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Double Covers

Proposition.

Let C : y2 = F1(x, z)F2(x, z) with deg F1, deg F2 even, and set

S =
{
d ∈ Z : d squarefree and ∀p : p | d⇒ p | Res(F1, F2)

}
.

The S is finite and

C(Q) =
⋃
d∈S

πd
(
Dd(Q)

)
,

where Dd : dy
2
1 = F1(x, z), dy22 = F2(x, z)

and πd : Dd → C, (x : y1 : y2 : z) 7→ (x : dy1y2 : z).

We write D = D1 and π = π1 : D→ C. Then

Sel(π) = {d ∈ S : Dd is ELS} .



No Double Cover

What can we do if C : y2 = f(x) does not admit an unramified double cover?

The right hand side f(x) may not factor over Q,

but it does so over suitable field extensions.

The corresponding double covers are permuted by the Galois group,

so by combining them, we obtain a covering defined over Q again.

What we obtain in this way is a 2-covering of C,

obtained by pulling back C via the multiplication-by-2 map on its Jacobian.

The corresponding Selmer set is the 2-Selmer set, Sel2(C).
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A Way of Computing Sel2(C)

Assume we have fixed a rational divisor class of degree 1 on C

and thus an embedding i : C→ J, where J is the Jacobian of C.

Then we can identify Sel2(C) with the subset of Sel2(J)

consisting of all classes ξ whose image in J(Qv)/2J(Qv)
is contained in the image of i

(
C(Qv)

)
, for all places v.

(This means v = p a prime or v =∞ with Q∞ = R.)

Interpretation:

The condition for ξ at v is equivalent to Dξ(Qv) 6= ∅,
but can be checked without constructing Dξ.



A Way of Computing Sel2(C)

Assume we have fixed a rational divisor class of degree 1 on C

and thus an embedding i : C→ J, where J is the Jacobian of C.

Then we can identify Sel2(C) with the subset of Sel2(J)

consisting of all classes ξ whose image in J(Qv)/2J(Qv)
is contained in the image of i

(
C(Qv)

)
, for all places v.

(This means v = p a prime or v =∞ with Q∞ = R.)

Interpretation:

The condition for ξ at v is equivalent to Dξ(Qv) 6= ∅,
but can be checked without constructing Dξ.



A Way of Computing Sel2(C)

Assume we have fixed a rational divisor class of degree 1 on C

and thus an embedding i : C→ J, where J is the Jacobian of C.

Then we can identify Sel2(C) with the subset of Sel2(J)

consisting of all classes ξ whose image in J(Qv)/2J(Qv)
is contained in the image of i

(
C(Qv)

)
, for all places v.

(This means v = p a prime or v =∞ with Q∞ = R.)

Interpretation:

The condition for ξ at v is equivalent to Dξ(Qv) 6= ∅,
but can be checked without constructing Dξ.



The Étale Algebra

Fix a hyperelliptic curve

C : y2 = f(x) .

We define (compare Steffen’s lectures)

A = Q[x]/〈f(x)〉 and Av = A⊗Q Qv = Qv[x]/〈f(x)〉

for all places v. Then A is an étale Q-algebra:

it splits as a product of finite field extensions of Q.

Similarly, Av is an étale Qv-algebra.

We denote the image of x in A or Av by T , so A = Q[T ] and Av = Qv[T ].
We can think of T as a ‘generic root’ of f.

We write A� = {α2 : α ∈ A×}; analogously for Q�.
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The x− T Map

For the following, we assume that f ∈ Z[x]
and that f is monic if deg f is odd (this can always be achieved).

Set

H =


{
α ∈ A×/A� : NA/Q(α) = Q�

}
if deg f is odd;{

α ∈ A×/(Q×A�) : NA/Q(α) = lcf(f)Q�
}

if deg f is even.

Define Hv analogously in terms of Av and Qv.

There is a map δ : C(Q) −→ H, P 7−→ the class of x(P) − T ,

(with some modification when x(P) =∞ or when y(P) = 0);

analogously there is δv : C(Qv)→ Hv for each place v.

Compare the construction in Steffen’s talk!
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A Diagram

The maps fit together in a commutative diagram:

C(Q) δ //

��

H

(ρv)v

��∏
v
C(Qv)

∏
δv

//

∏
v
Hv

where ρv : H→ Hv is the canonical map induced by Q ⊂ Qv.

Definition.

Selfake
2 (C) =

{
α ∈ H : ∀v : ρv(α) ∈ im(δv)

}
is the fake 2-Selmer set of C.
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Relation With the 2-Selmer Set

Selfake
2 (C) =

{
α ∈ H : ∀v : ρv(α) ∈ im(δv)

}
.

Clearly, δ maps C(Q) into Selfake
2 (C), so Selfake

2 (C) = ∅ implies C(Q) = ∅.

More precisely, the following holds.

Proposition.

There is a canonical surjective map Sel2(C)→ Selfake
2 (C).

It is either a bijection or (usually) a two-to-one map.

(There is an explicit criterion for deciding which of the two is the case.)

