

 $x^2 + y^3 = z^7$

Michael Stoll International University Bremen

with

Bjorn Poonen, UC Berkeley

and

Ed Schaefer, University of Santa Clara

The Result

The following is now a 100% theorem. (Last year in Oberwolfach, it was only 90%.)

Theorem.

The complete list of primitive integral solutions of

$$x^2 + y^3 = z^7$$

is given by

 $(\pm 1, -1, 0), (\pm 1, 0, 1), \pm (0, 1, 1)$ $(\pm 3, -2, 1), (\pm 71, -17, 2), (\pm 2213459, 1414, 65)$ $(\pm 15312283, 9262, 113), (\pm 21063928, -76271, 17)$

Some General Theory

We consider the Generalized Fermat Equation

$$\left| x^p + y^q = z^r \right|.$$

$$\chi_{p,q,r} = \chi = \frac{1}{p} + \frac{1}{q} + \frac{1}{r} - 1.$$

Let $P \subset \mathbb{P}^2$ be the line x + y = z. There is a branched Galois covering $X \xrightarrow{\pi} P$, defined over \mathbb{Q} , ramified above (0:1:1), (1:0:1), (1:-1:0) with ramification index p, q, r, respectively.

 $\bullet \ \chi > \mathbf{0} \Longrightarrow X \cong \mathbb{P}^1$

Let

- $\chi = 0 \Longrightarrow X$ is an elliptic curve
- $\chi < 0 \Longrightarrow \operatorname{genus}(X) \ge 2$

Note that $\chi_{2,3,7} = -1/42$ is closest to zero from below.

A General Theorem

Let $S_{p,q,r} = \{(a^p : b^q : c^r) : a, b, c \in \mathbb{Z}, gcd(a, b, c) = 1, a^p + b^q = c^r\} \subset P(\mathbb{Q}).$

Theorem (Darmon-Granville).

There is a number field K such that $\pi(X(K)) \supset S_{p,q,r}$.

Corollary.

If $\chi < 0$, then $S_{p,q,r}$ is finite.

Theorem (Variant).

There are finitely many twists $X_j \xrightarrow{\pi_j} P$ of $X \xrightarrow{\pi} P$ such that $\bigcup_j \pi_j(X_j(\mathbb{Q})) \supset S_{p,q,r}$. (These twists are all unramified outside pqr.)

More precisely:

Let $Y_j(\mathbb{Q}) \subset X_j(\mathbb{Q})$ be the points satisfying certain conditions mod powers of the primes dividing pqr. Then $S_{p,q,r} = \coprod_j \pi_j(Y_j(\mathbb{Q}))$.

A Side Remark

Instead of P, one should consider $x^p + y^q = z^r$ as a curve $X_{p,q,r}$ in a weighted \mathbb{P}^2 . Note that $S_{p,q,r} \cong X_{p,q,r}(\mathbb{Z})$ (modulo signs). $X_{p,q,r}$ is P with the points (0 : 1 : 1), (1 : 0 : 1), (1 : -1 : 0) replaced with 1/p, 1/q, 1/r times a point, respectively. (Assuming p, q, r coprime in pairs.)

Then $X \xrightarrow{\pi} X_{p,q,r}$ is *unramified* and χ is the Euler characteristic of $X_{p,q,r}$.

This explains why one can do descent using π .

We also find $2-2\operatorname{genus}(X) = \operatorname{deg}(\pi)\chi$.

Overall Strategy for (2,3,7)

In our special case, \boldsymbol{X} can be taken to be the Klein Quartic

$$X : x^{3}y + y^{3}z + z^{3}x = 0$$

Note that $X \cong X(7)$ (the modular curve).

- 1. Find the relevant twists X_i of X explicitly.
- 2. Find $X_j(\mathbb{Q})$ (or at least $Y_j(\mathbb{Q})$).

Step 1 uses modular arguments

(plus a separate consideration for reducible 7-torsion).

