

Descent and Covering Collections Part II: Descent Theory

Michael Stoll Universität Bayreuth

NATO Advanced Study Institute Ohrid September 3, 2014

Recall:

Definition.

A (nice) curve C over \mathbb{Q} is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Recall:

Definition.

A (nice) curve C over \mathbb{Q} is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

Recall:

Definition.

A (nice) curve C over \mathbb{Q} is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

This gives a way of showing that $C(\mathbb{Q}) = \emptyset$.

Recall:

Definition.

A (nice) curve C over \mathbb{Q} is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

```
This gives a way of showing that C(\mathbb{Q}) = \emptyset.
```

```
Conversely, it is easy to show that C(\mathbb{Q}) \neq \emptyset:
Just find a point P_0 \in C(\mathbb{Q})!
```

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Expectation/Conjecture.

The set of curves in \mathcal{F}_{g} with rational points has density zero.

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Expectation/Conjecture.

The set of curves in \mathcal{F}_g with rational points has density zero. (**Bhargava** (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Expectation/Conjecture.

The set of curves in \mathcal{F}_g with rational points has density zero. (**Bhargava** (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of ELS curves in \mathcal{F}_g has a density $\delta_g > 0$.

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Expectation/Conjecture.

The set of curves in \mathcal{F}_g with rational points has density zero. (**Bhargava** (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of ELS curves in \mathcal{F}_{q} has a density $\delta_{q} > 0$.

We have $\delta_2\approx 0.85;$ as g grows, δ_g gets closer to 1, but $\limsup_{g\to\infty}\delta_g<1.$

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g \ge 2$ by height $H(f) = \max_j |f_j|$. Denote that family by \mathcal{F}_g .

Expectation/Conjecture.

The set of curves in \mathcal{F}_g with rational points has density zero. (**Bhargava** (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of **ELS** curves in \mathcal{F}_q has a density $\delta_q > 0$.

We have $\delta_2\approx 0.85;$ as g grows, δ_g gets closer to 1, but $\limsup_{g\to\infty}\delta_g<1.$

Conclusion: We need a way of proving $C(\mathbb{Q}) = \emptyset$ even when C is ELS!

Let $C: y^2 = f(x)$ be hyperelliptic over \mathbb{Q} with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Let $C: y^2 = f(x)$ be hyperelliptic over \mathbb{Q} with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi)f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let $C: y^2 = f(x)$ be hyperelliptic over \mathbb{Q} with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi)f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let $D_d: dy_1^2 = f_1(x), dy_2^2 = f_2(x)$ and $\pi_d: D_d \to C$, $(x, y_1, y_2) \mapsto (x, dy_1y_2)$. The above then means that $P \in \pi_d(D_d(\mathbb{Q}))$.

Let $C: y^2 = f(x)$ be hyperelliptic over \mathbb{Q} with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi)f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let $D_d: dy_1^2 = f_1(x), dy_2^2 = f_2(x)$ and $\pi_d: D_d \to C$, $(x, y_1, y_2) \mapsto (x, dy_1y_2)$. The above then means that $P \in \pi_d(D_d(\mathbb{Q}))$.

Conclusion:

$$C(\mathbb{Q}) = \bigcup_{\substack{d \text{ squarefree}}} \pi_d(D_d(\mathbb{Q})).$$

We write everything homogeneously:

$$D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$$

with F_1, F_2 homogeneous of even degree and coprime.

We write everything homogeneously:

$$D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides d and that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi : \zeta)$ in \mathbb{P}^1 . We can then assume ξ and ζ to be coprime p-adic integers.

We write everything homogeneously:

$$D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides dand that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi : \zeta)$ in \mathbb{P}^1 . We can then assume ξ and ζ to be coprime p-adic integers.

Modulo p, we then find

$$\begin{split} 0 &\equiv d\eta_1^2 = F_1(\xi,\zeta) \quad \text{and} \quad 0 \equiv d\eta_2^2 = F_2(\xi,\zeta) \,, \\ \text{so } \overline{\zeta}x - \overline{\xi}z \text{ is a common linear factor of } \overline{F}_1 \text{ and } \overline{F}_2. \end{split}$$

We write everything homogeneously:

$$D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides dand that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi : \zeta)$ in \mathbb{P}^1 . We can then assume ξ and ζ to be coprime p-adic integers.

