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Quadratic Iteration

Let f(c, x) = x2 + c ∈ Z[c, x] and define

f0(c, x) = x , fn+1(c, x) = f(c, fn(c, x)) = (fn(c, x))2 + c .

(x0, x1, . . . , xN−1) ∈ QN is a rational N-cycle if there is c ∈ Q such that

x1 = f(c, x0) , x2 = f(c, x1) , . . . , xN−1 = f(c, xN−2)

and x0 = f(c, xN−1) ,

and x0, x1, . . . , xN−1 are pairwise distinct.

Question.

For which N ≥ 1 do there exist rational N-cycles?

Conjecture (Morton, Silverman).

Rational N-cycles do not exist for N large.



Dynamic Modular Curves

Pairs (c, x) such that the sequence
(
fn(c, x)

)
n≥0

has (not necessarily minimal) period N

correspond to points on the affine plane curve given by

fN(c, x)− x = 0 .

Dividing off shorter periods, we obtain

Y dyn
1 (N) : Φ∗N(c, x) :=

∏
d|N

(
fd(c, x)− x

)µ(N/d)
= 0 .

It can be shown that Y dyn
1 (N) is smooth and geometrically irreducible;

we denote by Xdyn
1 (N) its smooth projective model.

The points in Xdyn
1 (N) \ Y dyn

1 (N) are called cusps; all of them are rational.

Question, new version.

For which N are there non-cuspidal rational points on Xdyn
1 (N)?



Small N

It is easy to see that Xdyn
1 (1) and Xdyn

1 (2) are isomorphic to P1.

This is still true (but less obvious) for Xdyn
1 (3).

So there are lots of rational fixed points, 2- and 3-cycles.

The curve Xdyn
1 (4) has genus 2;

it turns out that it is isomorphic to X1(16),

and all its rational points are cusps.

So there are no rational 4-cycles (P. Morton 1998).

The genus of Xdyn
1 (N) grows very fast (N = 5→ 14, N = 6→ 34, . . . );

it is not feasible to work with these curves directly when N ≥ 5.



The Quotient Curve

Observe that (c, x) 7→ (c, x2 + c) induces an action of Z/NZ on Xdyn
1 (N);

we denote by Xdyn
0 (N) the quotient curve.

If we can find the rational points on Xdyn
0 (N),

we can determine Xdyn
1 (N)(Q)

and hence decide if there are rational N-cycles.

The curve Xdyn
0 (5) has genus 2.

Its Jacobian has Mordell-Weil rank 1,

and Chabauty’s method can be used to find Xdyn
0 (5)(Q).

The result implies that there are no rational 5-cycles

(Flynn-Poonen-Schaefer 1997).



The Case N = 6

The curve Xdyn
0 (6) is non-hyperelliptic of genus 4.

An affine equation in terms of c and the trace

t = x+ f(c, x) + f2(c, x) + · · ·+ f5(c, x)

is given by

256(t3 + t2 − t− 1)c3 + 16(9t5 + 7t4 + 10t3 + 30t2 − 19t− 37)c2

+ 8(3t7 + t6 + 2t5 + 2t4 − 17t3 + 69t2 + 52t− 48)c

+ t9 − t8 + 2t7 + 14t6 + 49t5 + 175t4 + 140t3 + 196t2 + 448t = 0

It has a smooth model in P1
u × P1

w given by

G(u,w) = w2(w+1)u3−(5w2+w+1)u2−w(w2−2w−7)u+(w+1)(w−3) = 0

where

c =
(−u3 − 2u2 + 5u− 10)uw − u4 + 3u3 + 8u2 − 10u+ 12

4u2(uw + u− 3)
, t =

2

u
− 1 .



The Points

We easily find the following ten rational points on C = Xdyn
0 (6).

u w t c

P0 0 ∞ ∞ ∞
P1 0 −1 ∞ ∞
P2 0 3 ∞ ∞
P3 ∞ 0 −1 ∞
P4 1 2 1 ∞

u w t c

P5 2 1 0 0

P6 1 ∞ 1 −2

P7 ∞ −1 −1 −2

P8 −1 ∞ −3 −4

P9 −4
5 −1 −7

2 −
71
48

P0, . . . , P4 are the images of the cusps on Xdyn
1 (6).

P5, . . . , P9 do not lift to rational points on Xdyn
1 (6).

P9 is the image of six points defined over Q(
√

33);

the fibers above the other points form single Galois orbits.

Goal. Show that C(Q) = {P0, P1, . . . , P9}!



A Subgroup of the Mordell-Weil Group

Let J be the Jacobian of C,

and we denote by Γ the subgroup of J(Q) generated by the [Pi − Pj].

Theorem.

• J(Q) is torsion-free.

