another generator.
Since f(3) = 3 · 2 · 1 · (−2) · (−3) = 36, there is a point (3, 6) ∈ C(Q) giving
P = [(3, 6) − ∞] ∈ J(Q); the image of P under δ3 is (3,−1, 1, 1,−3), which is
independent of the known subspace. We can deduce that the image of δ surjects
onto the image of δ3 (since our generators of this image all come from points

in J(Q)). Any element in Sel(2)(J) must therefore have the form αβ with α
in the subgroup generated by the images of the known rational points under δ
and β ∈ ker(ρ3); the condition for being in Sel(2)(J) is that ρp(β) ∈ im(δp) for
p =∞, 2, 5.

The image of the known points in J(Q) under δ5 is generated by (we use 1, 2, 5, 10
as representatives; note that δ(P ) = (3, 2, 1,−2,−3))

(10, 1, 2, 5, 1), (1, 5, 1, 1, 5), (2, 1, 1, 2, 1), (5, 1, 2, 10, 1), (2, 2, 1, 2, 2) ;
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this already gives a 4-dimensional space. Now one checks that Sel(2)(J) ∩ ker(ρ3)
is trivial (the conditions at p = ∞ and p = 5 are satisfied only for β = 1), which

implies that Sel(2)(J) = im(δ) is generated by δ(J(Q)[2]) and δ(P ). We conclude
that J(Q) has rank 1. Since #J̄(F7) = 3 · 16 and #J̄(F11) = 11 · 16, we see that
J(Q)tors = J(Q)[2] ∼= (Z/2Z)4, so

J(Q) ∼= (Z/2Z)4 × Z ,
and P is a point of infinite order that is not in 2J(Q) + J(Q)[2].

One nice feature of this example is that it was not necessary to find the image of δ2,
which is usually more involved, but also usually gives most of the information. ♣

5.10. Example. Consider C : y2 = x5 + 1 = (x+ 1)(x4 − x3 + x2 − x+ 1). Here EXAMPLE
2-Selmer
group

A ∼= Q × Q(ζ) where ζ is a primitive fifth root of unity. The ‘ring of integers’
of Q(ζ) is Z[ζ]; this is a principal ideal domain. The bad primes are 2 and 5. The
group H can be identified with Q(ζ)×/(Q(ζ)×)2 (the component in Q is uniquely
determined by the requirement that the element is in the kernel of the norm). H ′

can be taken to be 〈−1, 2, 1 + ζ, 1 − ζ〉 (1 + ζ generates the free part of the unit
group of Z[ζ], 2 stays prime and 1− ζ generates the unique prime ideal dividing 5

in Z[ζ]). Computing the images of δ2 and δ5 (δ∞ is trivial), we find that Sel(2)(J) =
δ(J(Q)[2]) (note that J(Q)[2] has order 2 and is generated by [(−1, 0)−∞]) and
therefore that J(Q) has rank zero. We know from Example 4.22 that J(Q)tors

has order 10, so we deduce that J(Q) ∼= Z/10Z. Enumerating these ten points
and checking which of them can be written as [P −∞] with P ∈ C then shows
that C(Q) = {∞, (−1, 0), (0, 1), (0,−1)}, as announced earlier in Example 2.3.
More precisely, the ten points in J(Q) have Mumford representation (these are
the multiples n ·P for n = 0, 1, . . . , 9 where P = (x2 +x, x+1) is one of the points
of order 10)

(1, 0), (x2 + x, x+ 1), (x2, 1), (x2 − 2x+ 2,−2x+ 3), (x,−1),

(x+ 1, 0), (x, 1), (x2 − 2x+ 2, 2x− 3), (x2,−1), (x2 + x,−x− 1).

The relevant ones are those with deg(a) ≤ 1:

(1, 0)↔∞, (x,−1)↔ (0,−1), (x+ 1, 0)↔ (−1, 0), (x, 1)↔ (0, 1). ♣
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6. Differentials and Chabauty’s Method

Differentials on curves are the algebraic analogue of smooth 1-forms in differential
geometry. We list the most important facts and properties.

