
x2 + y3 = z7

Michael Stoll
International University Bremen

with

Bjorn Poonen, UC Berkeley

and

Ed Schaefer, University of Santa Clara



The Result

The following is now a 100% theorem.

(Last year in Oberwolfach, it was only 90%.)

Theorem.

The complete list of primitive integral solutions of

x2 + y3 = z7

is given by

(±1,−1,0) , (±1,0,1) , ±(0,1,1)

(±3,−2,1) , (±71,−17,2) , (±2213459,1414,65)

(±15312283,9262,113) , (±21063928,−76271,17)



Some General Theory

We consider the Generalized Fermat Equation

xp + yq = zr .

Let χp,q,r = χ =
1

p
+

1

q
+

1

r
− 1 .

Let P ⊂ P2 be the line x + y = z.

There is a branched Galois covering X π−→ P , defined over Q,

ramified above (0 : 1 : 1), (1 : 0 : 1), (1 : −1 : 0)

with ramification index p, q, r, respectively.

• χ > 0 =⇒ X ∼= P1

• χ = 0 =⇒ X is an elliptic curve

• χ < 0 =⇒ genus(X) ≥ 2

Note that χ2,3,7 = −1/42 is closest to zero from below.



A General Theorem

Let Sp,q,r = {(ap : bq : cr) : a, b, c ∈ Z,gcd(a, b, c) = 1, ap + bq = cr} ⊂ P (Q).

Theorem (Darmon-Granville).

There is a number field K such that π(X(K)) ⊃ Sp,q,r.

Corollary.

If χ < 0, then Sp,q,r is finite.

Theorem (Variant).

There are finitely many twists Xj
πj−→ P of X π−→ P

such that
⋃

j πj(Xj(Q)) ⊃ Sp,q,r.

(These twists are all unramified outside pqr.)

More precisely:

Let Yj(Q) ⊂ Xj(Q) be the points satisfying certain conditions

mod powers of the primes dividing pqr. Then Sp,q,r =
∐

j πj(Yj(Q)).



A Side Remark

Instead of P ,

one should consider xp + yq = zr as a curve Xp,q,r in a weighted P2.

Note that Sp,q,r
∼= Xp,q,r(Z) (modulo signs).

Xp,q,r is P with the points (0 : 1 : 1), (1 : 0 : 1), (1 : −1 : 0)

replaced with 1/p, 1/q, 1/r times a point, respectively.

(Assuming p, q, r coprime in pairs.)

Then X π−→ Xp,q,r is unramified

and χ is the Euler characteristic of Xp,q,r.

This explains why one can do descent using π.

We also find 2− 2genus(X) = deg(π)χ.



Overall Strategy for (2,3,7)

In our special case, X can be taken to be the Klein Quartic

X : x3 y + y3 z + z3 x = 0

Note that X ∼= X(7) (the modular curve).

1. Find the relevant twists Xj of X explicitly.

2. Find Xj(Q) (or at least Yj(Q)).

Step 1 uses modular arguments

(plus a separate consideration for reducible 7-torsion).

Step 2 uses descent on the Jacobians of the Xj and Chabauty,

plus a Brauer-Manin obstruction argument for one curve

where Chabauty fails.



Step 1: Quick Overview

Given a solution a2 + b3 = c7, consider

E(a,b,c) : y2 = x3 + 3b x− 2a .

The usual arguments show that E(a,b,c) is semistable outside {2,3}
and that, if E(a,b,c)[7] is irreducible, E(a,b,c)[7] ∼= E[7]

(up to quadratic twist) for E out of a list of 13 elliptic curves.

By work of Kraus and Halberstadt,

we can write down explicit equations of twists XE(7) and X−
E(7)

classifying E ′ such that E ′[7] ∼= E[7].

A more direct argument produces several hundreds of twists

arising from the case when E(a,b,c)[7] is reducible.

For many of these curves, local considerations show Yj(Q) = ∅.

We are left with just 10 twists Xj.



