

Chabauty without the Mordell-Weil group

Michael Stoll Universität Bayreuth

Rational Points 2015

Schney June 29, 2015

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

$$C_p: 5y^2 = 4x^p + 1$$

are the obvious ones (namely, ∞ and $(1,\pm 1)$), then the only primitive integral solutions of $x^5 + y^5 = z^p$ are the trivial ones.

Say, we would like to solve the Generalized Fermat Equation

 $x^5 + y^5 = z^{17}$.

Proposition (Dahmen & Siksek 2014).

Let p be an odd prime. If the only rational points on the curve

$$C_p: 5y^2 = 4x^p + 1$$

are the obvious ones (namely, ∞ and $(1,\pm 1)$), then the only primitive integral solutions of $x^5 + y^5 = z^p$ are the trivial ones.

(Dahmen and Siksek show this for p = 7 and p = 19and deal with p = 11 and p = 13 in another way, assuming GRH.)

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

Let J_{17} be the Jacobian of C_{17} . We compute its 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of III) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

Let J_{17} be the Jacobian of C_{17} . We compute its 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of III) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

Let J_{17} be the Jacobian of C_{17} . We compute its 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of III) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

What can we do now?

So we would like to show that $C_{17}(\mathbb{Q}) = \{\infty, (1, \pm 1)\}.$

Let J_{17} be the Jacobian of C_{17} . We compute its 2-Selmer group $Sel_2 J_{17} \cong (\mathbb{Z}/2\mathbb{Z})^2$. Since $J_{17}(\mathbb{Q})[2] = 0$, this gives $\operatorname{rank} J_{17}(\mathbb{Q}) \leq 2$. We know the point $[(1,1) - \infty]$ of infinite order, so $\operatorname{rank} J_{17}(\mathbb{Q}) \geq 1$, and (assuming finiteness of III) therefore $\operatorname{rank} J_{17}(\mathbb{Q}) = 2$.

But we are unable to find another independent point, so we cannot proceed with Chabauty's method.

What can we do now?

Idea: Use method of Poonen-Stoll for concrete curves (but without integration).

More general setting:

 $\begin{array}{l} C/\mathbb{Q} \mbox{ nice curve with Jacobian J;} \\ P_0 \in C(\mathbb{Q}), \mbox{ gives embedding } i \colon C \hookrightarrow J; \\ \Gamma \subset J(\mathbb{Q}) \mbox{ a subgroup with saturation } \overline{\Gamma}; \\ p \mbox{ a prime number; } X \subset C(\mathbb{Q}_p), \mbox{ e.g., a residue disk.} \end{array}$

More general setting:

 $\begin{array}{l} C/\mathbb{Q} \mbox{ nice curve with Jacobian }J;\\ P_0\in C(\mathbb{Q}),\mbox{ gives embedding }i\colon C\hookrightarrow J;\\ \Gamma\subset J(\mathbb{Q})\mbox{ a subgroup with saturation }\overline{\Gamma};\\ p\mbox{ a prime number; } X\subset C(\mathbb{Q}_p),\mbox{ e.g., a residue disk.} \end{array}$

For $P\in J(\mathbb{Q}_p)$ set

$$\begin{split} \textbf{q}(\textbf{P}) &= \left\{ \pi_p(Q) : Q \in J(\mathbb{Q}_p), \exists n \geq 0 \colon p^n Q = \textbf{P} \right\} \subset \frac{J(\mathbb{Q}_p)}{pJ(\mathbb{Q}_p)} \\ \text{and for } S \subset J(\mathbb{Q}_p) \text{ set } \textbf{q}(S) = \bigcup_{P \in S} \textbf{q}(P). \end{split}$$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\overline{\Gamma})$.

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\overline{\Gamma})$.

Sketch of Proof. Let $\mathbf{P} \in C(\mathbb{Q}) \cap X$.

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$.

Sketch of Proof. Let $P \in C(\mathbb{Q}) \cap X$. (i) Claim: $\forall n \ge 0 \exists T_n \in \Gamma, Q_n \in J(\mathbb{Q}) : i(P) = T_n + p^n Q_n$.

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\overline{\Gamma})$.

 $\begin{array}{lll} & \text{Sketch of Proof.} & \text{Let } P \in C(\mathbb{Q}) \cap X. \\ (i) \mbox{ Claim: } \forall n \geq 0 \ \exists T_n \in \Gamma, Q_n \in J(\mathbb{Q}) \colon \mathfrak{i}(P) = T_n + p^n Q_n. \\ & n = 0 \colon \mbox{ OK.} \end{array}$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$.