6.1. Definition. Let C be a smooth and irreducible curve over a field k. The DEF
differentialspace of differentials on C (over k) is a one-dimensional k(C)-vector space ΩC(k).

There is a nontrivial k-linear derivation d : k(C) → ΩC(k) (meaning that d is
k-linear and satisfies d(fg) = f dg + g df for all f, g ∈ k(C) and that there is
some f ∈ k(C) such that df 6= 0). The elements of ΩC(k) are called differentials
on C. ♦

A general differential can therefore be written in the form ω = f dg where g ∈ k(C)
with dg 6= 0; fixing g, this representation is unique. If ω, ω′ ∈ ΩC(k) with ω′ 6= 0,
then there is a unique f ∈ k(C) such that ω = fω′; we write ω/ω′ = f .

In a similar way as for functions, we can associate to a nonzero differential a
divisor.

6.2. Definition. Let 0 6= ω ∈ ΩC(k) and let P ∈ C(k); pick a uniformizer DEF
divisor
of a
differential

t ∈ k(C) at P . Then vP (ω) = vP (ω/dt) is the valuation of ω at P . This valuation
is nonzero for only finitely many points P ∈ C(k̄); the divisor

div(ω) =
∑

P∈C(k̄)

vP (ω) · P ∈ DivC(k)

is the divisor of ω. If vP (ω) ≥ 0 (or ω = 0), then ω is said to be regular at P , and
ω is regular, if it is regular at all points P ∈ C(k̄). ♦

Since the quotient of any two nonzero differentials is a function, the difference
of any two divisors of differentials is a principal divisor. This implies that the
divisors of differentials form one linear equivalence class of divisors, the canonical DEF

canonical
class/
divisor

class . Each such divisor is a canonical divisor. One can show that this class is
exactly the class of the divisors W in the Riemann-Roch Theorem. In particular,
deg div(ω) = 2g − 2 for ω 6= 0, and the k-vector space of regular differentials has
dimension dimL(W ) = g. We write Ωreg

C (k) for this space.

6.3. Lemma. Let C : y2 = f(x) be a hyperelliptic curve of genus g over k. Then LEMMA
regular
differentials
on hyp.
curves

the space of regular differentials on C has k-basis

dx

2y
,

x dx

2y
,

x2 dx

2y
, . . . ,

xg−1 dx

2y
,

so every regular differential can be written uniquely as p(x) dx/2y with a polyno-
mial p of degree ≤ g − 1.

Proof. Consider ω0 = dx/(2y). We show that div(ω0) = (g − 1)D∞, where D∞ is
the divisor of poles of x. (D∞ = 2 · ∞ if deg(f) is odd, and is the sum of the two
points at infinity otherwise.) So let P = (ξ, η) ∈ Caff(k̄). If η 6= 0, then t = x− ξ
is a uniformizer at P , and dt = dx, so vP (ω0) = vP (1/(2y)) = 0, since y does not
vanish at P . If η = 0, then t = y is a uniformizer at P . The relation y2 = f(x)
implies 2y dy = f ′(x) dx, so

ω0

dt
=

dx

2y dy
=

1

f ′(x)
,
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and vP (ω0) = vP (1/f ′(x)) = 0, since f ′(ξ) 6= 0 (otherwise f would have a multiple
zero at ξ). It remains to deal with the point(s) at infinity. First assume that
deg(f) is even; then t = 1/x is a uniformizer at both points at infinity. We find
(using dt = −x−2 dx)

vP (ω0) = vP

( dx

2y dt

)
= −vP (y) + vP (x2) = (g + 1)− 2 = g − 1

as claimed. Finally, if deg(f) is odd, then t = y/xg+1 is a uniformizer at P =∞.
We have

dt = −(g + 1)
y

xg+2
dx+

1

xg+1
dy =

−2(g + 1)f(x) + xf ′(x)

2xg+2y
dx ,

so
ω0

dt
=

xg+2

−2(g + 1)f(x) + xf ′(x)
.

The polynomial in the denominator has degree 2g + 1 (the leading coefficient is
not canceled), so vP (ω0) = −vP (x1−g) = 2g − 2 as claimed.