In fact, Selfake
2 (C) classifies ELS 2-coverings D→ C up to isomorphism

and post-composition with the hyperelliptic involution of C.
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Computing the Fake 2-Selmer Set (1)

Let Σ be {∞, 2}, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup A(Σ, 2) ⊂ A×/A�

of elements ‘unramified outside Σ’ is finite and computable,

giving rise to a finite subset HΣ of H.

In a very similar way as for the Jacobian,

one shows that Selfake
2 (C) ⊂ HΣ.

This leads to

Selfake
2 (C) =

{
α ∈ HΣ : ∀v : ρv(α) ∈ im(δv)

}
.

There are still infinitely many conditions to check, though!
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Computing the Fake 2-Selmer Set (2)

Selfake
2 (C) =

{
α ∈ HΣ : ∀v : ρv(α) ∈ im(δv)

}
.

For p /∈ Σ, let H0p be the ‘unramified part’ of Hp
(this is the part that comes from Zp[T ]).

We have

HΣ =
{
α ∈ H : ∀p /∈ Σ : ρp(α) ∈ H0p

}
.

This means that we need to consider only the p /∈ Σ with im(δp) 6= H0p
(plus all v ∈ Σ, of course).

Since ρp(α) ∈ im(δp) means Dα(Qp) 6= ∅, by the Weil bounds,

we will always have im(δp) = H
0
p for p /∈ Σ if p ≥ 4genus(D)2.

Note that genus(D) = 4
g
(g− 1) + 1, so this bound is usually too large.
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Computing the Fake 2-Selmer Set (3)

Still, these considerations show that we can compute Selfake
2 (C),

if we can compute the ‘local images’ im(δv).

That this is possible follows from the fact that δv is locally constant:

It is a continuous map from the compact space C(Qv)
to the discrete space Hv,

so C(Qv) splits into finitely many closed and open subsets

on which δv is constant.

These subsets can be explicitly described.

This gives an algorithm for computing Selfake
2 (C).
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Computing the Fake 2-Selmer Set: Practice

In practice, we use a subset of the primes we would have to consider.

This results in a set S that contains Selfake
2 (C).

• If S = ∅, then Selfake
2 (C) = ∅.

• If we know X ⊂ C(Q) such that δ(X) = S, then S = Selfake
2 (C).

In many applications, one of these cases occurs.

The main computational bottleneck is the computation of A(Σ, 2),

which involves computing ideal class groups and unit groups

of the number fields corresponding to the irreducible factors of f.
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Examples

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3.

There are 196 171 isomorphism classes over Q of such curves.

On 137 490 of these curves, one finds a (small) rational point.

Of the remaining 58 681 curves, 29 403 are not ELS.

Of the remaining 29 278 ELS curves C, 27 786 have Selfake
2 (C) = ∅.

For the last 1 492 curves C,

we could show that C(Q) = ∅ using the Mordell-Weil sieve.

(For 42 curves, we had to assume BSD or GRH.)
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A Recent Result

Recall the family Fg of all hyperelliptic curves of genus g,

ordered by height.

Manjul Bhargava (one of this year’s Fields medalists)

was able to show that the average size of Selfake
2 (C) for C ∈ Fg

tends to zero faster than 2
−g as g→∞.

This implies that the (upper) density of curves C ∈ Fg
such that Selfake

2 (C) 6= ∅
tends to zero faster than 2

−g as g→∞.

This is based on results of Manjul’s with Dick Gross

on the average behavior of 2-Selmer groups of hyperelliptic Jacobians.



A Recent Result

Recall the family Fg of all hyperelliptic curves of genus g,

ordered by height.

Manjul Bhargava (one of this year’s Fields medalists)

was able to show that the average size of Selfake
2 (C) for C ∈ Fg

tends to zero faster than 2
−g as g→∞.

This implies that the (upper) density of curves C ∈ Fg
such that Selfake

2 (C) 6= ∅
tends to zero faster than 2

−g as g→∞.

This is based on results of Manjul’s with Dick Gross

on the average behavior of 2-Selmer groups of hyperelliptic Jacobians.



A Recent Result

Recall the family Fg of all hyperelliptic curves of genus g,

ordered by height.

Manjul Bhargava (one of this year’s Fields medalists)

was able to show that the average size of Selfake
2 (C) for C ∈ Fg

tends to zero faster than 2
−g as g→∞.

This implies that the (upper) density of curves C ∈ Fg
such that Selfake

2 (C) 6= ∅
tends to zero faster than 2

−g as g→∞.

This is based on results of Manjul’s with Dick Gross

on the average behavior of 2-Selmer groups of hyperelliptic Jacobians.



A Recent Result

Recall the family Fg of all hyperelliptic curves of genus g,

ordered by height.

Manjul Bhargava (one of this year’s Fields medalists)

was able to show that the average size of Selfake
2 (C) for C ∈ Fg

tends to zero faster than 2
−g as g→∞.

This implies that the (upper) density of curves C ∈ Fg
such that Selfake

2 (C) 6= ∅
tends to zero faster than 2

−g as g→∞.

This is based on results of Manjul’s with Dick Gross

on the average behavior of 2-Selmer groups of hyperelliptic Jacobians.



Thank You!

These slides are available at

http://www.mathe2.uni-bayreuth.de/stoll/schrift.html#TalkNotes