 $\begin{array}{ll} \text{Sketch of Proof.} & \text{Let } P \in C(\mathbb{Q}) \cap X. \\ \text{(i) Claim: } \forall n \geq 0 \ \exists T_n \in \Gamma, Q_n \in J(\mathbb{Q}) \colon \mathbf{i}(P) = T_n + p^n Q_n. \\ n = 0 \colon \text{OK. } n \to n+1 \colon \pi_p(Q_n) = \sigma \delta \pi(Q_n) \in q(X + \Gamma) \cap \text{im} \sigma \overset{(2)}{\subset} \pi_p(\Gamma) = \sigma \delta \pi(\Gamma), \end{array}$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset i^{-1}(\overline{\Gamma})$.

 $\begin{array}{ll} \text{Sketch of Proof.} & \text{Let } P \in C(\mathbb{Q}) \cap X. \\ \text{(i) Claim: } \forall n \geq 0 \ \exists T_n \in \Gamma, Q_n \in J(\mathbb{Q}) \colon \mathbf{i}(P) = T_n + p^n Q_n. \\ n = 0 \colon \text{OK. } n \to n+1 \colon \pi_p(Q_n) = \sigma \delta \pi(Q_n) \in q(X+\Gamma) \cap \text{im} \sigma \overset{(2)}{\subset} \pi_p(\Gamma) = \sigma \delta \pi(\Gamma), \\ \text{so } Q_n \in \Gamma + \ker(\sigma \delta \pi) \overset{(1)}{\subset} \Gamma + p J(\mathbb{Q}), \text{ which leads to } T_{n+1} \text{ and } Q_{n+1}. \end{array}$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\overline{\Gamma})$.

 $\begin{array}{ll} \text{Sketch of Proof.} & \text{Let } P \in C(\mathbb{Q}) \cap X. \\ (i) \mbox{ Claim: } \forall n \geq 0 \ \exists T_n \in \Gamma, Q_n \in J(\mathbb{Q}) \colon i(P) = T_n + p^n Q_n. \\ n = 0 \colon OK. \ n \to n+1 \colon \pi_p(Q_n) = \sigma \delta \pi(Q_n) \in q(X+\Gamma) \cap im\sigma \overset{(2)}{\subset} \pi_p(\Gamma) = \sigma \delta \pi(\Gamma), \\ \text{so } Q_n \in \Gamma + \ker(\sigma \delta \pi) \overset{(1)}{\subset} \Gamma + p J(\mathbb{Q}), \ \text{which leads to } T_{n+1} \ \text{and } Q_{n+1}. \\ (ii) \ \psi \colon J(\mathbb{Q}) \to J(\mathbb{Q})/\overline{\Gamma} \ \text{free; } \forall n \geq 0 \colon \psi(i(P)) = p^n \psi(Q_n), \ \text{so } \psi(i(P)) = 0. \end{array}$

Proposition.

If (1) ker $\sigma \subset \delta \pi(\Gamma)$ and (2) $q(X + \Gamma) \cap im\sigma \subset \pi_p(\Gamma)$, then $C(\mathbb{Q}) \cap X \subset \mathfrak{i}^{-1}(\overline{\Gamma})$.

Corollary.

If $P_0 \in X$, X is contained in (half) a residue disk, ker $\sigma \subset \delta \pi(J(\mathbb{Q})[p^{\infty}])$ and $q(X + J(\mathbb{Q})[p^{\infty}]) \cap \text{im } \sigma \subset \pi_p(J(\mathbb{Q})[p^{\infty}])$, then

 $C(\mathbb{Q}) \cap X = \{P_0\}.$

We want to turn this into an algorithm when p = 2 and C is a hyperelliptic curve of odd degree.

• q is locally constant in an explicit way.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu: J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}$, $\mu_2: J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}$, $r: L^{\Box} \to L_2^{\Box}$, where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu: J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}, \quad \mu_2: J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}, \quad r: L^{\Box} \to L_2^{\Box},$ where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.
- Can compute $\operatorname{Sel}_2 C$ and $\operatorname{Sel}_2 J$ as a subset and subgroup of L^{\square} .