Modulo p, we then find

$$0 \equiv d\eta_1^2 = F_1(\xi,\zeta) \qquad \text{and} \qquad 0 \equiv d\eta_2^2 = F_2(\xi,\zeta) \,,$$

so $\overline{\zeta}x - \overline{\xi}z$ is a common linear factor of \overline{F}_1 and \overline{F}_2 .

This means that p divides the resultant $\text{Res}(F_1, F_2) \in \mathbb{Z}$.

Let F and G be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n$$

Let **F** and **G** be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \dots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \dots + g_1 x z^{n-1} + g_0 z^n$$

Then the $(n+m) \times (n+m)$ determinant

$$\mathsf{Res}(\mathsf{F},\mathsf{G}) = \left| \begin{array}{cccc} \mathsf{f}_m & \mathsf{f}_{m-1} & \cdots & \mathsf{f}_1 & \mathsf{f}_0 \\ & & & & \\ \mathsf{I}_m & \mathsf{I}_{m-1} & \cdots & \mathsf{I}_1 & \mathsf{f}_0 \\ & & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m & \mathsf{I}_m \\ & & \\ \mathsf{I}$$

Let **F** and **G** be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \dots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \dots + g_1 x z^{n-1} + g_0 z^n$$

Then the $(n + m) \times (n + m)$ determinant

Let **F** and **G** be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \dots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \dots + g_1 x z^{n-1} + g_0 z^n$$

Then the $(n+m) \times (n+m)$ determinant

Let F and G be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \dots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \dots + g_1 x z^{n-1} + g_0 z^n$$

Then the $(n+m) \times (n+m)$ determinant

$$\mathsf{Res}(\mathsf{F},\mathsf{G}) = \begin{vmatrix} f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} & 0 & \cdots & 0 \\ 0 & f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} & 0 & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} \end{vmatrix}$$

Let F and G be two binary forms over a field k:

$$F(x,z) = f_m x^m + f_{m-1} x^{m-1} z + \dots + f_1 x z^{m-1} + f_0 z^m$$

$$G(x,z) = g_n x^n + g_{n-1} x^{n-1} z + \dots + g_1 x z^{n-1} + g_0 z^n$$

Then the $(n + m) \times (n + m)$ determinant

$$\mathsf{Res}(\mathsf{F},\mathsf{G}) = \begin{vmatrix} f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} & 0 & \cdots & 0 \\ 0 & f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} & 0 & \vdots \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & f_{\mathfrak{m}} & f_{\mathfrak{m}-1} & \cdots & f_{1} & f_{0} \\ g_{\mathfrak{n}} & g_{\mathfrak{n}-1} & \cdots & g_{1} & g_{0} & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ \vdots & 0 & g_{\mathfrak{n}} & g_{\mathfrak{n}-1} & \cdots & g_{1} & g_{0} & 0 \\ 0 & \cdots & 0 & g_{\mathfrak{n}} & g_{\mathfrak{n}-1} & \cdots & g_{1} & g_{0} \end{vmatrix}$$

is the **Resultant** of F and G.

The resultant obeys the following rules (exercise!):

• $\operatorname{Res}(G, F) = (-1)^{(\deg F)(\deg G)} \operatorname{Res}(F, G).$

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.
- $\operatorname{Res}(F, -\beta x + \alpha z) = F(\alpha, \beta).$

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.
- $\operatorname{Res}(F, -\beta x + \alpha z) = F(\alpha, \beta).$
- $\operatorname{Res}(F, GH) = \operatorname{Res}(F, G) \operatorname{Res}(F, H).$

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.
- $\operatorname{Res}(F, -\beta x + \alpha z) = F(\alpha, \beta).$
- $\operatorname{Res}(F, GH) = \operatorname{Res}(F, G) \operatorname{Res}(F, H).$
- $\operatorname{Res}(F, G) = \operatorname{Res}(F, G + FH)$ if deg $F + \operatorname{deg} H = \operatorname{deg} G$.

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.
- $\operatorname{Res}(F, -\beta x + \alpha z) = F(\alpha, \beta).$
- $\operatorname{Res}(F, GH) = \operatorname{Res}(F, G) \operatorname{Res}(F, H).$
- $\operatorname{Res}(F, G) = \operatorname{Res}(F, G + FH)$ if deg $F + \operatorname{deg} H = \operatorname{deg} G$.
- $\operatorname{Res}(F \circ \gamma, G \circ \gamma) = \operatorname{det}(\gamma)^{(\operatorname{deg} F)(\operatorname{deg} G)} \operatorname{Res}(F, G)$ for $\gamma \in \operatorname{GL}(2, k)$.