Writing a general differential as ω = φω0 with φ ∈ k(C), this implies that ω is reg-
ular if and only if φ ∈ L((g− 1)D∞). This space is generated by 1, x, x2, . . . , xg−1

(compare Example 4.13 for the odd degree case): these functions are clearly con-
tained in it, and we know that its dimension must be g. q

Differentials want to be integrated. You know from complex analysis or from
differential geometry that regular 1-forms can be integrated along paths and that
in favorable circumstances the integral depends only on the endpoints and not on
the path. This is not true in general, however, if we integrate our differentials over
paths in C(R) or C(C) — integrating around a loop that cannot be contracted
may result in a nonzero value. Over the p-adic numbers, however, there is a nice
integration theory available.

6.4. Theorem. Let C be a smooth, projective, absolutely irreducible curve over Qp, THM
Coleman
integration

of good reduction. Then there is an integral
∫ Q
P
ω ∈ Q̄p defined for each pair of

points P,Q ∈ C(Q̄p) and each regular differential ω ∈ Ωreg
C (Q̄p) that satisfies the

following properties.

(1) The integral is Q̄p-linear in ω.

(2) If P and Q both reduce to the same point P̄ ∈ C̄(F̄p), the the integral can
be evaluated by writing ω = w(t) dt with t a uniformizer at P reducing
to a uniformizer at P̄ and w a power series, then integrating w formally,
obtaining a power series ` such that d`(t) = w(t) dt and `(0) = 0, and

finally evaluating `(t(Q)) (which converges). This implies that
∫ P
P
ω = 0.

(3)

Q∫
P

ω +

Q′∫
P ′

ω =

Q′∫
P

ω +

Q∫
P ′

ω.

It then makes sense to define
∫ D

ω for a divisor D =
∑n

j=1(Qj − Pj) ∈
Div0

C(Q̄p) as
D∫
ω =

n∑
j=1

Qj∫
Pj

ω .

(4) If D is a principal divisor, then
∫ D

ω = 0.
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(5) The integral is compatible with the action of the absolute Galois group
of Qp.

(6) Fix P0 ∈ C(Q̄p). If 0 6= ω ∈ Ωreg
C (Q̄p), then the set of points P ∈ C(Q̄p)

reducing to a fixed point on C̄(F̄p) as P0 and such that
∫ P
P0
ω = 0 is finite.

Proof. We do not prove this here. This integration theory was introduced7 by
Robert Coleman, who died recently in March 2014. q

We remark that the assumption that the curve has good reduction is not really
necessary, but it simplifies the statement of property (2) above.

6.5. Corollary. In the situation of Theorem 6.4, let P0 ∈ C(Qp), let J be the COR
integration
pairing

Jacobian of C and i : C → J the embedding given by P0. There is a map

J(Qp)× Ωreg
C (Qp) −→ Qp , (P, ω) 7−→ 〈P, ω〉

that is additive in P and Qp-linear in ω, which is given by 〈[D], ω〉 =
∫ D

ω. In
particular, we have

〈i(P ), ω〉 =

P∫
P0

ω .

Proof. By Theorem 6.4, we obtain a map

Div0
C(Q̄p)× Ωreg

C (Q̄p) −→ Q̄p , (D,ω) 7−→
D∫
ω

that is additive on the left and Q̄p-linear on the right. Since
∫ D

ω = 0 for every ω
when D is a principal divisor, this induces a map J(Q̄p)× Ωreg

C (Q̄p) −→ Q̄p. The
compatibility of integration with the Galois action then implies that this map
descends to the map whose existence is claimed in the statement. q

Note that if P ∈ J(Qp) has finite order, then 〈P, ω〉 = 0 for all ω (if nP = 0, then
〈P, ω〉 = 1

n
〈nP, ω〉 = 0). One can in fact show that the torsion points are the only

points with that property. On the other hand, the last property in Theorem 6.4
implies that if ω has the property that 〈P, ω〉 = 0 for all P ∈ J(Qp), then ω = 0.

6.6. Corollary. Let C be a smooth, projective and absolutely irreducible curve COR
finiteness
of C(Q)

of genus g over Q, with Jacobian J . Assume that the rank r of the Mordell-Weil
group J(Q) is strictly less than g. Then C(Q) is finite.

