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Motivation

Say, we would like to solve the Generalized Fermat Equation
X +y5 =z,

Proposition (Dahmen & Siksek 2014).
Let p be an odd prime. If the only rational points on the curve

Cp: 5y? = 4xP + 1

are the obvious ones (namely, co and (1,+1)),
then the only primitive integral solutions of x° + y° = zP
are the trivial ones.

(Dahmen and Siksek show this for p=7 and p =19
and deal with p=11 and p =13 in another way, assuming GRH.)
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So we would like to show that  Cy7(Q) ={oo, (1,£1)}.

Let J;7 be the Jacobian of Cy7.

We compute its 2-Selmer group  Sel, |17 = (Z/27)?.

Since J17(Q)[2] =0, this gives  rank];7(Q) < 2.

We know the point [(1,1) — o] Of infinite order, so  rank];7(Q) > 1T,
and (assuming finiteness of III) therefore rank];7(Q) = 2.

But we are unable to find another independent point,
SO we cannot proceed with Chabauty’'s method.

What can we do now?

Idea: Use method of Poonen-Stoll for concrete curves
(but without integration).
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Py € C(Q), gives embedding i: C — J;

' C J(Q) a subgroup with saturation T;

p a prime number; X C C(Qyp), e.9., a residue disk.
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C/Q nice curve with Jacobian J;

Py € C(Q), gives embedding i: C — J;

' C J(Q) a subgroup with saturation T;

p a prime number; X C C(Qyp), e.9., a residue disk.

For P c J(Qyp) set

q(P) = {mp(Q) : Q € J(Qp),In > 0: p"Q =P} C

and for § C J(Qp) set q(S U q(P
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Proposition.
If (1) kero C ént(I') and (2) q(X+T)Nimo C ('), then C(Q)NX C i—1(T).

Sketch of Proof. Let Pe C(Q)NnX.

(i) Claim: yn > 0dTL € Qn € J(Q): i(P) = Ty + p"OQn.

n=0: OK. n—=n+1: mp(Qn) = 0dn(Qn) € q(X+T)Nimo (é) Tp (') = odm(T),
SO Qn €T+ ker(odm) (é) '+ pJ(Q), which leads to T, 1 and Q1.
(i) W: J(Q) — J(Q)/T free; ¥n > 0: $(i(P)) = p™b(Qn), O W(i(P)) = 0.



Method

Proposition.
If (1) kero C o7t(I") and (2) q(X+T)Nimo C mp(l), then C(Q)NX C i—1(1).

Corollary.
If Py € X, X is contained in (half) a residue disk,

ker o € 5n(J(Q)[p™)) and q(X + J(Q)[p™]) Nim o C 7, (J(Q)[p™]), then
C(Q) N X = {Py}.
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Odd hyperelliptic curves

We want to turn this into an algorithm
when p =2 and C is a hyperelliptic curve of odd degree.

e ¢ is locally constant in an explicit way.

e TO compute q, need to halve points in J(Q,).
This can be done explicitly.

e If C is given as yz = f(x) and L = QI[x]/(f), then have compatible maps

. J(Q) O . J(Q3)
w: J(Q) — m — L=, uy: J(Q2) — 21(Qy)

where L, = L®g Q, and R- = R*/(R¥)2.

— 15, mniY-oLy

e Can compute Sel, C and Sel, ] as a subset and subgroup of LH.

e So work with LY and LY instead of J(Q)/2](Q) and J(Q;)/2](Q3).
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Compute Sel, C c Sel, ] c LF.

If ker(r)NnSel | ¢ w(J(Q)[2°°]), then return FAIL.

Search for rational points on C; this gives C(Q)known-
Let X' be a partition of C(Q,) into (half) residue disks X.

. Set R=1,(J(Q)2)) c LY.
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he Algorithm

. Compute Sel, C c Sel, ] c LH.
If ker(r)NnSel | ¢ w(J(Q)[2°°]), then return FAIL.
. Search for rational points on C; this gives C(Q)known-

Let X' be a partition of C(Q,) into (half) residue disks X.

. Set R=1,(J(Q)2)) c LY.

For each X € X, do:

if 1(X)Nr(Sel, C)# 0 then return FAIL, else continue with next X.

b. Pick Py € XN C(Q)known and compute Y = uz(q(ipO(X) + J(Q)[2°°]))
c. If YNnr(Sel,]) £ R then return FAIL.

. Return C(Q)known-



he Algorithm

. Compute Sel, C c Sel, ] c LH.

If ker(r)NnSel | ¢ w(J(Q)[2°°]), then return FAIL.

. Search for rational points on C; this gives C(Q)known-
Let X' be a partition of C(Q,) into (half) residue disks X.
. Set R=1,(J(Q)2)) c LY.

For each X € X, do:

if 1(X)Nr(Sel, C)# 0 then return FAIL, else continue with next X.

b. Pick Py € XN C(Q)known and compute Y = uz(q(ipO(X) + J(Q)[2°°]))
c. If YNnr(Sel,]) £ R then return FAIL.

_Ch(J‘I_-bool\)l—l

Remark. Can leave out 2-adic condition for Sel,]J.
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Applications

(1) 5y% =4xP 4+ 1:
Obtain a three-element set Z C QZ(W)D that r(Sel; Jp) has to avoid,
also check that r|5e|2]p IS injective. This gives

Theorem.
X2 4+1y° = zP has only trivial solutions for p < 53 (under GRH for p > 23).

(2) Similar application to FLT (via y? =4xP +1).
(3) The set of integral points on Y2—Y = X?! — X is {—1,0,1} x {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on
y? = 81x'% +420x7 + 1380x% + 1860x” + 3060x° — 66x> + 3240x* — 1740x3 + 1320x? — 480x + 69
are the two points at infinity.

(Note: g=rank J(Q) =4.)

(5) More to come!
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