The Twists

X1 : 6x3y + y3z + z3x = 0

X2 : 3x3y + y3z + 2z3x = 0

X3 : 3x3y + 2y3z + z3x = 0

X4 : 7x3z + 3x2y2 − 3xyz2 + y3z − z4 = 0

X5 : −2x3y − 2x3z + 6x2yz + 3xy3 − 9xy2z + 3xyz2 − xz3 + 3y3z − yz3 = 0

X6 : x4 + 2x3y + 3x2y2 + 2xy3 + 18xyz2 + 9y2z2 − 9z4 = 0

X7 : −3x4 − 6x3z + 6x2y2 − 6x2yz + 15x2z2 − 4xy3

− 6xyz2 − 4xz3 + 6y2z2 − 6yz3 = 0

X8 : 2x4 − x3y − 12x2y2 + 3x2z2 − 5xy3 − 6xy2z

+ 2xz3 − 2y4 + 6y3z + 3y2z2 + 2yz3 = 0

X9 : 2x4 + 4x3y − 4x3z − 3x2y2 − 6x2yz + 6x2z2

− xy3 − 6xyz2 − 2y4 + 2y3z − 3y2z2 + 6yz3 = 0

X10 : x3y − x3z + 3x2z2 + 3xy2z + 3xyz2 + 3xz3 − y4

+ y3z + 3y2z2 − 12yz3 + 3z4 = 0



The Points

We find the following rational points on these curves.

X1 : (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : −1 : 2)

X2 : (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : −1) , (1 : −2 : −1)

X3 : (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : −1)

X4 : (1 : 0 : 0), (0 : 1 : 0), (0 : 1 : 1)

X5 : (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : 1 : 1)

X6 : (0 : 1 : 0), (1 : −1 : 0), (0 : 1 : 1) , (0 : 1 : −1)

X7 : (0 : 1 : 0), (0 : 0 : 1) , (0 : 1 : 1)

X8 : (0 : 0 : 1) , (2 : −1 : 0)

X9 : (0 : 0 : 1), (1 : 1 : 0)

X10 : (1 : 0 : 0) , (1 : 1 : 0)

The boxed points lead to nontrivial primitive solutions.



Step 2: Overview

It remains to prove that there are no other points in Xj(Q),

or at least in Yj(Q).

The only good and widely applicable way of doing this

is Chabauty’s method.

Chabauty’s method works

when the rank of Jj(Q) = Jac(Xj)(Q) is less than 3.

So we first have to determine this rank

and find generators of a finite index subgroup of Jj(Q).



2-Descent on Jj

For general plane quartics, descent is infeasible.

However, our curves are very special:

They are twists of X, so they have a large automorphism group:

Aut(Xj)
∼= Aut(X) ∼= PSL(2, F7)

In fact, X2,3,7
∼= Xj/Aut(Xj) via πj.

This results in a special geometry.



A Feature of the Klein Quartic

The Klein Quartic



A Feature of the Klein Quartic

A flex point



A Feature of the Klein Quartic

A flex point with its tangent



A Feature of the Klein Quartic

We get another flex point!



A Feature of the Klein Quartic

In the end, we have a “flex triangle”



2-Descent: Structure of Jj[2]

Let Ti (1 ≤ i ≤ 8) be the eight degree 3 divisors

corresponding to the flex triangles on Jj.

Lemma.

Let V = F2 · T1 ⊕ · · · ⊕ F2 · T8; this is a Galois module.

Consider

F2
α−→ V

β−→ F2

where α(1) = T1 + · · ·+ T8 and β(a1T1 + · · ·+ a8T8) = a1 + · · ·+ a8.

Then Jj[2] ∼= ker(β)/ im(α) as a Galois module.

This is completely analogous to hyperelliptic genus 3 curves

(where the Ti are replaced by the Weierstrass points).

Hence we can transfer the 2-descent method from hyperelliptic curves

to our Klein Quartic twists.



2-Descent: More detail

To carry out the 2-descent, we need a suitable function F on Xj.

Fix a basepoint P0 ∈ Xj(Q).

Fit a cubic Fi through 3P0 + 2Ti.

Then div(Fi) = 2Ti + (3P0 + R), where R is rational and independent of i.

Usually, all the Ti are conjugate. Assume this.

Set T = T1 and K = Q(T ) the corresponding octic number field.