This special case of Faltings’ Theorem (formerly Mordell’s Conjecture) was proved
by Chabauty in 19418 by related methods. (Note that one does not require g ≥ 2
here: the statement is true for g = 1 when r = 0, and g = 0 is ruled out by the
assumption r < g.)

7Robert F. Coleman: Torsion points on curves and p-adic abelian integrals, Ann. Math. (2)
121, 111–168 (1985).

8Claude Chabauty: Sur les points rationnels des courbes algébriques de genre supérieur à
l’unité, C. R. Acad. Sci., Paris 212, 882–885 (1941).
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Proof. Pick a prime p of good reduction for C and let

V = {ω ∈ Ωreg
C (Q̄p) | ∀P ∈ J(Q) : 〈P, ω〉 = 0} .

Since the condition is equivalent to requiring 〈Pj, ω〉 = 0 for a basis P1, . . . , Pr of
the free part of J(Q) (this comes from the additivity of the integration pairing in
the first argument), it leads to at most r linear constraints, so dimV ≥ g− r > 0.
So there is some 0 6= ω ∈ V . Pick P0 ∈ C(Q) (if C(Q) is empty, the claim is
trivially true) to define i : C → J . Since i(P ) ∈ J(Q) for all P ∈ C(Q), it follows

that
∫ P
P0
ω = 0 for all P ∈ C(Q). By Theorem 6.4, the number of such P is finite

in each ‘residue class’ of C(Qp) (meaning a set of points in C(Qp) reducing to the
same point in C(Fp)). Since the number of residue classes is #C̄(Fp) < ∞, the
total number of rational points on C must be finite as well. q

We now want to give a more precise statement. For this, we need a bound on the
number of zeros in Zp of a power series with coefficients in Qp. We first prove a
statement on p-adic power series.

6.7. Theorem. Let 0 6= `(t) =
∑∞

n=0 ant
n ∈ Qp[[t]] such that an → 0 as n → ∞ THM

factori-
zation
of power
series

in the p-adic topology. Let

v0 = min{vp(an) : n ≥ 0} and N = max{n ≥ 0 : vp(an) = v0} .
Then there is a constant c ∈ Q×p , a monic polynomial q ∈ Zp[t] of degree N and a
power series h(t) =

∑∞
n=0 bnt

n ∈ 1 + ptZp[[t]] with bn → 0 as n→∞ such that

`(t) = cq(t)h(t) .

Proof. After scaling by a−1
N ; we can assume that v0 = 0 and aN = 1, so that

in particular `(t) ∈ Zp[[t]]. The condition an → 0 means that the image `m(t)
of `(t) in (Z/pmZ)[[t]] is actually a polynomial, for every m ≥ 1. We construct
inductively constants cm ∈ (Z/pmZ)×, monic polynomials qm(t) ∈ (Z/pmZ)[t] of
degree N and polynomials hm(t) ∈ (Z/pmZ)[t] with hm(t) ≡ 1 mod pt satisfying
`m(t) = cmqm(t)hm(t) and such that (cm+1, qm+1(t), hm+1(t)) reduce mod pm to
(cm, qm(t), hm(t)). There are then unique c ∈ Z×p , q(t) ∈ Zp[t] monic of degree N
and h(t) ∈ 1+ptZp[[t]] such that (c, q(t), h(t)) reduces mod pm to (cm, qm(t), hm(t))
for all m; the claim then follows.

To start the induction, we set c1 = 1, q1(t) = `1(t) and h1(t) = 1. This is possible,
since `1(t) is a monic polynomial of degree N . Now assume we have already

constructed cm, qm(t) and hm(t). Let c̃m+1, q̃m+1(t) and h̃m+1 be arbitrary lifts of
cm, qm(t) and hm(t) to objects over Z/pm+1Z (with qm+1 monic of degree N and

h̃m+1(t) ≡ 1 mod pt). Then

`m+1(t)− c̃m+1q̃m+1(t)h̃m+1(t) = pmd(t)

with some d(t) ∈ (Z/pZ)[t]. We must have

cm+1 = c̃m+1 + pmγ, qm+1(t) = q̃m+1(t) + pmκ(t) and hm+1(t) = h̃m+1(t) + pmη(t),

with γ ∈ Z/pZ, κ(t) ∈ (Z/pZ)[t] of degree< N and η(t) ∈ (Z/pZ)[t] with η(0) = 0.
The desired relation `m+1(t) = cm+1qm+1(t)hm+1(t) is then equivalent to

d(t) = (γ + η(t))`1(t) + κ(t) .

