

Rational Six-Cycles Under Quadratic Iteration

Michael Stoll Universität Bayreuth

GTEM 3rd annual meeting, University of Warwick September 8, 2009

Quadratic Iteration

Let $f(c, x) = x^2 + c \in \mathbb{Z}[c, x]$ and define

$$
f^{0}(c,x) = x, \qquad f^{n+1}(c,x) = f(c, f^{n}(c,x)) = (f^{n}(c,x))^{2} + c.
$$

 $(x_0, x_1, \ldots, x_{N-1}) \in \mathbb{Q}^N$ is a rational N-cycle if there is $c \in \mathbb{Q}$ such that

$$
x_1 = f(c, x_0),
$$
 $x_2 = f(c, x_1),$..., $x_{N-1} = f(c, x_{N-2})$
and $x_0 = f(c, x_{N-1}),$

and $x_0, x_1, \ldots, x_{N-1}$ are pairwise distinct.

Question.

For which $N > 1$ do there exist rational N-cycles?

Conjecture (Morton, Silverman).

Rational N-cycles do not exist for N large.

Dynamic Modular Curves

Pairs (c, x) such that the sequence $\big(f^n(c, x)\big)$ $n \geq 0$ has (not necessarily minimal) period N correspond to points on the affine plane curve given by

$$
f^N(c,x)-x=0.
$$

Dividing off shorter periods, we obtain

$$
Y_1^{\text{dyn}}(N): \Phi_N^*(c, x) := \prod_{d|N} \left(f^d(c, x) - x \right)^{\mu(N/d)} = 0 \, .
$$

It can be shown that $Y_1^{\sf dyn}$ $\mathcal{I}^{\text{dyn}}_1(N)$ is smooth and geometrically irreducible; we denote by X^{dyn}_{1} $1^{(\text{dyn})}$ its smooth projective model. The points in X_1^{dyn} $\frac{\mathrm{d} \mathsf{y} \mathsf{n}}{1}(N) \setminus Y^{\mathsf{dyn}}_1$ $\chi_1^{\rm dyn}(N)$ are called cusps; all of them are rational.

Question, new version.

For which N are there non-cuspidal rational points on X_1^{dyn} $\frac{1}{1}$ (N)?

Small N

It is easy to see that X_1^{dyn} $_1^{\text{dyn}}(1)$ and X_1^{dyn} $1^{\text{dyn}}(2)$ are isomorphic to \mathbb{P}^1 . This is still true (but less obvious) for X_1^{dyn} $\frac{dy_1}{1}(3)$. So there are lots of rational fixed points, 2- and 3-cycles.

The curve X_1^{dyn} $1^{\text{dyn}}(4)$ has genus 2; it turns out that it is isomorphic to $X_1(16)$, and all its rational points are cusps. So there are no rational 4-cycles (P. Morton 1998).

The genus of X_1^{dyn} $1^{\text{dyn}}(N)$ grows very fast $(N = 5 \rightarrow 14, N = 6 \rightarrow 34, \ldots);$ it is not feasible to work with these curves directly when $N \geq 5$.

The Quotient Curve

Observe that $(c, x) \mapsto (c, x^2 + c)$ induces an action of $\mathbb{Z}/N\mathbb{Z}$ on X_1^{dyn} $1^{\text{Qy1}}(N);$ we denote by $X^{\mathrm{dyn}}_{\mathrm{O}}$ $\binom{dyn}{0}(N)$ the quotient curve.

If we can find the rational points on X^{dyn}_{Ω} $0^{\text{Qyri}}(N)$, we can determine X_1^{dyn} $_1^{\text{dyn}}(N)$ (\mathbb{Q}) and hence decide if there are rational N-cycles.

The curve X_0^{dyn} $_0^{\text{dyn}}(5)$ has genus 2. Its Jacobian has Mordell-Weil rank 1, and Chabauty's method can be used to find X_0^{dyn} $_0^{\text{dyn}}(5)(\mathbb{Q}).$ The result implies that there are no rational 5-cycles (Flynn-Poonen-Schaefer 1997).

