

Descent and Covering Collections Part III: The Fake 2-Selmer Set

Michael Stoll Universität Bayreuth

NATO Advanced Study Institute Ohrid September 5, 2014

Double Covers

Proposition.

Let C: $y^2 = F_1(x, z)F_2(x, z)$ with deg F_1 , deg F_2 even, and set

 $\boldsymbol{S} = \left\{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p \colon p \mid d \Rightarrow p \mid \text{Res}(F_1,F_2) \right\}.$

The S is finite and

 $C(\mathbb{Q}) = \bigcup_{d \in S} \pi_d(D_d(\mathbb{Q})),$

 $\begin{array}{ll} \text{where} & \mathsf{D}_d\colon dy_1^2=\mathsf{F}_1(x,z), \quad dy_2^2=\mathsf{F}_2(x,z)\\ \text{and} & \pi_d\colon \mathsf{D}_d\to\mathsf{C}, \ (x:y_1:y_2:z)\mapsto (x:dy_1y_2:z). \end{array}$

We write $D = D_1$ and $\pi = \pi_1 \colon D \to C$. Then

 $Sel(\pi) = \{d \in S : D_d \text{ is ELS}\}.$

What can we do if $C: y^2 = f(x)$ does not admit an unramified double cover?

What can we do if $C: y^2 = f(x)$ does not admit an unramified double cover?

The right hand side f(x) may not factor over \mathbb{Q} , but it does so over suitable field extensions.

What can we do if $C: y^2 = f(x)$ does not admit an unramified double cover?

The right hand side f(x) may not factor over \mathbb{Q} , but it does so over suitable field extensions.

The corresponding double covers are permuted by the Galois group, so by combining them, we obtain a covering defined over \mathbb{Q} again.

What can we do if $C: y^2 = f(x)$ does not admit an unramified double cover?

The right hand side f(x) may not factor over \mathbb{Q} , but it does so over suitable field extensions.

The corresponding double covers are permuted by the Galois group, so by combining them, we obtain a covering defined over \mathbb{Q} again.

What we obtain in this way is a 2-covering of C, obtained by pulling back C via the multiplication-by-2 map on its Jacobian.

What can we do if $C: y^2 = f(x)$ does not admit an unramified double cover?

The right hand side f(x) may not factor over \mathbb{Q} , but it does so over suitable field extensions. The corresponding double covers are permuted by the Galois group, so by combining them, we obtain a covering defined over \mathbb{Q} again.

What we obtain in this way is a 2-covering of C, obtained by pulling back C via the multiplication-by-2 map on its Jacobian.

The corresponding Selmer set is the 2-Selmer set, $Sel_2(C)$.

A Way of Computing $Sel_2(C)$

Assume we have fixed a rational divisor class of degree 1 on C and thus an embedding i: $C \rightarrow J$, where J is the Jacobian of C.

A Way of Computing $Sel_2(C)$

Assume we have fixed a rational divisor class of degree 1 on C and thus an embedding $i: C \rightarrow J$, where J is the Jacobian of C.

Then we can identify $\operatorname{Sel}_2(\mathbb{C})$ with the subset of $\operatorname{Sel}_2(\mathbb{J})$ consisting of all classes ξ whose image in $\mathbb{J}(\mathbb{Q}_{\nu})/2\mathbb{J}(\mathbb{Q}_{\nu})$ is contained in the image of $i(\mathbb{C}(\mathbb{Q}_{\nu}))$, for all places ν . (This means $\nu = p$ a prime or $\nu = \infty$ with $\mathbb{Q}_{\infty} = \mathbb{R}$.)

A Way of Computing $Sel_2(C)$

Assume we have fixed a rational divisor class of degree 1 on C and thus an embedding $i: C \rightarrow J$, where J is the Jacobian of C.

Then we can identify $\operatorname{Sel}_2(C)$ with the subset of $\operatorname{Sel}_2(J)$ consisting of all classes ξ whose image in $J(\mathbb{Q}_{\nu})/2J(\mathbb{Q}_{\nu})$ is contained in the image of $i(C(\mathbb{Q}_{\nu}))$, for all places ν . (This means $\nu = p$ a prime or $\nu = \infty$ with $\mathbb{Q}_{\infty} = \mathbb{R}$.)