We obtain γ, κ(t) and η(t) (uniquely) from a division with remainder of the
polynomial d(t) by `1(t). This concludes the inductive step and finishes the proof.

q
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The statement can be considered as a variant of the factorization version of
Hensel’s Lemma.

6.8. Corollary. Let `(t) =
∑∞

n=0 ant
n ∈ Qp[[t]] such that an → 0 as n → ∞ in COR

roots of a
power series

the p-adic topology. (Then ` converges on Zp.) Let v0 = min{vp(an) : n ≥ 0} and
N = max{n ≥ 0 : vp(an) = v0}. Then

#{τ ∈ Zp : `(τ) = 0} ≤ N .

Proof. By Theorem 6.7, we can write `(t) = cq(t)h(t) with a constant c ∈ Q×p , a
monic polynomial q ∈ Zp[t] of degree N and a power series h(t) ∈ 1 + ptZp[[t]].
Since h never vanishes on Zp, the roots of ` are exactly the roots of q, of which
there are at most N . q

More precisely, the number of roots α ∈ Q̄p of ` such that vp(α) ≥ 0, counted with
multiplicity, is exactly N : For τ ∈ Q̄p with vp(τ) ≥ 0 we have h(τ) 6= 0, so the
roots are exactly the roots α of q, which all have the property that vp(α) ≥ 0 (by
the ultrametric triangle inequality).

Note that the p-adic valuation on Q×p can be uniquely extended to a homomor-

phism vp : Q̄×p → Q. (If α ∈ Q̄×p with minimal polynomial xd + . . . + a ∈ Qp[x],
then set vp(α) = vp(a)/d. Up to a sign, a is the norm of α with respect to the
extension Qp ⊂ Qp(α).)

6.9. Lemma. Let `(t) ∈ Qp[[t]], with formal derivative w(t) ∈ Zp[[t]] such that the LEMMA
roots of
integrals

image w̄(t) ∈ Fp[[t]] has the form utν + . . . with u ∈ F×p . Then ` converges on pZp.
If p > ν + 2, then

#{τ ∈ pZp : `(τ) = 0} ≤ ν + 1 .

Proof. Write w(t) = w0 + w1t + w2t
2 + . . . and `(t) = `0 + `1t + `2t

2 + . . .. Then
`n+1 = wn/(n+ 1) ∈ Zp/(n+ 1). Since vp(n+ 1)� log n, the assumption wn ∈ Zp
implies vp(`n) ≥ −c log n with a constant c. If τ ∈ pZp (so vp(τ) ≥ 1), then
vp(`nτ

n) ≥ n− c log n→∞ as n→∞, hence `(τ) converges.

Now we consider `(pt) = `0 + p`1t + p2`2t
2 + . . .. We claim that in terms of the

notation of Theorem 6.7, we have N ≤ ν + 1. Indeed, we have

vp(p
ν+1`ν+1) = ν + 1 + vp(wν)− vp(ν + 1) ≤ ν + 1 ,

and for n > ν, we have

vp(p
n+1`n+1) = n+ 1 + vp(wn)− vp(n+ 1) ≥ n+ 1− vp(n+ 1)

(note that vp(wν) = 0 and vp(wn) ≥ 0 for n > ν), so that it suffices to show that
n − vp(n + 1) > ν. This is clear for vp(n + 1) = 0. Otherwise let e = vp(n + 1),
then pe | n+ 1, so n+ 1 ≥ pe > ν+ e+ 1, where the second estimate can be shown
be induction: for e = 1, this is the assumption p > ν + 2; then use pe+1 ≥ pe + 1.

