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Conversely, it is easy to show that C(Q) # 0:
Just find a point Py € C(Q)!
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Heuristics

Order all equations yz — f(x) with integral coefficients
of hyperelliptic curves of fixed genus g > 2 by height H(f) = max; |f]-|.
Denote that family by 7.

Expectation/Conjecture.

The set of curves in Fgq with rational points has density zero.
(Bhargava (2013): The (upper) density is 0o(279). More on Friday!)

Proposition.
The set of ELS curves in Fg has a density 84 > 0.

We have 6; ~ 0.85; as g grows, dq gets closer to 1, but limsupdg < 1.
g—0oo

Conclusion: We need a way of proving C(Q) =0 even when C is ELS!
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A Double Cover

Let C: y? = f(x) be hyperelliptic over Q with f € Z[x]
and assume that f = f;f, in Z[x] with (at least one of) degf;, degf; even.

Assume that P = (§,m) € C(Q):  n? =f(&) = f1(E)F2(&).
Then there is a unique squarefree d € Z
such that f(&) = dnf and f,(&) = dnj with ny,m € Q.

Let Dg: dyf = f1(x), dy5 = f2(x) and 7q: Dq — C, (x,y1,12) — (%, dyqy2).
The above then means that P € 714(Dg4(Q)).

Conclusion:

CQ= J ma(Da@).

d squarefree
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Restricting the Twists

We write everything homogeneously:
Dg: dy? =Fi(x,2z),  dy3 = Fa(x,2)

with Fq,F» homogeneous of even degree and coprime.

Now assume that the prime p divides d
and that we have a Qp-rational point on Dy with image (£: () in Pl
We can then assume & and ¢ to be coprime p-adic integers.

Modulo p, we then find

0=dnf=F(&C) and  0=dni=Fy(£0),
so (x— &z is a common linear factor of F; and F,.

This means that p divides the resultant Res(Fy,F,) € Z.
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Digression: The Resultant of Two Binary Forms

Let F and G be two binary forms over a field k:
F(x,2) = fnx™ 4 fr i x™ 1z 4o+ fixz™ 1+ fpz™
G(x%,2) = gnX™ + g 1X" 1z 4+ ...+ g;xz™ + gpz"

Then the (n+m) x (n+m) determinant

fm fq - T fp, 0 -+ 0
0 fm fm—] f1 fo 0 :
0 0 fm T 1 1o
Res(F, G) = m
5 6) Ign  9n—1 g1 go O 0
0 gn  9n—1 - g1 9o O
0 0 gn 9n—1 g1 9o

is the Resultant of F and G.
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he Resultant (2)

The resultant obeys the following rules (exercise!):
e Res(G,F)=(—1)degF)(ded G)Res(F, G).
e Res(F,c)=c99F if ¢ is constant.
e Res(F,—px+ az) =F(«x,p).
e Res(F,GH) = Res(F, G)Res(F H).
(F,G) = Res(F,G + FH) if degF+degH = degG.
(F

oy, G ovy) = det(y)de9dF)(ded G)Res(F, G) for v € GL(2,k).

e Res

e Res

Most importantly:

e Res(FFG)=0if and only if F and G have a common factor.
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A Finiteness Statement

Recall the curve  Dg: dy? =Fi(x,z), dy3 =F(x,z)
and that p|d, Dg(Qp) # 0 together imply p | Res(Fy, F,).

Conclusion: If p | d, but p{Res(F,F,), then Dy is not ELS, so Dgy(Q) = 0.

Proposition.
Let C:y? =f(x)f»(x) as above and set

S={de€Z:d squarefree and Vp: p|d = p|Res(Fy,F,)}.
Then S is finite and

C(Q) = | ma(Pa(@).

deS
In particular: Vd € S: Dg not ELS  implies  C(Q) = (.
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An Example

Consider

2 X+ DR+ x+2) = () (x).

Then C is ELS (exercise! — use that f(0) =2, f(1) = —6, f(—2) = —12).

C:y2 = (—x

We compute Res(F,F) =19, so S ={1,—1,19,—19}.
Since f5(&) >0 for all £ € R, we have D4(R) =10 for d < 0.

Also D4(F3) =0 and so Dg(Q3) =0 for d=1 mod 3
(F1(1,0) ==1#0, £(0) =—1, f1(1) =1, f,(=1) =-1).

Conclusion: For all d € S, we have that Dy is not ELS, so C(Q) = 0.
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General Double Covers

T heorem.

Let C and D be nice curves over Q

such that there is an unramified double cover t: D — C.
Then the set Sel(nt) of squarefree d € Z such that Dy is ELS,
where mty: Dy — C is the corresponding twist of m,

is finite and computable, and we have

CQ= |J m(D4a@).

deSel(m)
In particular, if Sel(nt) =0, then C(Q) = 0.

The set Sel(m) is called the Selmer set of m.
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Twists of 7t are classified by the elements of H'(Q, Aut(n)).
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Let t: D — C be an unramified covering
that is in addition geometrically Galois:

The extension Q(C) ¢ Q(D) of function fields is a Galois extension
( & the group of deck transformations of D(C) — C(C) has order degm).

Note that this is automatic when degm = 2.

A twist of m is a covering n’: D’ — C that over Q is isomorphic to m:

there is an isomorphism ¢: D@ — D@ such that /o ¢ =

Twists of 7t are classified by the elements of H'(Q, Aut(n)).
(For example, H'(Q,{£1}) = Q*/squares £ {squarefree integers}.)
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he General Descent T heorem

T heorem.

Let C and D be nice curves over Q such that there is an unramified
and geometrically Galois covering : D — C.

Then the set Sel(n) of & € H'(Q, Aut(n)) such that D; is ELS,
where 7;: D — C is the corresponding twist of m,

is finite and computable, and we have

C@Q = |J m(DQ).

&eSel(m)
In particular, if Sel(n) = (), then C(Q) = 0.

As before, the set Sel(n) is called the Selmer set of .

The computability holds ‘in principle’.
On Friday, we will see one case in which it is also practical.
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Discussion: Practice

If we can compute Sel(mt) for some covering t: D — C, then:
o If Sel(n) =1, then C(Q) = 0.

e Otherwise, we obtain a finite list of curves D¢, & € Sel(n),
with coverings mg: Dy — C such that C(Q) = Ugcsel(n e (De(Q)):
the family (7g)zcsel(m) IS @ covering collection for C.

If we can determine D¢(Q) for all & € Sel(m), then we also know C(Q).

The D are more complicated than C (for example, the genus is larger).
But there may be morphisms ¢: D — C’ to other curves.

If we can find C/(Q) and this set is finite, then we can compute D¢ (Q):
for each P € C'(Q), check the fiber ¢—1(P) for rational points.
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Discussion: T heory

If C possesses a rational divisor class of degree 1,
then C can be embedded into its Jacobian variety J.

For each n > 2,
we then obtain an unramified and geometrically Galois covering of C
by pulling C back under the multiplication-by-n map of J.

We write Sel,(C) for the associated Selmer set.

Conjecture. C(Q) =0 < In: Sely(C) =10.

In particular, this would imply that the question ‘C(Q) = (7' is decidable.

On Friday, we will consider Sel,(C) for C hyperelliptic,