Interpretation:

The condition for ξ at v is equivalent to $D_{\xi}(\mathbb{Q}_{v}) \neq \emptyset$, but can be checked without constructing D_{ξ} .

Fix a hyperelliptic curve

 $C: y^2 = f(x).$

We define (compare Steffen's lectures)

 $A = \mathbb{Q}[x]/\langle f(x)\rangle \qquad \text{and} \qquad A_{\nu} = A \otimes_{\mathbb{Q}} \mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[x]/\langle f(x)\rangle$

for all places v.

Fix a hyperelliptic curve

 $C: y^2 = f(x).$

We define (compare Steffen's lectures)

 $A = \mathbb{Q}[x]/\langle f(x) \rangle$ and $A_{\nu} = A \otimes_{\mathbb{Q}} \mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[x]/\langle f(x) \rangle$ for all places ν . Then A is an étale Q-algebra: it splits as a product of finite field extensions of Q. Similarly, A_{ν} is an étale \mathbb{Q}_{ν} -algebra.

Fix a hyperelliptic curve

 $C: y^2 = f(x).$

We define (compare Steffen's lectures)

 $A = \mathbb{Q}[x]/\langle f(x) \rangle$ and $A_{\nu} = A \otimes_{\mathbb{Q}} \mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[x]/\langle f(x) \rangle$ for all places ν . Then A is an étale Q-algebra: it splits as a product of finite field extensions of Q. Similarly, A_{ν} is an étale \mathbb{Q}_{ν} -algebra.

We denote the image of x in A or A_v by T, so $A = \mathbb{Q}[T]$ and $A_v = \mathbb{Q}_v[T]$. We can think of T as a 'generic root' of f.

Fix a hyperelliptic curve

 $C: y^2 = f(x).$

We define (compare Steffen's lectures)

 $A = \mathbb{Q}[x]/\langle f(x) \rangle$ and $A_{\nu} = A \otimes_{\mathbb{Q}} \mathbb{Q}_{\nu} = \mathbb{Q}_{\nu}[x]/\langle f(x) \rangle$ for all places ν . Then A is an étale Q-algebra: it splits as a product of finite field extensions of Q. Similarly, A_{ν} is an étale \mathbb{Q}_{ν} -algebra.

We denote the image of x in A or A_v by T, so $A = \mathbb{Q}[T]$ and $A_v = \mathbb{Q}_v[T]$. We can think of T as a 'generic root' of f.

We write $A^{\Box} = \{\alpha^2 : \alpha \in A^{\times}\}$; analogously for \mathbb{Q}^{\Box} .

For the following, we assume that $f \in \mathbb{Z}[x]$ and that f is monic if deg f is odd (this can always be achieved).

For the following, we assume that $f \in \mathbb{Z}[x]$ and that f is monic if deg f is odd (this can always be achieved).

Set

$$H = \begin{cases} \left\{ \alpha \in A^{\times} / A^{\square} : N_{A/\mathbb{Q}}(\alpha) = \mathbb{Q}^{\square} \right\} & \text{ if deg f is odd;} \\ \left\{ \alpha \in A^{\times} / (\mathbb{Q}^{\times} A^{\square}) : N_{A/\mathbb{Q}}(\alpha) = \mathsf{lcf}(f)\mathbb{Q}^{\square} \right\} & \text{ if deg f is even.} \end{cases}$$

For the following, we assume that $f \in \mathbb{Z}[x]$ and that f is monic if deg f is odd (this can always be achieved).

Set

$$\mathsf{H} = \begin{cases} \left\{ \alpha \in A^{\times} / A^{\square} : \mathsf{N}_{A/\mathbb{Q}}(\alpha) = \mathbb{Q}^{\square} \right\} & \text{ if deg f is odd;} \\ \left\{ \alpha \in A^{\times} / (\mathbb{Q}^{\times} A^{\square}) : \mathsf{N}_{A/\mathbb{Q}}(\alpha) = \mathsf{lcf}(f)\mathbb{Q}^{\square} \right\} & \text{ if deg f is even.} \end{cases}$$

Define H_{ν} analogously in terms of A_{ν} and \mathbb{Q}_{ν} .