Now Corollary 6.8 gives the desired result. q

We can use this to show the following.
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6.10. Theorem. Let C be a smooth, projective and absolutely irreducible curve THM
bound
for #C(Q)

of genus g over Q, with Jacobian J. Assume that the rank r of the Mordell-Weil
group J(Q) is strictly less than g. Let p be a prime of good reduction for C such
that p > 2g. Then

#C(Q) ≤ #C̄(Fp) + 2g − 2 .

This result is due to Coleman.9

Proof. We can assume that there is some point P0 ∈ C(Q). Arguing as in the proof

of Corollary 6.6, there is a nonzero differential ω ∈ Ωreg
C (Qp) such that

∫ P
P0
ω = 0

for all P ∈ C(Q). Now consider a point Q̄ ∈ C̄(Fp) and lift it to Q ∈ C(Qp). We
can pick a uniformizer t ∈ Qp(C)× at Q such that t reduces to a uniformizer t̄ ∈
Fp(C̄)× at Q̄. (For example, if C is hyperelliptic and Q̄ = (ξ̄, η̄), then we can take
Q = (ξ, η) and t = x − ξ if η̄ 6= 0, and Q = (ξ, 0) and t = y if η̄ = 0.) We can
scale ω such that its reduction ω̄ is defined and nonzero; then ω̄ ∈ Ωreg

C̄
(Fp). Recall

that div(ω̄) is effective and has degree 2g − 2. We write ν(Q̄) for vQ̄(ω̄). We can
write ω = w(t) dt with a power series w(t) ∈ Zp[[t]] (the coefficients are in Zp, since

ω̄ is defined); then ω̄ = w̄(t̄) dt̄, where w̄(t̄) = t̄ν(Q̄)(u0 + u1t̄ + . . .) with u0 ∈ F×p .

We also have
∫ P
P0
ω = `(t(P )) for P ∈ C(Qp) such that P̄ = Q̄, where `(t) ∈ Qp[[t]]

is a power series such that `′(t) = w(t). Now we apply Lemma 6.9 to ` and w; we
find that the number of zeros of `(t) (which is the number of points P ∈ C(Qp)

reducing to Q̄ satisfying
∫ P
P0
ω = 0) is at most ν(Q̄) + 1. Adding up, we get

#C(Q) ≤ #
{
P ∈ C(Qp) :

P∫
P0

ω = 0
}

≤
∑

Q̄∈C̄(Fp)

(ν(Q̄) + 1) ≤ deg div(ω̄) + #C̄(Fp)

= 2g − 2 + #C̄(Fp) . q

We make a few remarks.10

(1) By choosing the ‘best’ ω for each residue class, one can improve this: if
r < g and p > 2r + 2 is a prime of good reduction for C, then

#C(Q) ≤ #C̄(Fp) + 2r .

(2) One can weaken the assumption that p > 2r + 2. If p > 2, then

#C(Q) ≤ #C̄(Fp) + 2r +

⌊
2r

p− 2

⌋
.

This refinement follows from a corresponding refinement of Lemma 6.9.
For p > 2r + 2, we obtain the previous statement.

6.11. Example. We continue Example 5.9. Let EXAMPLE

C : y2 = x(x− 1)(x− 2)(x− 5)(x− 6) .

9R.F. Coleman: Effective Chabauty, Duke Math. J. 52, 765–770 (1985).
10M. Stoll: Independence of rational points on twists of a given curve, Compositio Math. 142,

1201–1214 (2006)



§ 6. Differentials and Chabauty’s Method 41

In Example 5.9, we had shown that J(Q) ∼= (Z/2Z)4 × Z. One finds the ten
rational points

(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3,±6) and (10,±120)

on C. The prime p = 7 is a prime of good reduction for C, and

C̄(F7) = {∞, (0, 0), (1, 0), (2, 0), (−2, 0), (−1, 0), (3,±1)}
(note that f(4) = −24 is a non-square mod 7), so #C̄(F7) = 8. Theorem 6.10
tells us that (note that g = 2)

10 ≤ #C(Q) ≤ #C̄(F7) + 2 = 10 .