Then F = F1/z3 is defined over K and induces a homomorphism

F : Jj(Q)/2Jj(Q) −→ ker
(
NK/Q : K×/(K×)2Q× → Q×/(Q×)2

)
with kernel of order 2 generated by [R− 3P0]

and image contained in the subgroup unramified outside {2,3,7}.

We compute the 2-Selmer group in the usual way

and get a bound on the rank of Jj(Q).



2-Descent and Chabauty: Results

Our 2-descent, applied to Xj, gives the following.

Proposition.

For all 1 ≤ j ≤ 10, the subgroup of Jj(Q) generated by divisors

supported in the known rational points has finite index.

We have (with rj = rankJj(Q))

r1 = r2 = r3 = 1

r4 = r6 = r7 = r8 = r9 = r10 = 2

r5 = 3

Knowing this, we can use Chabauty on nine of the curves:

Proposition. For 1 ≤ j ≤ 10, j 6= 5, the listed points exhaust Xj(Q).



The Last Curve

It remains to deal with the last curve:

X5 : −2x3y − 2x3z + 6x2yz + 3xy3 − 9xy2z + 3xyz2 − xz3 + 3y3z − yz3 = 0

Here, we have

Y5(Q) = {P ∈ X5(Q) :P ≡ (0 : 1 : 0) mod 3,

P ≡ (1 : 0 : 0) or (1 : 1 : 1) mod 2}

The known points in X5(Q),

(1 : 0 : 0) , (0 : 1 : 0) , (0 : 0 : 1) , (1 : 1 : 1) ,

all violate one of the conditions.

Can we show that Y5(Q) is empty?



The Idea

We have J5(Q) ∼= Z3. Let P1, P2, P3 be generators.

We have a map

ι : X5(Q) 3 P 7−→ [P − P0] ∈ J5(Q)
∼=−→ Z · P1 ⊕ Z · P2 ⊕ Z · P3 .

So ι(P ) = ι1(P )P1 + ι2(P )P2 + ι3(P )P3.

Let us find conditions on these coefficents!

For a prime p, we can find finite groups Gp such that

φp : J5(Q) ↪→ J5(Qp) −→→ Gp

On the other hand, Y5(Q) ↪→ Y5(Qp) (= X5(Qp) if p 6= 2,3)

maps to a certain subset Sp ⊂ Gp.

Now ι(Y5(Q)) ⊂
⋂
p

φ−1
p (Sp),

and φp(n1P1 + n2P2 + n3P3) ∈ Sp gives congruence conditions on n1, n2, n3.



Choosing Gp

We need to bring in the conditions at 2 and 3,

so we need to consider suitable G2 and G3.

Note that 2 and 3 are primes of bad reduction,

so some work is required.

For additional p of good reduction,

we can simply take Gp = J5(Fp) or a quotient of it;

then Sp = ι(X5(Fp)) is the image of the points mod p.



How to get G3

We need to find the structure of J5(Q3).

To do this, we compute a minimal regular model of X5 over Z3.

The special fiber looks like this:
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From this, we find Φ3
∼= Z/7Z;

we set G3 = Φ3 and get n1 + 3n3 ≡ 1 mod 7.



How to get G2

The minimal regular model of X5 over Z2 has special fiber

2
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From this, we find Φ2
∼= Z/4Z× Z/4Z;

we set G2 = Φ2 and get n1 + n2 ≡ 0 mod 4 and n3 ≡ 0 or 1 mod 4.

We need some more primes

to “connect” this mod 7 and mod 4 information.



Auxiliary Primes

Besides

J5(Q2) −→→ Φ2
∼= Z/4Z× Z/4Z

J5(Q3) −→→ Φ3
∼= Z/7Z

we find

J5(Q13) −→→ J5(F13) −→→ Z/14Z
J5(Q23) −→→ J5(F23) −→→ Z/2Z× Z/4Z× Z/4Z× Z/4Z
J5(Q97) −→→ J5(F97) −→→ Z/14Z× Z/14Z× Z/14Z

and computing the image of X5(Fp) in the group on the right,

we finally obtain contradictory conditions on n1, n2, n3 mod 14.

Proposition.

Y5(Q) is empty.