- q is locally constant in an explicit way.
- To compute q, need to halve points in $J(\mathbb{Q}_2)$. This can be done explicitly.
- If C is given as $y^2 = f(x)$ and $L = \mathbb{Q}[x]/\langle f \rangle$, then have compatible maps $\mu: J(\mathbb{Q}) \to \frac{J(\mathbb{Q})}{2J(\mathbb{Q})} \hookrightarrow L^{\Box}, \quad \mu_2: J(\mathbb{Q}_2) \to \frac{J(\mathbb{Q}_2)}{2J(\mathbb{Q}_2)} \hookrightarrow L_2^{\Box}, \quad r: L^{\Box} \to L_2^{\Box},$ where $L_2 = L \otimes_{\mathbb{Q}} \mathbb{Q}_2$ and $R^{\Box} = R^{\times}/(R^{\times})^2$.
- Can compute $\operatorname{Sel}_2 C$ and $\operatorname{Sel}_2 J$ as a subset and subgroup of L^{\sqcup} .
- So work with L^{\square} and L_2^{\square} instead of $J(\mathbb{Q})/2J(\mathbb{Q})$ and $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\Box}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$:

if $\mu_2(X) \cap r(\operatorname{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$:

if $\mu_2(X) \cap r(\operatorname{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.

b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap r(\text{Sel}_2 J) \not\subset R$ then return FAIL.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\text{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap r(\text{Sel}_2 J) \not\subset R$ then return FAIL.
- 7. Return $C(\mathbb{Q})_{known}$.

- 1. Compute $\operatorname{Sel}_2 C \subset \operatorname{Sel}_2 J \subset L^{\square}$.
- 2. If $\ker(r) \cap \operatorname{Sel}_2 J \not\subset \mu(J(\mathbb{Q})[2^{\infty}])$, then return FAIL.
- 3. Search for rational points on C; this gives $C(\mathbb{Q})_{known}$.
- 4. Let \mathcal{X} be a partition of $C(\mathbb{Q}_2)$ into (half) residue disks X.
- 5. Set $\mathbb{R} = \mu_2(J(\mathbb{Q})[2^\infty]) \subset L_2^{\square}$.
- 6. For each $X \in \mathcal{X}$, do:
 - a. If $X \cap C(\mathbb{Q})_{known} = \emptyset$: if $\mu_2(X) \cap r(\operatorname{Sel}_2 C) \neq \emptyset$ then return FAIL, else continue with next X.
 - b. Pick $P_0 \in X \cap C(\mathbb{Q})_{known}$ and compute $Y = \mu_2(q(i_{P_0}(X) + J(\mathbb{Q})[2^{\infty}]))$
 - c. If $Y \cap r(\text{Sel}_2 J) \not\subset R$ then return FAIL.
- 7. Return $C(\mathbb{Q})_{known}$.

Remark. Can leave out 2-adic condition for Sel₂ J.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

(2) Similar application to FLT (via $y^2 = 4x^p + 1$).

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.
- (4) Elliptic curve Chabauty variant proves that the only rational points on $y^2 = 81x^{10} + 420x^9 + 1380x^8 + 1860x^7 + 3060x^6 - 66x^5 + 3240x^4 - 1740x^3 + 1320x^2 - 480x + 69$ are the two points at infinity.

(Note: $g = \operatorname{rank} J(\mathbb{Q}) = 4.$)

(1) $5y^2 = 4x^p + 1$:

Obtain a three-element set $Z \subset \mathbb{Q}_2(\sqrt[p]{2})^{\square}$ that $r(\operatorname{Sel}_2 J_p)$ has to avoid; also check that $r|_{\operatorname{Sel}_2 J_p}$ is injective. This gives

Theorem.

 $x^5 + y^5 = z^p$ has only trivial solutions for $p \le 53$ (under GRH for $p \ge 23$).

- (2) Similar application to FLT (via $y^2 = 4x^p + 1$).
- (3) The set of integral points on $Y^2 Y = X^{21} X$ is $\{-1, 0, 1\} \times \{0, 1\}$.
- (4) Elliptic curve Chabauty variant proves that the only rational points on $y^2 = 81x^{10} + 420x^9 + 1380x^8 + 1860x^7 + 3060x^6 - 66x^5 + 3240x^4 - 1740x^3 + 1320x^2 - 480x + 69$ are the two points at infinity. (Note: q = rank J(Q) = 4.)

(5) More to come!

Thank You!