For the following, we assume that $f \in \mathbb{Z}[x]$ and that f is monic if deg f is odd (this can always be achieved).

Set

$$\mathsf{H} = \begin{cases} \left\{ \alpha \in A^{\times} / A^{\square} : \mathsf{N}_{A/\mathbb{Q}}(\alpha) = \mathbb{Q}^{\square} \right\} & \text{ if deg f is odd;} \\ \left\{ \alpha \in A^{\times} / (\mathbb{Q}^{\times} A^{\square}) : \mathsf{N}_{A/\mathbb{Q}}(\alpha) = \mathsf{lcf}(f)\mathbb{Q}^{\square} \right\} & \text{ if deg f is even.} \end{cases}$$

Define H_{ν} analogously in terms of A_{ν} and \mathbb{Q}_{ν} .

There is a map $\delta: \mathbb{C}(\mathbb{Q}) \longrightarrow \mathbb{H}$, $P \longmapsto$ the class of $\mathfrak{x}(P) - \mathbb{T}$, (with some modification when $\mathfrak{x}(P) = \infty$ or when $\mathfrak{y}(P) = 0$);

For the following, we assume that $f \in \mathbb{Z}[x]$ and that f is monic if deg f is odd (this can always be achieved).

Set

$$H = \begin{cases} \left\{ \alpha \in A^{\times}/A^{\square} : N_{A/\mathbb{Q}}(\alpha) = \mathbb{Q}^{\square} \right\} & \text{ if deg f is odd;} \\ \left\{ \alpha \in A^{\times}/(\mathbb{Q}^{\times}A^{\square}) : N_{A/\mathbb{Q}}(\alpha) = \mathsf{lcf}(f)\mathbb{Q}^{\square} \right\} & \text{ if deg f is even.} \end{cases}$$

Define H_{ν} analogously in terms of A_{ν} and \mathbb{Q}_{ν} .

There is a map $\delta: C(\mathbb{Q}) \longrightarrow H$, $P \longmapsto$ the class of x(P) - T, (with some modification when $x(P) = \infty$ or when y(P) = 0); analogously there is $\delta_{v}: C(\mathbb{Q}_{v}) \longrightarrow H_{v}$ for each place v.

Compare the construction in Steffen's talk!

A Diagram

The maps fit together in a commutative diagram:

where $\rho_{\nu} \colon H \to H_{\nu}$ is the canonical map induced by $\mathbb{Q} \subset \mathbb{Q}_{\nu}$.

A Diagram

The maps fit together in a commutative diagram:

where $\rho_{\nu} \colon H \to H_{\nu}$ is the canonical map induced by $\mathbb{Q} \subset \mathbb{Q}_{\nu}$.

Definition.

$$\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}$$

is the fake 2-Selmer set of C.

$$\label{eq:selfake} \begin{split} \text{Sel}_2^{\text{fake}}(C) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_\nu(\alpha) \in \text{im}(\delta_\nu) \right\}. \end{split}$$

 $\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_\nu(\alpha) \in \mathsf{im}(\delta_\nu) \right\}.$

Clearly, δ maps $C(\mathbb{Q})$ into $Sel_2^{fake}(C)$, so $Sel_2^{fake}(C) = \emptyset$ implies $C(\mathbb{Q}) = \emptyset$.

 $\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_\nu(\alpha) \in \mathsf{im}(\delta_\nu) \right\}.$

Clearly, δ maps $C(\mathbb{Q})$ into $Sel_2^{fake}(C)$, so $Sel_2^{fake}(C) = \emptyset$ implies $C(\mathbb{Q}) = \emptyset$.

More precisely, the following holds.

Proposition.

There is a canonical surjective map $Sel_2(C) \rightarrow Sel_2^{fake}(C)$. It is either a bijection or (usually) a two-to-one map.

 $\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_\nu(\alpha) \in \mathsf{im}(\delta_\nu) \right\}.$

Clearly, δ maps $C(\mathbb{Q})$ into $Sel_2^{fake}(C)$, so $Sel_2^{fake}(C) = \emptyset$ implies $C(\mathbb{Q}) = \emptyset$.