The resultant obeys the following rules (exercise!):

- $\operatorname{Res}(G,F) = (-1)^{(\operatorname{deg} F)(\operatorname{deg} G)}\operatorname{Res}(F,G).$
- $\operatorname{Res}(F, c) = c^{\operatorname{deg} F}$ if c is constant.
- $\operatorname{Res}(F, -\beta x + \alpha z) = F(\alpha, \beta).$
- $\operatorname{Res}(F, GH) = \operatorname{Res}(F, G) \operatorname{Res}(F, H).$
- $\operatorname{Res}(F, G) = \operatorname{Res}(F, G + FH)$ if deg $F + \operatorname{deg} H = \operatorname{deg} G$.
- $\operatorname{Res}(F \circ \gamma, G \circ \gamma) = \operatorname{det}(\gamma)^{(\operatorname{deg} F)(\operatorname{deg} G)} \operatorname{Res}(F, G)$ for $\gamma \in \operatorname{GL}(2, k)$.

Most importantly:

• $\operatorname{Res}(F, G) = 0$ if and only if F and G have a common factor.

A Finiteness Statement

Recall the curve $D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$ and that $p \mid d, D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p \mid \text{Res}(F_1, F_2)$.

A Finiteness Statement

Recall the curve $D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$ and that $p \mid d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p \mid \text{Res}(F_1, F_2)$.

Conclusion: If $p \mid d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

A Finiteness Statement

Recall the curve $D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$ and that $p \mid d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p \mid \text{Res}(F_1, F_2)$.

Conclusion: If $p \mid d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x)f_2(x)$ as above and set

 $\mathbf{S} = \left\{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p \colon p \mid d \Rightarrow p \mid \mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) \right\}.$
A Finiteness Statement

Recall the curve $D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$ and that $p \mid d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p \mid \text{Res}(F_1, F_2)$.

Conclusion: If $p \mid d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x)f_2(x)$ as above and set

 $\mathbf{S} = \left\{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p \colon p \mid d \Rightarrow p \mid \mathsf{Res}(\mathsf{F}_1, \mathsf{F}_2) \right\}.$

Then S is finite and

$$C(\mathbb{Q}) = \bigcup_{\mathbf{d} \in \mathbf{S}} \pi_{\mathbf{d}} (\mathsf{D}_{\mathbf{d}}(\mathbb{Q})).$$

A Finiteness Statement

Recall the curve $D_d: dy_1^2 = F_1(x, z), \quad dy_2^2 = F_2(x, z)$ and that $p \mid d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p \mid \text{Res}(F_1, F_2)$.

Conclusion: If $p \mid d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x)f_2(x)$ as above and set

 $\mathbf{S} = \left\{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p \colon p \mid d \Rightarrow p \mid \mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) \right\}.$

Then S is finite and

$$C(\mathbb{Q}) = \bigcup_{\mathbf{d} \in \mathbf{S}} \pi_{\mathbf{d}} (\mathsf{D}_{\mathbf{d}}(\mathbb{Q})) \,.$$

In particular: $\forall d \in S: D_d \text{ not ELS}$ implies $C(\mathbb{Q}) = \emptyset$.

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix}$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 2 & 1 & 2 & 0 \\ 0 & 2 & 1 & 2 \end{vmatrix}$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & -1 & 4 & 0 \\ 0 & 0 & -1 & 4 \end{vmatrix}$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & -1 & 4 \end{vmatrix}$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & -1 & 4 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ -1 & 4 \end{vmatrix}$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

$$\mathsf{Res}(\mathsf{F}_1,\mathsf{F}_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & -1 & 4 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ -1 & 4 \end{vmatrix} = 19.$$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

We compute $\text{Res}(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

We compute $\text{Res}(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for d < 0.

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

We compute $\text{Res}(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for d < 0.

Also $D_d(\mathbb{F}_3) = \emptyset$ and so $D_d(\mathbb{Q}_3) = \emptyset$ for $d \equiv 1 \mod 3$ $(\overline{F}_1(1,0) = -1 \neq \Box, \ \overline{f}_2(0) = -1, \ \overline{f}_1(1) = -1, \ \overline{f}_2(-1) = -1).$

Consider

C:
$$y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)$$
.

