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Local Solubility

Recall:

Definition.

A (nice) curve C over Q is said to be everywhere locally soluble or ELS,

if C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p.

We have seen on Monday

that we can decide whether a given curve is ELS or not.

This gives a way of showing that C(Q) = ∅.

Conversely, it is easy to show that C(Q) 6= ∅:
Just find a point P0 ∈ C(Q)!
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Heuristics

Order all equations y2 = f(x) with integral coefficients

of hyperelliptic curves of fixed genus g ≥ 2 by height H(f) = maxj |fj|.

Denote that family by Fg.

Expectation/Conjecture.

The set of curves in Fg with rational points has density zero.

(Bhargava (2013): The (upper) density is o(2−g). More on Friday!)

Proposition.

The set of ELS curves in Fg has a density δg > 0.

We have δ2 ≈ 0.85; as g grows, δg gets closer to 1, but lim sup
g→∞ δg < 1.

Conclusion: We need a way of proving C(Q) = ∅ even when C is ELS!
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A Double Cover

Let C : y2 = f(x) be hyperelliptic over Q with f ∈ Z[x]
and assume that f = f1f2 in Z[x] with (at least one of) deg f1, deg f2 even.

Assume that P = (ξ, η) ∈ C(Q): η2 = f(ξ) = f1(ξ)f2(ξ).

Then there is a unique squarefree d ∈ Z
such that f1(ξ) = dη

2
1 and f2(ξ) = dη

2
2 with η1, η2 ∈ Q.

Let Dd : dy
2
1 = f1(x), dy

2
2 = f2(x) and πd : Dd → C, (x, y1, y2) 7→ (x, dy1y2).

The above then means that P ∈ πd
(
Dd(Q)

)
.

Conclusion:

C(Q) =
⋃

d squarefree

πd
(
Dd(Q)

)
.
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Restricting the Twists

We write everything homogeneously:

Dd : dy
2
1 = F1(x, z), dy22 = F2(x, z)

with F1, F2 homogeneous of even degree and coprime.

Now assume that the prime p divides d

and that we have a Qp-rational point on Dd with image (ξ : ζ) in P1.
We can then assume ξ and ζ to be coprime p-adic integers.

Modulo p, we then find

0 ≡ dη21 = F1(ξ, ζ) and 0 ≡ dη22 = F2(ξ, ζ) ,

so ζ̄x− ξ̄z is a common linear factor of F̄1 and F̄2.

This means that p divides the resultant Res(F1, F2) ∈ Z.
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Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:

F(x, z) = fmx
m + fm−1x

m−1z+ . . .+ f1xz
m−1 + f0z

m

G(x, z) = gnx
n + gn−1x

n−1z + . . .+ g1xz
n−1 + g0z

n

Then the (n+m)× (n+m) determinant

Res(F,G) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

fm fm−1 · · · f1 f0 0 · · · 0

0 fm fm−1 · · · f1 f0 0 ...
... . . . . . . . . . . . . . . . . . . ...
0 · · · 0 fm fm−1 · · · f1 f0
gn gn−1 · · · g1 g0 0 · · · 0
... . . . . . . . . . . . . . . . . . . ...
... 0 gn gn−1 · · · g1 g0 0

0 · · · 0 gn gn−1 · · · g1 g0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
is the Resultant of F and G.



The Resultant (2)

The resultant obeys the following rules (exercise!):

• Res(G, F) = (−1)(deg F)(degG)Res(F,G).

• Res(F, c) = cdeg F if c is constant.

• Res(F,−βx+ αz) = F(α,β).

• Res(F,GH) = Res(F,G)Res(F,H).

• Res(F,G) = Res(F,G+ FH) if deg F+ degH = degG.

• Res(F ◦ γ,G ◦ γ) = det(γ)(deg F)(degG)Res(F,G) for γ ∈ GL(2, k).

Most importantly:

• Res(F,G) = 0 if and only if F and G have a common factor.
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A Finiteness Statement

Recall the curve Dd : dy
2
1 = F1(x, z), dy22 = F2(x, z)

and that p | d, Dd(Qp) 6= ∅ together imply p | Res(F1, F2).

Conclusion: If p | d, but p - Res(F1, F2), then Dd is not ELS, so Dd(Q) = ∅.

Proposition.