More precisely, the following holds.

Proposition.

There is a canonical surjective map $Sel_2(C) \rightarrow Sel_2^{fake}(C)$. It is either a bijection or (usually) a two-to-one map. (There is an explicit criterion for deciding which of the two is the case.)

 $\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H} : \forall \nu \colon \rho_\nu(\alpha) \in \mathsf{im}(\delta_\nu) \right\}.$

Clearly, δ maps $C(\mathbb{Q})$ into $Sel_2^{fake}(C)$, so $Sel_2^{fake}(C) = \emptyset$ implies $C(\mathbb{Q}) = \emptyset$.

More precisely, the following holds.

Proposition.

There is a canonical surjective map $Sel_2(C) \rightarrow Sel_2^{fake}(C)$. It is either a bijection or (usually) a two-to-one map. (There is an explicit criterion for deciding which of the two is the case.)

In fact, $Sel_2^{fake}(C)$ classifies ELS 2-coverings $D \rightarrow C$ up to isomorphism and post-composition with the hyperelliptic involution of C.

Let Σ be { ∞ , 2}, together with all prime divisors of disc(f) and of lcf(f).

Let Σ be $\{\infty, 2\}$, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup $A(\Sigma, 2) \subset A^{\times}/A^{\Box}$ of elements 'unramified outside Σ ' is finite and computable,

Let Σ be $\{\infty, 2\}$, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup $A(\Sigma, 2) \subset A^{\times}/A^{\Box}$ of elements 'unramified outside Σ ' is finite and computable, giving rise to a finite subset H_{Σ} of H.

Let Σ be $\{\infty, 2\}$, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup $A(\Sigma, 2) \subset A^{\times}/A^{\Box}$ of elements 'unramified outside Σ ' is finite and computable, giving rise to a finite subset H_{Σ} of H.

In a very similar way as for the Jacobian, one shows that $\operatorname{Sel}_2^{\operatorname{fake}}(C) \subset H_{\Sigma}$.

Let Σ be $\{\infty, 2\}$, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup $A(\Sigma, 2) \subset A^{\times}/A^{\Box}$ of elements 'unramified outside Σ ' is finite and computable, giving rise to a finite subset H_{Σ} of H.

In a very similar way as for the Jacobian, one shows that $\text{Sel}_2^{fake}(C)\subset \text{H}_{\Sigma}.$

This leads to

$$\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

Let Σ be $\{\infty, 2\}$, together with all prime divisors of disc(f) and of lcf(f).

This is a finite set of places, so the subgroup $A(\Sigma, 2) \subset A^{\times}/A^{\Box}$ of elements 'unramified outside Σ ' is finite and computable, giving rise to a finite subset H_{Σ} of H.

In a very similar way as for the Jacobian, one shows that $\text{Sel}_2^{fake}(C)\subset \text{H}_{\Sigma}.$

This leads to

$$\mathsf{Sel}_2^{\mathsf{fake}}(\mathsf{C}) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

There are still infinitely many conditions to check, though!

 $\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$

 $\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu : \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$

For $p \notin \Sigma$, let H_p^0 be the 'unramified part' of H_p (this is the part that comes from $\mathbb{Z}_p[T]$).

$$\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

For $p \notin \Sigma$, let H_p^0 be the 'unramified part' of H_p (this is the part that comes from $\mathbb{Z}_p[T]$). We have

$$\mathsf{H}_{\Sigma} = \left\{ \alpha \in \mathsf{H} : \forall p \notin \Sigma \colon \rho_{p}(\alpha) \in \mathsf{H}_{p}^{0} \right\}.$$

$$\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

For $p \notin \Sigma$, let H_p^0 be the 'unramified part' of H_p (this is the part that comes from $\mathbb{Z}_p[T]$). We have

$$\mathsf{H}_{\Sigma} = \left\{ \alpha \in \mathsf{H} : \forall p \notin \Sigma \colon \rho_{p}(\alpha) \in \mathsf{H}_{p}^{0} \right\}.$$

This means that we need to consider only the $p \notin \Sigma$ with $im(\delta_p) \neq H_p^0$ (plus all $\nu \in \Sigma$, of course).

$$\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

For $p \notin \Sigma$, let H_p^0 be the 'unramified part' of H_p (this is the part that comes from $\mathbb{Z}_p[T]$). We have

$$\mathsf{H}_{\Sigma} = \left\{ \alpha \in \mathsf{H} : \forall p \notin \Sigma \colon \rho_{p}(\alpha) \in \mathsf{H}_{p}^{\mathsf{0}} \right\}.$$

This means that we need to consider only the $p \notin \Sigma$ with $im(\delta_p) \neq H_p^0$ (plus all $\nu \in \Sigma$, of course).

