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Motivation

Say, we would like to solve the Generalized Fermat Equation

x5 + y5 = z17 .

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

Cp : 5y
2 = 4xp + 1

are the obvious ones (namely, ∞ and (1,±1)),

then the only primitive integral solutions of x5 + y5 = zp

are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19

and deal with p = 11 and p = 13 in another way, assuming GRH.)
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Motivation

So we would like to show that C17(Q) = {∞, (1,±1)}.
Let J17 be the Jacobian of C17.

We compute its 2-Selmer group Sel2 J17
∼= (Z/2Z)2.

Since J17(Q)[2] = 0, this gives rankJ17(Q) ≤ 2.
We know the point [(1, 1) −∞] of infinite order, so rankJ17(Q) ≥ 1,
and (assuming finiteness of X) therefore rankJ17(Q) = 2.

But we are unable to find another independent point,

so we cannot proceed with Chabauty’s method.

What can we do now?

Idea: Use method of Poonen-Stoll for concrete curves

(but without integration).
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Method

More general setting:

C/Q nice curve with Jacobian J;

P0 ∈ C(Q), gives embedding i : C ↪→ J;

Γ ⊂ J(Q) a subgroup with saturation Γ̄ ;

p a prime number; X ⊂ C(Qp), e.g., a residue disk.

For P ∈ J(Qp) set

q(P) =
{
πp(Q) : Q ∈ J(Qp), ∃n ≥ 0 : pnQ = P

}
⊂
J(Qp)
pJ(Qp)

and for S ⊂ J(Qp) set q(S) =
⋃
P∈S

q(P).
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Method

C(Q) ∩ X � � //

� _

��

C(Q) �
� i //

� _

��

J(Q) π // //

� _

��

J(Q)
pJ(Q)

� � δ //

��

Selp J
σ
xx

X � � // C(Qp) � � i // J(Qp)
πp

// //
J(Qp)
pJ(Qp)

Proposition.

If (1) ker σ ⊂ δπ(Γ) and (2) q(X+ Γ) ∩ imσ ⊂ πp(Γ), then C(Q) ∩ X ⊂ i−1(Γ̄).

Sketch of Proof. Let P ∈ C(Q) ∩ X.

(i) Claim: ∀n ≥ 0 ∃Tn ∈ Γ,Qn ∈ J(Q) : i(P) = Tn + pnQn.

n = 0: OK. n→ n+ 1: πp(Qn) = σδπ(Qn) ∈ q(X+ Γ) ∩ imσ
(2)
⊂ πp(Γ) = σδπ(Γ),

so Qn ∈ Γ + ker(σδπ)
(1)
⊂ Γ + pJ(Q), which leads to Tn+1 and Qn+1.

(ii) ψ : J(Q)→ J(Q)/Γ̄ free; ∀n ≥ 0 : ψ(i(P)) = pnψ(Qn), so ψ(i(P)) = 0. 2
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Corollary.

If P0 ∈ X, X is contained in (half) a residue disk,

ker σ ⊂ δπ(J(Q)[p∞]) and q(X+ J(Q)[p∞]) ∩ im σ ⊂ πp(J(Q)[p∞]), then

C(Q) ∩ X = {P0} .



Odd hyperelliptic curves

We want to turn this into an algorithm

when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

• To compute q, need to halve points in J(Q2).
This can be done explicitly.

• If C is given as y2 = f(x) and L = Q[x]/〈f〉, then have compatible maps

µ : J(Q)→ J(Q)

2J(Q)
↪→ L�, µ2 : J(Q2)→ J(Q2)

2J(Q2)
↪→ L�2 , r : L� → L�2 ,

where L2 = L⊗Q Q2 and R� = R×/(R×)2.

• Can compute Sel2C and Sel2 J as a subset and subgroup of L�.

• So work with L� and L�2 instead of J(Q)/2J(Q) and J(Q2)/2J(Q2).
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The Algorithm

1. Compute Sel2C ⊂ Sel2 J ⊂ L�.

2. If ker(r) ∩ Sel2 J 6⊂ µ(J(Q)[2∞]), then return FAIL.

3. Search for rational points on C; this gives C(Q)known.

4. Let X be a partition of C(Q2) into (half) residue disks X.

5. Set R = µ2(J(Q)[2∞]) ⊂ L�2 .

6. For each X ∈ X , do:

a. If X ∩ C(Q)known = ∅:
if µ2(X) ∩ r(Sel2C) 6= ∅ then return FAIL, else continue with next X.

b. Pick P0 ∈ X ∩ C(Q)known and compute Y = µ2(q(iP0(X) + J(Q)[2∞]))

c. If Y ∩ r(Sel2 J) 6⊂ R then return FAIL.

7. Return C(Q)known.

Remark. Can leave out 2-adic condition for Sel2 J.
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Applications

(1) 5y2 = 4xp + 1:

Obtain a three-element set Z ⊂ Q2(
p
√
2)� that r(Sel2 Jp) has to avoid;

also check that r|Sel2 Jp is injective. This gives

Theorem.

x5 + y5 = zp has only trivial solutions for p ≤ 53 (under GRH for p ≥ 23).

(2) Similar application to FLT (via y2 = 4xp + 1).

(3) The set of integral points on Y2 − Y = X21 − X is {−1, 0, 1}× {0, 1}.

(4) Elliptic curve Chabauty variant proves that the only rational points on

y2 = 81x10 + 420x9 + 1380x8 + 1860x7 + 3060x6 − 66x5 + 3240x4 − 1740x3 + 1320x2 − 480x+ 69

are the two points at infinity.

(Note: g = rank J(Q) = 4.)

(5) More to come!
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Thank You!