Then C is **ELS** (exercise! — use that f(0) = 2, f(1) = -6, f(-2) = -12).

We compute $\text{Res}(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for d < 0.

Also $D_d(\mathbb{F}_3) = \emptyset$ and so $D_d(\mathbb{Q}_3) = \emptyset$ for $d \equiv 1 \mod 3$ $(\overline{F}_1(1,0) = -1 \neq \Box, \ \overline{f}_2(0) = -1, \ \overline{f}_1(1) = -1, \ \overline{f}_2(-1) = -1).$

Conclusion: For all $d \in S$, we have that D_d is not ELS, so $C(\mathbb{Q}) = \emptyset$.

Question: What makes our construction work?

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$y_1^2 = f_1(x)$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$y_1^2 = f_1(x)$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form ' $\text{Res}(F_1, F_2) \neq 0$ ') for the finiteness statment.

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$y_1^2 = f_1(x)$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form ' $\text{Res}(F_1, F_2) \neq 0$ ') for the finiteness statment.

(Note: We need (at least one of) deg f_1 and deg f_2 to be even for the cover to be unramified; otherwise it ramifies above infinity.)

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$y_1^2 = f_1(x)$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form ' $\text{Res}(F_1, F_2) \neq 0$ ') for the finiteness statment.

(Note: We need (at least one of) deg f_1 and deg f_2 to be even for the cover to be unramified; otherwise it ramifies above infinity.)

The result extends to general unramified double covers.

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified double cover $\pi: D \to C$.

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified double cover $\pi: D \to C$. Then the set $Sel(\pi)$ of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d: D_d \to C$ is the corresponding twist of π , is finite and computable,

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified double cover $\pi: D \to C$. Then the set $Sel(\pi)$ of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d: D_d \to C$ is the corresponding twist of π , is finite and computable, and we have

 $C(\mathbb{Q}) = \bigcup_{d \in Sel(\pi)} \pi_d(D_d(\mathbb{Q})).$

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified double cover $\pi: D \to C$. Then the set $Sel(\pi)$ of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d: D_d \to C$ is the corresponding twist of π , is finite and computable, and we have

$$C(\mathbb{Q}) = \bigcup_{d \in \mathsf{Sel}(\pi)} \pi_d \big(\mathsf{D}_d(\mathbb{Q}) \big) \,.$$

In particular, if $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified double cover $\pi: D \to C$. Then the set $Sel(\pi)$ of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d: D_d \to C$ is the corresponding twist of π , is finite and computable, and we have

$$C(\mathbb{Q}) = \bigcup_{d \in \mathsf{Sel}(\pi)} \pi_d \big(\mathsf{D}_d(\mathbb{Q}) \big)$$

In particular, if $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

The set $Sel(\pi)$ is called the Selmer set of π .

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} .

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering

that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(C) \subset \overline{\mathbb{Q}}(D)$ of function fields is a Galois extension (\iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π).

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering

that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(\mathbb{C}) \subset \overline{\mathbb{Q}}(\mathbb{D})$ of function fields is a Galois extension (\iff the group of deck transformations of $\mathbb{D}(\mathbb{C}) \to \mathbb{C}(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(C) \subset \overline{\mathbb{Q}}(D)$ of function fields is a Galois extension (\iff the group of deck transformations of $D(\mathbb{C}) \rightarrow C(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi': D' \to C$ that over $\overline{\mathbb{Q}}$ is isomorphic to π : there is an isomorphism $\phi: D_{\overline{\mathbb{Q}}} \to D'_{\overline{\mathbb{Q}}}$ such that $\pi' \circ \phi = \pi$.

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(\mathbb{C}) \subset \overline{\mathbb{Q}}(\mathbb{D})$ of function fields is a Galois extension (\iff the group of deck transformations of $\mathbb{D}(\mathbb{C}) \to \mathbb{C}(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi': D' \to C$ that over $\overline{\mathbb{Q}}$ is isomorphic to π : there is an isomorphism $\phi: D_{\overline{\mathbb{Q}}} \to D'_{\overline{\mathbb{Q}}}$ such that $\pi' \circ \phi = \pi$.