Since $\rho_p(\alpha) \in im(\delta_p)$ means $D_{\alpha}(\mathbb{Q}_p) \neq \emptyset$, by the Weil bounds, we will always have $im(\delta_p) = H_p^0$ for $p \notin \Sigma$ if $p \ge 4 \text{ genus}(D)^2$.

$$\mathsf{Sel}_2^{\mathsf{fake}}(C) = \left\{ \alpha \in \mathsf{H}_{\Sigma} : \forall \nu \colon \rho_{\nu}(\alpha) \in \mathsf{im}(\delta_{\nu}) \right\}.$$

For $p \notin \Sigma$, let H_p^0 be the 'unramified part' of H_p (this is the part that comes from $\mathbb{Z}_p[T]$). We have

$$\mathsf{H}_{\Sigma} = \left\{ \alpha \in \mathsf{H} : \forall p \notin \Sigma \colon \rho_{p}(\alpha) \in \mathsf{H}_{p}^{\mathsf{0}} \right\}.$$

This means that we need to consider only the $p \notin \Sigma$ with $im(\delta_p) \neq H_p^0$ (plus all $v \in \Sigma$, of course).

Since $\rho_p(\alpha) \in im(\delta_p)$ means $D_{\alpha}(\mathbb{Q}_p) \neq \emptyset$, by the Weil bounds, we will always have $im(\delta_p) = H_p^0$ for $p \notin \Sigma$ if $p \ge 4 \operatorname{genus}(D)^2$.

Note that $genus(D) = 4^{g}(g-1) + 1$, so this bound is usually too large.

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

That this is possible follows from the fact that δ_{v} is locally constant:

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

That this is possible follows from the fact that δ_{ν} is locally constant: It is a continuous map from the compact space $C(\mathbb{Q}_{\nu})$ to the discrete space H_{ν} ,

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

That this is possible follows from the fact that δ_{ν} is locally constant: It is a continuous map from the compact space $C(\mathbb{Q}_{\nu})$ to the discrete space H_{ν} , so $C(\mathbb{Q}_{\nu})$ splits into finitely many closed and open subsets on which δ_{ν} is constant.

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

That this is possible follows from the fact that δ_{ν} is locally constant: It is a continuous map from the compact space $C(\mathbb{Q}_{\nu})$ to the discrete space H_{ν} , so $C(\mathbb{Q}_{\nu})$ splits into finitely many closed and open subsets on which δ_{ν} is constant.

These subsets can be explicitly described.

Still, these considerations show that we can compute $Sel_2^{fake}(C)$, if we can compute the 'local images' $im(\delta_v)$.

That this is possible follows from the fact that δ_{ν} is locally constant: It is a continuous map from the compact space $C(\mathbb{Q}_{\nu})$ to the discrete space H_{ν} , so $C(\mathbb{Q}_{\nu})$ splits into finitely many closed and open subsets on which δ_{ν} is constant.

These subsets can be explicitly described.

This gives an algorithm for computing $Sel_2^{fake}(C)$.

In practice, we use a subset of the primes we would have to consider. This results in a set S that contains $Sel_2^{fake}(C)$.

In practice, we use a subset of the primes we would have to consider. This results in a set S that contains $Sel_2^{fake}(C)$.

• If $S = \emptyset$, then $Sel_2^{fake}(C) = \emptyset$.

In practice, we use a subset of the primes we would have to consider. This results in a set S that contains $Sel_2^{fake}(C)$.

- If $S = \emptyset$, then $Sel_2^{fake}(C) = \emptyset$.
- If we know $X \subset C(\mathbb{Q})$ such that $\delta(X) = S$, then $S = Sel_2^{fake}(C)$.

