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T he Result

The following is now a 100% theorem.
(Last year in Oberwolfach, it was only 90%.)

T heorem.
The complete list of primitive integral solutions of

1'2 _I_ y3 — 27
IS given by

(:I:l,—l,O), (:I:]-?O)l)) j:(oalal)
(£3,-2,1), (£71,-17,2), (4+2213459,1414,65)
(£15312283,9262,113), (£21063928,-76271,17)



Some General Theory

We consider the Generalized Fermat Equation

P +yl = 2" |.
1 1 1
Xp.q,r — X p g 7T

Let P C P? be the line x +vy = 2.
There is a branched Galois covering X — P, defined over Q,

ramified above (0:1:1), (1:0:1), (1:-1:0)
with ramification index p, g, r, respectively.

o Y >0=—= X =ZP!
e Y = 0= X is an elliptic curve
e Y <0==genus(X) >2

Note that x237 = —1/42 is closest to zero from below.



A General Theorem

Let Sp,r={(a?:b1:c"):a,bceZ,gcd(a,b,c)=1,a’+ bl ="} C P(Q).

Theorem (Darmon-Granville).
There is a number field K such that 7(X(K)) D S,

Corollary.
If x <O, then S, is finite.

Theorem (Variant).

There are finitely many twists X S Ppof X P
such that U; mj(X;(Q)) D Sp.q.r-

(These twists are all unramified outside pgr.)
More precisely:

Let Y;(Q) C X;(Q) be the points satisfying certain conditions
mod powers of the primes dividing pgr. Then S5, ,, = I[,; 7;(Y;(Q)).



A Side Remark

Instead of P,
one should consider =¥ + y? = 2" as a curve X, ,, in a weighted P2.

Note that S,,, = X, ,,(Z) (modulo signs).

Xpqr is P with the points (0:1:1), (1:0:1), (1:-1:0)
replaced with 1/p, 1/q, 1/r times a point, respectively.
(Assuming p,q,r coprime in pairs.)

Then X — X, ., is unramified
and x is the Euler characteristic of X, .

This explains why one can do descent using .

We also find 2 — 2genus(X) = deg(m)y.



Overall Strategy for (2,3,7)

In our special case, X can be taken to be the Klein Quartic

X:23y+y3z2+232=0

Note that X = X (7) (the modular curve).

1. Find the relevant twists X; of X explicitly.
2. Find X;(Q) (or at least Y;(Q)).

Step 1 uses modular arguments
(plus a separate consideration for reducible 7-torsion).

Step 2 uses descent on the Jacobians of the Xj and Chabauty,
plus a Brauer-Manin obstruction argument for one curve
where Chabauty fails.



Step 1: Quick Overview

Given a solution a2+ b3 = ¢’, consider
E(a,b,c) : y2 = 5133 —I- 3bx — 2a.

The usual arguments show that £(,; ) is semistable outside {2,3}
and that, if B, )[7] is irreducible, E,,»[7] = E[7]
(up to quadratic twist) for £ out of a list of 13 elliptic curves.

By work of Kraus and Halberstadt,
we can write down explicit equations of twists Xg(7) and X;(7)
classifying E’ such that E'[7] = E[7].

A more direct argument produces several hundreds of twists
arising from the case when E,; »[7] is reducible.

For many of these curves, local considerations show Y;(Q) = 0.

We are left with just 10 twists X;.



The Twists

: 6:U3y -+ y3z -+ 2Br=0

32’y +yP2 4222 =0

: 3:U3y -+ 2y3z -+ 2Br=0

T3z 4+ 322y — Bzyz’ + 22— 24 =0

=233y — 22°2 4+ 6:1:2yz + 3xy> — 9xy?z + 3ry2? — 22 + 3y°2 —y2® =0
a* 4 223y + 32°y? + 22y> 4 18xy2? + 9y222 — 92 =0

 —33% — 6272 + 62%y° — 62%yz + 152222 — 4oy

— 6xyz° —4rz> 4+ 6y222 —6yz> =0

20 — 3y — 122%y? 4 32222 — 529> — 62y°%

+ 2223 — 2yt + 6932 4+ 3y222 +2y2z> =0

22 4+ Axdy — 4x32 — 32%y? — 622y + 62227

—ay> — 6xyz? — 2yt + 2u°2 — 3y%2° + 6y2> =0

L’y — a3z 4 3072 + 3wy®z + 3wyz® 4 3wz —y*

4+ 3z 4+ 3y%2%2 —12y2° + 32 =0



The

Points

We find the following rational points on these curves.

X1:(1:0:0),(0:1:0),(0:0:1),(1:-1:2)
X>:(1:0:0),(0:1:0),(0:0:1),(1:1:-1),(1:-2:-1)
X3:(1:0:0),(0:1:0),(0:0:1),(1:1:-1)
X4:(1:0:0),(0:1:0),(0:1:1)
X5:(1:0:0),(0:1:0),(0:0:1),(1:1:1)
X6:(0:1:0),(1:-1:0),{(0:1:1)[,|](0:1:-1)
X7:(0:1:0),/(0:0:1)[,|(0:1:1)
Xg:[(0:0:1)],(2:-1:0)
Xo:(0:0:1),(1:1:0)

X10:1(1:0:0)[,(1:1:0)

The boxed points lead to nontrivial primitive solutions.



Step 2: Overview

It remains to prove that there are no other points in X;(Q),
or at least in Y;(Q).

The only good and widely applicable way of doing this
is Chabauty’'s method.