The Case $N = 6$

The curve X_0^{dyn} 0^{0} ^O (6) is non-hyperelliptic of genus 4. An affine equation in terms of c and the trace

$$
t = x + f(c, x) + f^{2}(c, x) + \dots + f^{5}(c, x)
$$

is given by

$$
256(t3 + t2 - t - 1)c3 + 16(9t5 + 7t4 + 10t3 + 30t2 - 19t - 37)c2
$$

+ 8(3t⁷ + t⁶ + 2t⁵ + 2t⁴ - 17t³ + 69t² + 52t - 48)c
+ t⁹ - t⁸ + 2t⁷ + 14t⁶ + 49t⁵ + 175t⁴ + 140t³ + 196t² + 448t = 0

It has a smooth model in $\mathbb{P}^1_u \times \mathbb{P}^1_w$ given by

$$
G(u, w) = w2(w+1)u3 - (5w2+w+1)u2 - w(w2-2w-7)u + (w+1)(w-3) = 0
$$

where

$$
c = \frac{(-u^3 - 2u^2 + 5u - 10)uw - u^4 + 3u^3 + 8u^2 - 10u + 12}{4u^2(uw + u - 3)}, \quad t = \frac{2}{u} - 1.
$$

The Points

We easily find the following ten rational points on $C=X_0^{\text{dyn}}$ $_{0}^{0}$ ^{y₁₁}(6).

 P_0, \ldots, P_4 are the images of the cusps on X_1^{dyn} $\frac{q}{1}$ (6). P_5, \ldots, P_9 do not lift to rational points on $\tilde{X_1^\text{dyn}}$ $\frac{dy_1}{1}(6)$. P_9 is the image of six points defined over $\mathbb{Q}(\sqrt{33})$; √ the fibers above the other points form single Galois orbits.

Goal. Show that $C(\mathbb{Q}) = \{P_0, P_1, \ldots, P_9\}!$

A Subgroup of the Mordell-Weil Group

Let J be the Jacobian of C ,

and we denote by Γ the subgroup of $J({\mathbb Q})$ generated by the $[P_i-P_j].$

Theorem.

- \bullet $J(Q)$ is torsion-free.
- $\Gamma \cong \mathbb{Z}^3$, and Γ is generated by divisors supported in $\{P_0, P_1, P_2, P_4\}$.

The first assertion follows from gcd $\left(\#J(\mathbb{F}_{7}),\#J(\mathbb{F}_{13})\right)=1.$ For the second assertion, we consider the homomorphism

$$
\left(\bigoplus_{j=0}^{9} \mathbb{Z}P_j\right)^0 \longrightarrow J(\mathbb{Q}) \longrightarrow \bigoplus_{p \in \{3,5,7,11,13\}} J(\mathbb{F}_p).
$$

We check that the small elements of its kernel give principal divisors; the image shows that the rank is at least 3.

Points Mapping to G

We take P_1 as base point for the embedding $\iota: C \to J$.

The saturation of the group $\Gamma \subset J(\mathbb{Q})$ is

 $\bar{\Gamma} = \{D \in J(\mathbb{Q}) : nD \in \Gamma \text{ for some } n \geq 1\}.$

Theorem.

$$
\{P \in C(\mathbb{Q}) : \iota(P) \in \bar{\Gamma}\} = \{P_0, P_1, \dots, P_9\}
$$

For the proof, we use the Chabauty-Coleman method.

Chabauty (1)

Let p be a prime number. There is a pairing

$$
\Omega_J^1(\mathbb{Q}_p)\times J(\mathbb{Q}_p)\longrightarrow \mathbb{Q}_p\,,\quad (\omega,D)\longmapsto \langle \omega,D\rangle=\int_0^D\omega
$$

which induces a perfect pairing of \mathbb{Q}_p -vector spaces

$$
\Omega^1_J(\mathbb{Q}_p)\times\left(J_1(\mathbb{Q}_p)\otimes_{\mathbb{Z}_p}\mathbb{Q}_p\right)\longrightarrow \mathbb{Q}_p\,.
$$

Since Γ has rank $<$ 4 $=$ dim $_{\mathbb{Q}_p}\Omega_J^1(\mathbb{Q}_p)$, there is $0\neq \omega\in \Omega^1_J({\mathbb Q}_p)\cong \Omega^{\overline{1}}_C({\mathbb Q}_p)$ with $\langle \omega, \bar\Gamma \rangle=0.$

We take $p = 5$ and find for the reduction mod 5 of ω that

$$
\bar{\omega} = w \frac{du}{\frac{\partial}{\partial w} G(u, w)} \in \Omega_C^1(\mathbb{F}_5).
$$

Chabauty (2)

Theorem.