Therefore

C(Q) = {(0, 0), (1, 0), (2, 0), (5, 0), (6, 0), (3, 6), (3,−6), (10, 120), (10,−120)} .
The fact that there are two rational points each in the residue classes coming from
(3,±1) ∈ C̄(F7) tells us that ω̄ = (x− 3) dx/(2y), up to a constant factor. ♣

Usually, however, the bound in Theorem 6.10 (even in its improved versions) is
not sharp. For large p, #C̄(Fp) grows roughly like p by the Weil bounds, so
#C̄(Fp) + 2r will be larger than #C(Q) if p is sufficiently large. On the other
hand, it is possible to rule out certain residue classes mod p by using information
coming from other primes. To explain this, assume for simplicity that J(Q) ∼= Zr
has no torsion. Let q be a prime of good reduction. Fix P0 ∈ C(Q) to define an
embedding i : C → J . Then we have the following commutative diagram:

C(Q)
i //

ρq
��

J(Q)
∼= //

ρq
��

Zr

φq}}
C̄(Fq)

i // J̄(Fq)

The image of C(Q) in Zr must then be contained in a union Vq of #C̄(Fq) cosets
of Uq = ker(φq) (since the image under φq of an element in Zr that comes from a
point in C(Q) must map into i

(
C̄(Fq)

)
). If we have explicit generators of J(Q),

then we can compute Uq. If the indices (Zr : Uq) and (Zr : Up) are not coprime,
then the image of Vq ∩Vp in Zr/Up ↪→ J̄(Fp) can be smaller than that of Vp, which
comes down to excluding certain points in C̄(Fp) as possible images of rational
points under ρp. One can as well use several primes q together and combine the
information obtained from them. This approach is known as the ‘Mordell-Weil
Sieve’11 and can be used independently of Chabauty’s method, for example to
show that C(Q) is empty. In conjunction with Chabauty’s method, it gives a
quite powerful and (in the case g = 2, r = 1, say) efficient approach to determine
C(Q) explicitly.

Coming back to Theorem 6.10 and its variants, it is also possible to remove the
condition that p be a prime of good reduction. Then one has to replace C̄(Fp) by
the number of smooth Fp-points on ‘the special fiber of a (minimal) proper regular
model of C over Zp’. (If p is a good prime, then such a model is simply given
by interpreting the equation defining C as an equation over Zp. Otherwise, the
special fiber (which is the reduced curve over Fp) has singularities, which one has
to resolve to a certain extent to obtain a ‘regular scheme’ over Zp, which will then
be a proper regular model.) This is of relevance when one tries to prove uniform

11N. Bruin, M. Stoll: The Mordell-Weil sieve: Proving non-existence of rational points on
curves, LMS J. Comput. Math. 13, 272–306 (2010).
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bounds for the number of rational points on curves (when the rank of J(Q) is
strictly smaller than g): Since C could have bad reduction at all primes p < X
for X arbitrarily large, one would have to use arbitrarily large primes p if p must
be a good prime. As discussed above, the bound grows with p, so that would not
be useful. But even when fixing a prime p, there is the problem that the number
of residue classes (i.e., the number of smooth Fp-points on the special fiber of a
minimal proper regular model of the curve over Zp) is unbounded. Still, there is
the following recent result12.

6.12. Theorem. Let C be a hyperelliptic curve over Q of genus g and with THM
uniform
bound
for #C(Q)

Jacobian J. Assume that the rank r of J(Q) satisfies r ≤ g − 3. Then

#C(Q) ≤ 8(r + 4)(g − 1) + max{1, 4r} · g .

The key idea for the proof is that one can partition C(Qp) into a union of residue
disks and ‘residue annuli’, whose number is bounded in terms of g only. We obtain
a bound for the rational points lying in residue disks in the same way as above.
For each residue annulus A, there is a codimension ≤ 2 subspace VA of Ωreg

C (Qp)

such that for 0 6= ω ∈ VA, one can bound the number of zeros of P 7→
∫ P
P0
ω on A

in terms of r and g. If r ≤ g − 3, then each such space VA contains a nonzero
differential that kills J(Q) under the integration pairing, and we get a bound for
the number of rational points in A. Adding all the bounds (and working with
p = 3) then leads to the result.

12M. Stoll: Uniform bounds for the number of rational points on hyperelliptic curves of small
Mordell-Weil rank, arXiv:1307.1773 [math.NT].