Chabauty’s method works
when the rank of J;(Q) = Jac(X;)(Q) is less than 3.

So we first have to determine this rank
and find generators of a finite index subgroup of J;(Q).



2-Descent on Jj

For general plane quartics, descent is infeasible.

However, our curves are very special:
They are twists of X, so they have a large automorphism group:

Aut(X;) = Aut(X) = PSL(2,Fy7)
In fact, Xo37 = X;/Aut(X;) via ;.

This results in a special geometry.



A Feature of the Klein Quartic

C

The Klein Quartic



A Feature of the Klein Quartic

C

A flex point



A Feature of the Klein Quartic

C

A flex point with its tangent



A Feature of the Klein Quartic

C

We get another flex point!



A Feature of the Klein Quartic

In the end, we have a “flex triangle”



2-Descent: Structure of J;[2]

Let 7; (1 <7< 8) be the eight degree 3 divisors
corresponding to the flex triangles on Jj.

Lemma.
Let V =F,-1T1®---®F5,-15; this is a Galois module.
Consider

F, -2V 2, F,

where a(1l) =11 +---+Tg and f(a111 + -+ aglsg) = a1+ -+ as.
Then J;[2] = ker(8)/im(«) as a Galois module.

This is completely analogous to hyperelliptic genus 3 curves
(where the T; are replaced by the Weierstrass points).

Hence we can transfer the 2-descent method from hyperelliptic curves
to our Klein Quartic twists.



2-Descent: More detail

To carry out the 2-descent, we need a suitable function F on Xj.

Fix a basepoint % € X;(Q).
Fit a cubic F; through 3, + 271;.
Then div(F;) = 2T, + (3P, + R), where R is rational and independent of z.

Usually, all the 1; are conjugate. Assume this.
Set T'="T; and K = Q(T) the corresponding octic number field.
Then F = Fl/z?’ is defined over K and induces a homomorphism

F : J;j(Q)/2J;(Q) — ker(Ny g K*/(K*)*Q" = Q*/(Q*)?)
with kernel of order 2 generated by [R — 3]
and image contained in the subgroup unramified outside {2,3,7}.

We compute the 2-Selmer group in the usual way
and get a bound on the rank of J;(Q).



2-Descent and Chabauty: Results

Our 2-descent, applied to X, gives the following.

Proposition.
For all 1 < j <10, the subgroup of J;(Q) generated by divisors
supported in the known rational points has finite index.

We have (with r; =rank J;(Q))

?”1:7“2:7°3:1
7“4:7“6:T7:7°8:7”9:7“10:2
T5:3

Knowing this, we can use Chabauty on nine of the curves:

Proposition. For 1 <7 <10, j # 5, the listed points exhaust X;(Q).



The Last Curve

It remains to deal with the last curve:

X5 =223y — 2232 4+ 62°%yz + 3xy> — 9xy°z + 3vy2® — 222+ 3y —y2 =0

Here, we have

Ys(Q) ={P e Xs(Q):P=(0:1:0) mod 3,
P=((1:0:0)or(1:1:1)mod?2}

The known points in X5(Q),

(1:0:0), (0:1:0), (0:0:1), (1:1:1),

all violate one of the conditions.

Can we show that Y5(Q) is empty?



The Idea

We have J5(Q) = Z3. Let Py, P>, P3 be generators.
We have a map

L Xs(Q) 3 P [P-P)eJs(Q) =7 -PLaZ PaaZ-Ps.

So u(P) = 11(P) Py + 12o(P) P>+ 13(P) Ps.
Let us find conditions on these coefficents!

For a prime p, we can find finite groups G, such that

¢p : J5(Q) — J5(@p) — Gp

On the other hand, Y5(Q) — Y5(Qy) (= Xs5(Qp) if p#2,3)
maps to a certain subset S, C G).

Now  «(Y5(Q)) C (&, (Sy),
p

and ¢,(n1P1 +noP +n3P3) € 5, gives congruence conditions on ni, ny, ns.



Choosing Gy

We need to bring in the conditions at 2 and 3,
so we need to consider suitable GGo> and Gs.

Note that 2 and 3 are primes of bad reduction,
SO some work is required.

For additional p of good reduction,
we can simply take G, = Js(F,) or a quotient of it;
then S, = 1(X5(F,)) is the image of the points mod p.



How to get G3

We need to find the structure of J5(Q3).

To do this, we compute a minimal regular model of Xs over Zs.
The special fiber looks like this:

From this, we find &3 = Z/77;
we set Gz = d3 and get n; +3n3=1 mod 7.



How to get G-

The minimal regular model of Xs over Z-> has special fiber

2

From this, we find &, = Z/4Z x 7./ 47,
we set G = d5 and get n1 +n>=0mod 4 and n3 =0 or 1 mod 4.

We need some more primes
to “connect” this mod 7 and mod 4 information.



Auxiliary Primes

Besides

J5(Q2) — CDQ = Z/4Z X Z/4Z
Js(Q3) —» P33 =Z/TZ

we find

J5(Q13) —» J5(F13) —> Z/14Z
J5(Q03) — Js5(Fa3) — Z/27 x Z/4Z x T./4T x 7./ 47,
Js(Qo7) — J5(Fo7) — Z/147 x 7./ 147 x 7,/ 147

and computing the image of Xs5(IF,) in the group on the right,
we finally obtain contradictory conditions on ni,n»,n3 mod 14.

Proposition.
Y5(Q) is empty.