Step 2 uses descent on the Jacobians of the X_j and Chabauty, plus a Brauer-Manin obstruction argument for one curve where Chabauty fails.

Step 1: Quick Overview

Given a solution $a^2 + b^3 = c^7$, consider

$$E_{(a,b,c)}: y^2 = x^3 + 3bx - 2a.$$

The usual arguments show that $E_{(a,b,c)}$ is semistable outside $\{2,3\}$ and that, if $E_{(a,b,c)}[7]$ is irreducible, $E_{(a,b,c)}[7] \cong E[7]$ (up to quadratic twist) for E out of a list of 13 elliptic curves.

By work of Kraus and Halberstadt, we can write down explicit equations of twists $X_E(7)$ and $X_E^-(7)$ classifying E' such that $E'[7] \cong E[7]$.

A more direct argument produces several hundreds of twists arising from the case when $E_{(a,b,c)}$ [7] is reducible.

For many of these curves, local considerations show $Y_j(\mathbb{Q}) = \emptyset$. We are left with just 10 twists X_j .

The Twists

$$\begin{split} X_1 &: 6x^3y + y^3z + z^3x = 0 \\ X_2 &: 3x^3y + y^3z + 2z^3x = 0 \\ X_3 &: 3x^3y + 2y^3z + z^3x = 0 \\ X_4 &: 7x^3z + 3x^2y^2 - 3xyz^2 + y^3z - z^4 = 0 \\ X_5 &: -2x^3y - 2x^3z + 6x^2yz + 3xy^3 - 9xy^2z + 3xyz^2 - xz^3 + 3y^3z - yz^3 = 0 \\ X_6 &: x^4 + 2x^3y + 3x^2y^2 + 2xy^3 + 18xyz^2 + 9y^2z^2 - 9z^4 = 0 \\ X_7 &: -3x^4 - 6x^3z + 6x^2y^2 - 6x^2yz + 15x^2z^2 - 4xy^3 \\ - 6xyz^2 - 4xz^3 + 6y^2z^2 - 6yz^3 = 0 \\ X_8 &: 2x^4 - x^3y - 12x^2y^2 + 3x^2z^2 - 5xy^3 - 6xy^2z \\ + 2xz^3 - 2y^4 + 6y^3z + 3y^2z^2 + 2yz^3 = 0 \\ X_9 &: 2x^4 + 4x^3y - 4x^3z - 3x^2y^2 - 6x^2yz + 6x^2z^2 \\ - xy^3 - 6xyz^2 - 2y^4 + 2y^3z - 3y^2z^2 + 6yz^3 = 0 \\ X_{10} &: x^3y - x^3z + 3x^2z^2 + 3xy^2z + 3xyz^2 + 3xz^3 - y^4 \\ + y^3z + 3y^2z^2 - 12yz^3 + 3z^4 = 0 \end{split}$$

The Points

We find the following rational points on these curves.

$$\begin{split} X_1 &: (1:0:0), (0:1:0), (0:0:1), (1:-1:2) \\ X_2 &: (1:0:0), (0:1:0), (0:0:1), (1:1:-1), (1:-2:-1) \\ X_3 &: (1:0:0), (0:1:0), (0:0:1), (1:1:-1) \\ X_4 &: (1:0:0), (0:1:0), (0:1:1) \\ X_5 &: (1:0:0), (0:1:0), (0:0:1), (1:1:1) \\ X_6 &: (0:1:0), (1:-1:0), (0:1:1) \\ X_7 &: (0:1:0), (0:0:1) \\ X_8 &: (0:0:1) \\ X_9 &: (0:0:1) \\ X_{10} &: (1:0:0) \\ (1:1:0) \\ \end{split}$$

The boxed points lead to nontrivial primitive solutions.

Step 2: Overview

It remains to prove that there are no other points in $X_j(\mathbb{Q})$, or at least in $Y_j(\mathbb{Q})$.

The only good and widely applicable way of doing this is Chabauty's method.

Chabauty's method works when the rank of $J_j(\mathbb{Q}) = Jac(X_j)(\mathbb{Q})$ is less than 3.