Let $P \in C(\mathbb{F}_5)$ such that $v_P(\bar{\omega}) \leq 2$. Then $0' \in C(\mathbb{Q}) : \bar{P}' = P, \iota(P') \in \bar{\mathsf{\Gamma}}\} \leq v_P(\bar{\omega}) + 1.$

Here, $\{P_0, \ldots, P_9\}$ surjects onto $C(\mathbb{F}_5)$, and

- $\bullet \ \ v_{\bar{P}_j}(\bar{\omega}) = 0 \text{ for } j \neq 3,7,9;$
- $v_{\bar{P}_7}(\bar{\omega}) = 1$ and $\bar{P}_7 = \bar{P}_9$.

So a point $P \in C(\mathbb{Q}) \setminus \{P_0, \ldots, P_9\}$ with $\iota(P) \in \overline{\Gamma}$ must satisfy $\overline{P} = \overline{P}_3$. Computation $\Rightarrow P \mapsto \langle \omega, \iota(P) \rangle$ has only one zero on this residue class.

This finishes the proof of the theorem.

A Sufficient Condition

Recall the Theorem we proved:

$$
\{P \in C(\mathbb{Q}) : \iota(P) \in \overline{\Gamma}\} = \{P_0, P_1, \ldots, P_9\}
$$

Therefore, $\bar{\Gamma} = J(\mathbb{Q})$ implies that $C(\mathbb{Q}) = \{P_0, \ldots, P_9\}$ and then that there are no rational 6-cycles.

For this it is sufficient (and necessary) that rank $J(\mathbb{Q}) \leq 3$.

So we need an upper bound for the Mordell-Weil rank. The usual approach (2-descent) appears to be infeasible. We use the BSD rank conjecture instead.

The L-Series (1)

We want to compute $L'''(J, 1)$ (and verify it is nonzero).

We assume that $L(J, s)$ extends to an entire function and satisfies the usual functional equation.

We need to know the conductor and the bad Fuler factors.

The only primes of bad reduction for C are 2 and 8029187. At 8 029 187, our model is regular and has only a node. At 2, we compute a regular model. We obtain:

- The conductor is $2^2 \cdot 8029187$;
- the Euler factor at 2 is $(1 + T)^2 (1 + T + 2T^2)^2$.

The L-Series (2)

Since the conductor is not too large, we can compute enough coefficients of $L(J, s)$ to find $L'''(J, 1)$ to reasonable precision.

We check numerically that the functional equation (with sign -1) is OK.

We then use Tim Dokchitser's package to evaluate

 $L'''(J, 1) \approx 0.83601\ldots \neq 0$.

We see that the BSD rank conjecture for J implies that $\bar{\Gamma} = J(\mathbb{Q})$.

Conclusion

Theorem.

If the L-series of J extends to an entire function and satisfies the usual functional equation, and if the BSD rank conjecture holds for J , then there are no rational 6-cycles.

Remarks

The approach used here for finding $C(\mathbb{Q})$ is applicable when

- we can find generators of a finite index subgroup of $J(Q)$;
- rank $J(Q) < g(C)$, the genus of C;
- the conductor is not too large.

Given the first two conditions, we can use Chabauty's method, perhaps combined with a Mordell-Weil sieve, to find the rational points on the curve.

The third condition allows us to verify the first condition, assuming the BSD rank conjecture for J.

What About $N = 7$?

If we attempt to extend our approach to rational 7-cycles, we run into a number of difficulties —

- \bullet X_0 ^{dyn} $_0^{\rm dyn}(7)$ has genus 16;
- X_0^{dyn} $_0^{\rm dyn}(7)$ has bad reduction at

 $p = 84562621221359775358188841672549561$ (and perhaps at 2).

The first implies that computations will be rather involved, the second implies that the conductor is too large.

Reference

M. Stoll, Rational 6-cycles under iteration of quadratic maps, LMS J. Comput. Math. 11 (2008), 367–380.