Let C : y2 = f1(x)f2(x) as above and set

S =
{
d ∈ Z : d squarefree and ∀p : p | d⇒ p | Res(F1, F2)

}
.

Then S is finite and

C(Q) =
⋃
d∈S

πd
(
Dd(Q)

)
.

In particular: ∀d ∈ S : Dd not ELS implies C(Q) = ∅.
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Consider
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Also Dd(F3) = ∅ and so Dd(Q3) = ∅ for d ≡ 1 mod 3
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A Generalization

Question: What makes our construction work?

Answer: The morphism π : D→ C, (x, y1, y2) 7→ (x, y1y2), where

D : y21 = f1(x) , y22 = f2(x) ,

is an unramified double cover.

This is used (in the form ‘Res(F1, F2) 6= 0’) for the finiteness statment.

(Note: We need (at least one of) deg f1 and deg f2 to be even

for the cover to be unramified; otherwise it ramifies above infinity.)

The result extends to general unramified double covers.
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General Double Covers

Theorem.

Let C and D be nice curves over Q
such that there is an unramified double cover π : D→ C.

Then the set Sel(π) of squarefree d ∈ Z such that Dd is ELS,

where πd : Dd → C is the corresponding twist of π,

is finite and computable, and we have

C(Q) =
⋃

d∈Sel(π)

πd
(
Dd(Q)

)
.

In particular, if Sel(π) = ∅, then C(Q) = ∅.

The set Sel(π) is called the Selmer set of π.
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Generalizing Further

Not every curve over Q allows unramified double covers over Q.

However, we can generalize the preceding theorem to more general covers.

Let π : D→ C be an unramified covering

that is in addition geometrically Galois:

The extension Q̄(C) ⊂ Q̄(D) of function fields is a Galois extension

(⇐⇒ the group of deck transformations of D(C)→ C(C) has order degπ).

Note that this is automatic when degπ = 2.

A twist of π is a covering π ′ : D ′ → C that over Q̄ is isomorphic to π:

there is an isomorphism φ : DQ̄ → D ′Q̄ such that π ′ ◦ φ = π.

Twists of π are classified by the elements of H1(Q,Aut(π)).

(For example, H1(Q, {±1}) ∼= Q×/squares =̂ {squarefree integers}.)
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The General Descent Theorem

Theorem.

Let C and D be nice curves over Q such that there is an unramified

and geometrically Galois covering π : D→ C.

Then the set Sel(π) of ξ ∈ H1(Q,Aut(π)) such that Dξ is ELS,

where πξ : Dξ → C is the corresponding twist of π,

is finite and computable, and we have

C(Q) =
⋃

ξ∈Sel(π)

πξ
(
Dξ(Q)

)
.

In particular, if Sel(π) = ∅, then C(Q) = ∅.

As before, the set Sel(π) is called the Selmer set of π.

The computability holds ‘in principle’.

On Friday, we will see one case in which it is also practical.
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As before, the set Sel(π) is called the Selmer set of π.

The computability holds ‘in principle’.
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Discussion: Practice

If we can compute Sel(π) for some covering π : D→ C, then:

• If Sel(π) = ∅, then C(Q) = ∅.
• Otherwise, we obtain a finite list of curves Dξ, ξ ∈ Sel(π),

with coverings πξ : Dξ → C such that C(Q) =
⋃
ξ∈Sel(π) πξ

(
Dξ(Q)

)
:

the family (πξ)ξ∈Sel(π) is a covering collection for C.

If we can determine Dξ(Q) for all ξ ∈ Sel(π), then we also know C(Q).

The Dξ are more complicated than C (for example, the genus is larger).

But there may be morphisms φ : Dξ → C ′ to other curves.

If we can find C ′(Q) and this set is finite, then we can compute Dξ(Q):

for each P ∈ C ′(Q), check the fiber φ−1(P) for rational points.
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Discussion: Theory

If C possesses a rational divisor class of degree 1,

then C can be embedded into its Jacobian variety J.

For each n ≥ 2,
we then obtain an unramified and geometrically Galois covering of C

by pulling C back under the multiplication-by-n map of J.

We write Seln(C) for the associated Selmer set.

Conjecture. C(Q) = ∅ ⇐⇒ ∃n : Seln(C) = ∅ .

In particular, this would imply that the question ‘C(Q) = ∅?’ is decidable.

On Friday, we will consider Sel2(C) for C hyperelliptic.
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