So we first have to determine this rank and find generators of a finite index subgroup of $J_i(\mathbb{Q})$.

2-Descent on J_j

For general plane quartics, descent is infeasible.

However, our curves are very special:

They are twists of X, so they have a large automorphism group:

 $\operatorname{Aut}(X_j) \cong \operatorname{Aut}(X) \cong \operatorname{PSL}(2, \mathbb{F}_7)$

In fact, $X_{2,3,7} \cong X_j / \operatorname{Aut}(X_j)$ via π_j .

This results in a special geometry.

The Klein Quartic

A flex point

A flex point with its tangent

We get another flex point!

In the end, we have a "flex triangle"

2-Descent: Structure of J_j [2]

Let T_i ($1 \le i \le 8$) be the eight degree 3 divisors corresponding to the flex triangles on J_j .

Lemma.

Let $V = \mathbb{F}_2 \cdot T_1 \oplus \cdots \oplus \mathbb{F}_2 \cdot T_8$; this is a Galois module. Consider

$$\mathbb{F}_2 \xrightarrow{\alpha} V \xrightarrow{\beta} \mathbb{F}_2$$

where $\alpha(1) = T_1 + \cdots + T_8$ and $\beta(a_1T_1 + \cdots + a_8T_8) = a_1 + \cdots + a_8$. Then $J_j[2] \cong \ker(\beta) / \operatorname{im}(\alpha)$ as a Galois module.

This is completely analogous to *hyperelliptic* genus 3 curves (where the T_i are replaced by the Weierstrass points).

Hence we can transfer the 2-descent method from hyperelliptic curves to our Klein Quartic twists.

2-Descent: More detail

To carry out the 2-descent, we need a suitable function F on X_j .

Fix a basepoint $P_0 \in X_j(\mathbb{Q})$. Fit a cubic F_i through $3P_0 + 2T_i$. Then div $(F_i) = 2T_i + (3P_0 + R)$, where R is rational and independent of i.

Usually, all the T_i are conjugate. Assume this. Set $T = T_1$ and $K = \mathbb{Q}(T)$ the corresponding octic number field. Then $F = F_1/z^3$ is defined over K and induces a homomorphism

$$F: J_j(\mathbb{Q})/2J_j(\mathbb{Q}) \longrightarrow \ker \left(N_{K/\mathbb{Q}}: K^{\times}/(K^{\times})^2 \mathbb{Q}^{\times} \to \mathbb{Q}^{\times}/(\mathbb{Q}^{\times})^2 \right)$$

with kernel of order 2 generated by $[R - 3P_0]$ and image contained in the subgroup unramified outside $\{2, 3, 7\}$.

We compute the 2-Selmer group in the usual way and get a bound on the rank of $J_i(\mathbb{Q})$.

2-Descent and Chabauty: Results

Our 2-descent, applied to X_j , gives the following.

Proposition.

For all $1 \le j \le 10$, the subgroup of $J_j(\mathbb{Q})$ generated by divisors supported in the known rational points has finite index.

We have (with $r_j = \operatorname{rank} J_j(\mathbb{Q})$)

$$r_1 = r_2 = r_3 = 1$$

 $r_4 = r_6 = r_7 = r_8 = r_9 = r_{10} = 2$
 $r_5 = 3$

Knowing this, we can use Chabauty on nine of the curves:

Proposition. For $1 \le j \le 10$, $j \ne 5$, the listed points exhaust $X_j(\mathbb{Q})$.

The Last Curve

It remains to deal with the last curve:

 $X_5: -2x^3y - 2x^3z + 6x^2yz + 3xy^3 - 9xy^2z + 3xyz^2 - xz^3 + 3y^3z - yz^3 = 0$ Here, we have

$$Y_{5}(\mathbb{Q}) = \{ P \in X_{5}(\mathbb{Q}) : P \equiv (0 : 1 : 0) \text{ mod } 3, \\ P \equiv (1 : 0 : 0) \text{ or } (1 : 1 : 1) \text{ mod } 2 \}$$

The known points in $X_5(\mathbb{Q})$,

(1:0:0), (0:1:0), (0:0:1), (1:1:1),

all violate one of the conditions.