In practice, we use a subset of the primes we would have to consider. This results in a set S that contains $Sel_2^{fake}(C)$.

- If $S = \emptyset$, then $Sel_2^{fake}(C) = \emptyset$.
- If we know $X \subset C(\mathbb{Q})$ such that $\delta(X) = S$, then $S = Sel_2^{fake}(C)$.

In many applications, one of these cases occurs.

In practice, we use a subset of the primes we would have to consider. This results in a set S that contains $Sel_2^{fake}(C)$.

- If $S = \emptyset$, then $Sel_2^{fake}(C) = \emptyset$.
- If we know $X \subset C(\mathbb{Q})$ such that $\delta(X) = S$, then $S = Sel_2^{fake}(C)$.

In many applications, one of these cases occurs.

The main computational bottleneck is the computation of $A(\Sigma, 2)$, which involves computing ideal class groups and unit groups of the number fields corresponding to the irreducible factors of f.

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

There are $196\,171$ isomorphism classes over \mathbb{Q} of such curves.

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

There are $196\,171$ isomorphism classes over \mathbb{Q} of such curves.

On 137 490 of these curves, one finds a (small) rational point.

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

There are $196\,171$ isomorphism classes over \mathbb{Q} of such curves.

On 137 490 of these curves, one finds a (small) rational point.

Of the remaining 58 681 curves, 29 403 are not ELS.

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

There are $196\,171$ isomorphism classes over \mathbb{Q} of such curves.

On 137 490 of these curves, one finds a (small) rational point.

Of the remaining 58 681 curves, 29 403 are not ELS.

Of the remaining 29 278 ELS curves C, 27 786 have $Sel_2^{fake}(C) = \emptyset$.

Together with Nils Bruin,

we considered all curves of genus 2 of height ≤ 3 .

There are $196\,171$ isomorphism classes over \mathbb{Q} of such curves.

On 137 490 of these curves, one finds a (small) rational point.

Of the remaining 58 681 curves, 29 403 are not ELS.

Of the remaining 29 278 ELS curves C, 27 786 have $Sel_2^{fake}(C) = \emptyset$.

For the last 1 492 curves C, we could show that $C(\mathbb{Q}) = \emptyset$ using the Mordell-Weil sieve. (For 42 curves, we had to assume BSD or GRH.)

Recall the family \mathcal{F}_g of all hyperelliptic curves of genus g, ordered by height.

Recall the family \mathcal{F}_g of all hyperelliptic curves of genus g, ordered by height.

Manjul **Bhargava** (one of this year's Fields medalists) was able to show that the average size of $Sel_2^{fake}(C)$ for $C \in \mathcal{F}_g$ tends to zero faster than 2^{-g} as $g \to \infty$.

Recall the family \mathcal{F}_g of all hyperelliptic curves of genus g, ordered by height.

Manjul **Bhargava** (one of this year's Fields medalists) was able to show that the average size of $Sel_2^{fake}(C)$ for $C \in \mathcal{F}_g$ tends to zero faster than 2^{-g} as $g \to \infty$.

This implies that the (upper) density of curves $C \in \mathcal{F}_g$ such that $\operatorname{Sel}_2^{\operatorname{fake}}(C) \neq \emptyset$ tends to zero faster than 2^{-g} as $g \to \infty$.

Recall the family \mathcal{F}_g of all hyperelliptic curves of genus g, ordered by height.

Manjul **Bhargava** (one of this year's Fields medalists) was able to show that the average size of $Sel_2^{fake}(C)$ for $C \in \mathcal{F}_g$ tends to zero faster than 2^{-g} as $g \to \infty$.

This implies that the (upper) density of curves $C \in \mathcal{F}_g$ such that $\operatorname{Sel}_2^{\operatorname{fake}}(C) \neq \emptyset$ tends to zero faster than 2^{-g} as $g \to \infty$.

This is based on results of Manjul's with Dick Gross on the average behavior of 2-Selmer groups of hyperelliptic Jacobians.

Thank You!

These slides are available at

http://www.mathe2.uni-bayreuth.de/stoll/schrift.html#TalkNotes