Twists of π are classified by the elements of $H^1(\mathbb{Q}, Aut(\pi))$.

Not every curve over \mathbb{Q} allows unramified double covers over \mathbb{Q} . However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(\mathbb{C}) \subset \overline{\mathbb{Q}}(\mathbb{D})$ of function fields is a Galois extension (\iff the group of deck transformations of $\mathbb{D}(\mathbb{C}) \to \mathbb{C}(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi': D' \to C$ that over $\overline{\mathbb{Q}}$ is isomorphic to π : there is an isomorphism $\phi: D_{\overline{\mathbb{Q}}} \to D'_{\overline{\mathbb{Q}}}$ such that $\pi' \circ \phi = \pi$.

Twists of π are classified by the elements of $H^1(\mathbb{Q}, Aut(\pi))$. (For example, $H^1(\mathbb{Q}, \{\pm 1\}) \cong \mathbb{Q}^{\times}/squares \cong \{squarefree integers\}.$)

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$.

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $Sel(\pi)$ of $\xi \in H^1(\mathbb{Q}, Aut(\pi))$ such that D_{ξ} is ELS, where $\pi_{\xi}: D_{\xi} \to C$ is the corresponding twist of π , is finite and computable,

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $Sel(\pi)$ of $\xi \in H^1(\mathbb{Q}, Aut(\pi))$ such that D_{ξ} is ELS, where $\pi_{\xi}: D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

 $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (\mathsf{D}_{\xi}(\mathbb{Q})).$

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $Sel(\pi)$ of $\xi \in H^1(\mathbb{Q}, Aut(\pi))$ such that D_{ξ} is ELS, where $\pi_{\xi}: D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (\mathsf{D}_{\xi}(\mathbb{Q})) \,.$$

In particular, if $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
The General Descent Theorem

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $Sel(\pi)$ of $\xi \in H^1(\mathbb{Q}, Aut(\pi))$ such that D_{ξ} is ELS, where $\pi_{\xi}: D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (\mathsf{D}_{\xi}(\mathbb{Q}))$$

In particular, if $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

As before, the set $Sel(\pi)$ is called the Selmer set of π .

The General Descent Theorem

Theorem.

Let C and D be nice curves over \mathbb{Q} such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $Sel(\pi)$ of $\xi \in H^1(\mathbb{Q}, Aut(\pi))$ such that D_{ξ} is ELS, where $\pi_{\xi}: D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (\mathsf{D}_{\xi}(\mathbb{Q}))$$

In particular, if $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

As before, the set $Sel(\pi)$ is called the Selmer set of π .

The computability holds 'in principle'.

On Friday, we will see one case in which it is also practical.

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

• If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

- If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in Sel(\pi)$, with coverings $\pi_{\xi} : D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi}(D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in Sel(\pi)}$ is a covering collection for C.

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

- If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in Sel(\pi)$, with coverings $\pi_{\xi} : D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi}(D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in Sel(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in Sel(\pi)$, then we also know $C(\mathbb{Q})$.

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

- If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in Sel(\pi)$, with coverings $\pi_{\xi} : D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi}(D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in Sel(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in Sel(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger).

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

- If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in Sel(\pi)$, with coverings $\pi_{\xi} : D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi}(D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in Sel(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in Sel(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger). But there may be morphisms $\phi: D_{\xi} \to C'$ to other curves. If we can find $C'(\mathbb{Q})$ and this set is finite, then we can compute $D_{\xi}(\mathbb{Q})$:

If we can compute $Sel(\pi)$ for some covering $\pi: D \to C$, then:

- If $Sel(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in Sel(\pi)$, with coverings $\pi_{\xi} : D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi}(D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in Sel(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in Sel(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger). But there may be morphisms $\phi: D_{\xi} \to C'$ to other curves. If we can find $C'(\mathbb{Q})$ and this set is finite, then we can compute $D_{\xi}(\mathbb{Q})$: for each $P \in C'(\mathbb{Q})$, check the fiber $\phi^{-1}(P)$ for rational points.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \ge 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \ge 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \ge 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset$.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \ge 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset$.

In particular, this would imply that the question $C(\mathbb{Q}) = \emptyset$?' is decidable.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \ge 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset.$

In particular, this would imply that the question $C(\mathbb{Q}) = \emptyset$?' is decidable.

On Friday, we will consider $Sel_2(C)$ for C hyperelliptic.