Can we show that $Y_5(\mathbb{Q})$ is empty?

The Idea

We have $J_5(\mathbb{Q}) \cong \mathbb{Z}^3$. Let P_1, P_2, P_3 be generators. We have a map

 $\iota : X_5(\mathbb{Q}) \ni P \longmapsto [P - P_0] \in J_5(\mathbb{Q}) \xrightarrow{\cong} \mathbb{Z} \cdot P_1 \oplus \mathbb{Z} \cdot P_2 \oplus \mathbb{Z} \cdot P_3.$ So $\iota(P) = \iota_1(P) P_1 + \iota_2(P) P_2 + \iota_3(P) P_3.$ Let us find conditions on these coefficients!

For a prime p, we can find finite groups G_p such that

$$\phi_p: J_5(\mathbb{Q}) \hookrightarrow J_5(\mathbb{Q}_p) \longrightarrow G_p$$

On the other hand, $Y_5(\mathbb{Q}) \hookrightarrow Y_5(\mathbb{Q}_p)$ (= $X_5(\mathbb{Q}_p)$ if $p \neq 2, 3$) maps to a certain subset $S_p \subset G_p$.

Now $\iota(Y_5(\mathbb{Q})) \subset \bigcap_p \phi_p^{-1}(S_p)$, and $\phi_p(n_1P_1 + n_2P_2 + n_3P_3) \in S_p$ gives congruence conditions on n_1, n_2, n_3 .

Choosing G_p

We need to bring in the conditions at 2 and 3, so we need to consider suitable G_2 and G_3 .

Note that 2 and 3 are primes of bad reduction, so some work is required.

For additional p of good reduction, we can simply take $G_p = J_5(\mathbb{F}_p)$ or a quotient of it; then $S_p = \iota(X_5(\mathbb{F}_p))$ is the image of the points mod p.

How to get G_3

We need to find the structure of $J_5(\mathbb{Q}_3)$.

To do this, we compute a minimal regular model of X_5 over \mathbb{Z}_3 . The special fiber looks like this:

From this, we find $\Phi_3 \cong \mathbb{Z}/7\mathbb{Z}$; we set $G_3 = \Phi_3$ and get $n_1 + 3n_3 \equiv 1 \mod 7$.

How to get G_2

The minimal regular model of X_5 over \mathbb{Z}_2 has special fiber

From this, we find $\Phi_2 \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$; we set $G_2 = \Phi_2$ and get $n_1 + n_2 \equiv 0 \mod 4$ and $n_3 \equiv 0 \text{ or } 1 \mod 4$.

We need some more primes to "connect" this mod 7 and mod 4 information.

Auxiliary Primes

Besides

$$J_{5}(\mathbb{Q}_{2}) \longrightarrow \Phi_{2} \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$$
$$J_{5}(\mathbb{Q}_{3}) \longrightarrow \Phi_{3} \cong \mathbb{Z}/7\mathbb{Z}$$

we find

$$J_{5}(\mathbb{Q}_{13}) \longrightarrow J_{5}(\mathbb{F}_{13}) \longrightarrow \mathbb{Z}/14\mathbb{Z}$$
$$J_{5}(\mathbb{Q}_{23}) \longrightarrow J_{5}(\mathbb{F}_{23}) \longrightarrow \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$$
$$J_{5}(\mathbb{Q}_{97}) \longrightarrow J_{5}(\mathbb{F}_{97}) \longrightarrow \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/14\mathbb{Z} \times \mathbb{Z}/14\mathbb{Z}$$

and computing the image of $X_5(\mathbb{F}_p)$ in the group on the right, we finally obtain contradictory conditions on $n_1, n_2, n_3 \mod 14$.

Proposition.

 $Y_5(\mathbb{Q})$ is empty.