• Γ ∼= Z3, and Γ is generated by divisors supported in {P0, P1, P2, P4}.

The first assertion follows from gcd
(
#J(F7),#J(F13)

)
= 1.

For the second assertion, we consider the homomorphism( 9⊕
j=0

ZPj
)0
−→ J(Q) −→

⊕
p∈{3,5,7,11,13}

J(Fp) .

We check that the small elements of its kernel give principal divisors;

the image shows that the rank is at least 3.



Points Mapping to G

We take P1 as base point for the embedding ι : C → J.

The saturation of the group Γ ⊂ J(Q) is

Γ̄ = {D ∈ J(Q) : nD ∈ Γ for some n ≥ 1} .

Theorem.

{P ∈ C(Q) : ι(P ) ∈ Γ̄} = {P0, P1, . . . , P9}

For the proof, we use the Chabauty-Coleman method.



Chabauty (1)

Let p be a prime number.

There is a pairing

Ω1
J(Qp)× J(Qp) −→ Qp , (ω,D) 7−→ 〈ω,D〉 =

∫ D
0
ω

which induces a perfect pairing of Qp-vector spaces

Ω1
J(Qp)×

(
J1(Qp)⊗Zp Qp

)
−→ Qp .

Since Γ has rank < 4 = dimQp
Ω1
J(Qp),

there is 0 6= ω ∈ Ω1
J(Qp) ∼= Ω1

C(Qp) with 〈ω, Γ̄〉 = 0.

We take p = 5 and find for the reduction mod 5 of ω that

ω̄ = w
du

∂
∂wG(u,w)

∈ Ω1
C(F5) .



Chabauty (2)

Theorem.

Let P ∈ C(F5) such that vP (ω̄) ≤ 2.

Then #{P ′ ∈ C(Q) : P̄ ′ = P, ι(P ′) ∈ Γ̄} ≤ vP (ω̄) + 1.

Here, {P0, . . . , P9} surjects onto C(F5), and

• vP̄j
(ω̄) = 0 for j 6= 3,7,9;

• vP̄7
(ω̄) = 1 and P̄7 = P̄9.

So a point P ∈ C(Q) \ {P0, . . . , P9} with ι(P ) ∈ Γ̄ must satisfy P̄ = P̄3.

Computation ⇒ P 7→ 〈ω, ι(P )〉 has only one zero on this residue class.

This finishes the proof of the theorem.



A Sufficient Condition

Recall the Theorem we proved:

{P ∈ C(Q) : ι(P ) ∈ Γ̄} = {P0, P1, . . . , P9}

Therefore, Γ̄ = J(Q) implies that C(Q) = {P0, . . . , P9}
and then that there are no rational 6-cycles.

For this it is sufficient (and necessary) that rank J(Q) ≤ 3.

So we need an upper bound for the Mordell-Weil rank.

The usual approach (2-descent) appears to be infeasible.

We use the BSD rank conjecture instead.



The L-Series (1)

We want to compute L′′′(J,1) (and verify it is nonzero).

We assume that L(J, s) extends to an entire function

and satisfies the usual functional equation.

We need to know the conductor and the bad Euler factors.

The only primes of bad reduction for C are 2 and 8 029 187.

At 8 029 187, our model is regular and has only a node.

At 2, we compute a regular model. We obtain:

• The conductor is 22 · 8 029 187;

• the Euler factor at 2 is (1 + T )2(1 + T + 2T2)2.



The L-Series (2)

Since the conductor is not too large,

we can compute enough coefficients of L(J, s)

to find L′′′(J,1) to reasonable precision.

We check numerically that the functional equation (with sign −1) is OK.

We then use Tim Dokchitser’s package to evaluate

L′′′(J,1) ≈ 0.83601 . . . 6= 0 .

We see that the BSD rank conjecture for J implies that Γ̄ = J(Q).



Conclusion

Theorem.

If the L-series of J extends to an entire function

and satisfies the usual functional equation,

and if the BSD rank conjecture holds for J,

then there are no rational 6-cycles.



Remarks

The approach used here for finding C(Q) is applicable when

• we can find generators of a finite index subgroup of J(Q);

• rank J(Q) < g(C), the genus of C;

• the conductor is not too large.

Given the first two conditions, we can use Chabauty’s method,

perhaps combined with a Mordell-Weil sieve,

to find the rational points on the curve.

The third condition allows us to verify the first condition,

assuming the BSD rank conjecture for J.



What About N = 7?

If we attempt to extend our approach to rational 7-cycles,

we run into a number of difficulties —

• Xdyn
0 (7) has genus 16;

• Xdyn
0 (7) has bad reduction at

p = 84562 62122 13597 75358 18884 16725 49561

(and perhaps at 2).

The first implies that computations will be rather involved,

the second implies that the conductor is too large.
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