

Descent and Covering Collections Part II: Descent Theory

Michael Stoll Universität Bayreuth

NATO Advanced Study Institute Ohrid September 3, 2014

Recall:

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Recall:

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

Recall:

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

This gives a way of showing that $C(\mathbb{Q}) = \emptyset$.

Recall:

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

We have seen on Monday that we can decide whether a given curve is ELS or not.

```
This gives a way of showing that C(\mathbb{Q}) = \emptyset.
```

```
Conversely, it is easy to show that C(\mathbb{Q}) \neq \emptyset:
Just find a point P_0 \in C(\mathbb{Q})!
```
Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_{q} .

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_q .

Expectation/Conjecture.

The set of curves in \mathcal{F}_g with rational points has density zero.

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_q .

Expectation/Conjecture.

The set of curves in \mathcal{F}_{q} with rational points has density zero. (Bhargava (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_q .

Expectation/Conjecture.

The set of curves in \mathcal{F}_{q} with rational points has density zero. (Bhargava (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of ELS curves in \mathcal{F}_q has a density $\delta_q > 0$.

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_q .

Expectation/Conjecture.

The set of curves in \mathcal{F}_{q} with rational points has density zero. (Bhargava (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of ELS curves in \mathcal{F}_q has a density $\delta_q > 0$.

We have $\delta_2 \approx 0.85$; as g grows, δ_g gets closer to 1, but lim sup $\delta_g < 1.$ $a \rightarrow \infty$

Order all equations $y^2 = f(x)$ with integral coefficients of hyperelliptic curves of fixed genus $g\geq 2$ by height $H(f)=\max_{j}|f_{j}|.$ Denote that family by \mathcal{F}_q .

Expectation/Conjecture.

The set of curves in \mathcal{F}_{q} with rational points has density zero. (Bhargava (2013): The (upper) density is $o(2^{-g})$. More on Friday!)

Proposition.

The set of ELS curves in \mathcal{F}_q has a density $\delta_q > 0$.

We have $\delta_2 \approx 0.85$; as g grows, δ_g gets closer to 1, but lim sup $\delta_g < 1.$ $q\rightarrow\infty$

Conclusion: We need a way of proving $C(\mathbb{Q}) = \emptyset$ even when C is **ELS!**

Let $C: y^2 = f(x)$ be hyperelliptic over Q with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Let $C: y^2 = f(x)$ be hyperelliptic over Q with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi) f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let $C: y^2 = f(x)$ be hyperelliptic over Q with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi) f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let D_d : $dy_1^2 = f_1(x), dy_2^2 = f_2(x)$ and π_d : $D_d \to C$, $(x, y_1, y_2) \mapsto (x, dy_1y_2)$. The above then means that $P \in \pi_d(D_d(\mathbb{Q}))$.

Let $C: y^2 = f(x)$ be hyperelliptic over Q with $f \in \mathbb{Z}[x]$ and assume that $f = f_1 f_2$ in $\mathbb{Z}[x]$ with (at least one of) deg f_1 , deg f_2 even.

Assume that $P = (\xi, \eta) \in C(\mathbb{Q})$: $\eta^2 = f(\xi) = f_1(\xi) f_2(\xi)$. Then there is a unique squarefree $d \in \mathbb{Z}$ such that $f_1(\xi) = d\eta_1^2$ and $f_2(\xi) = d\eta_2^2$ with $\eta_1, \eta_2 \in \mathbb{Q}$.

Let D_d : $dy_1^2 = f_1(x), dy_2^2 = f_2(x)$ and π_d : $D_d \to C$, $(x, y_1, y_2) \mapsto (x, dy_1y_2)$. The above then means that $P \in \pi_d(D_d(\mathbb{Q}))$.

Conclusion:

$$
C(\mathbb{Q})=\bigcup_{d \text{ squarefree}}\pi_d\big(D_d(\mathbb{Q})\big)\,.
$$

We write everything homogeneously:

$$
D_d: dy_1^2 = F_1(x, z), \qquad dy_2^2 = F_2(x, z)
$$

with F_1, F_2 homogeneous of even degree and coprime.

We write everything homogeneously:

$$
D_d: dy_1^2 = F_1(x, z), \qquad dy_2^2 = F_2(x, z)
$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides d and that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi:\zeta)$ in $\mathbb{P}^1.$ We can then assume ξ and ζ to be coprime p-adic integers.

We write everything homogeneously:

$$
D_d: dy_1^2 = F_1(x, z), \qquad dy_2^2 = F_2(x, z)
$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides d and that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi:\zeta)$ in $\mathbb{P}^1.$ We can then assume ξ and ζ to be coprime p-adic integers.

Modulo p, we then find

$$
0 \equiv d\eta_1^2 = F_1(\xi, \zeta) \qquad \text{and} \qquad 0 \equiv d\eta_2^2 = F_2(\xi, \zeta),
$$

so $\overline{\zeta}x - \overline{\xi}z$ is a common linear factor of \overline{F}_1 and \overline{F}_2 .

We write everything homogeneously:

$$
D_d: dy_1^2 = F_1(x, z), \qquad dy_2^2 = F_2(x, z)
$$

with F_1, F_2 homogeneous of even degree and coprime.

Now assume that the prime p divides d and that we have a \mathbb{Q}_p -rational point on D_d with image $(\xi:\zeta)$ in $\mathbb{P}^1.$ We can then assume ξ and ζ to be coprime p-adic integers.

Modulo p, we then find

$$
0 \equiv d\eta_1^2 = F_1(\xi, \zeta) \qquad \text{and} \qquad 0 \equiv d\eta_2^2 = F_2(\xi, \zeta) \,,
$$

so $\bar{\zeta}$ x – $\bar{\zeta}$ z is a common linear factor of $\bar{\mathrm{F}}_1$ and $\bar{\mathrm{F}}_2$.

This means that p divides the resultant $Res(F_1, F_2) \in \mathbb{Z}$.

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

 $\begin{array}{c} \hline \end{array}$ $\overline{}$

Res(F, G) = f^m fm−¹ · · · f¹ f⁰ 0 · · · 0

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

Res(F, G) = f^m fm−¹ · · · f¹ f⁰ 0 · · · 0 ...

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

 $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ \vert

Res(F, G) = f^m fm−¹ · · · f¹ f⁰ 0 · · · 0 0 f^m fm−¹ · · · f¹ f⁰ 0

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

 $\begin{array}{c} \hline \end{array}$ $\overline{}$

$$
Res(F,G) = \begin{vmatrix} f_m & f_{m-1} & \cdots & f_1 & f_0 & 0 & \cdots & 0 \\ 0 & f_m & f_{m-1} & \cdots & f_1 & f_0 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & f_m & f_{m-1} & \cdots & f_1 & f_0 \end{vmatrix}
$$

Let F and G be two binary forms over a field k:

$$
F(x, z) = f_m x^m + f_{m-1} x^{m-1} z + \ldots + f_1 x z^{m-1} + f_0 z^m
$$

$$
G(x, z) = g_n x^n + g_{n-1} x^{n-1} z + \ldots + g_1 x z^{n-1} + g_0 z^n
$$

Then the $(n + m) \times (n + m)$ determinant

$$
\text{Res}(F, G) = \left|\begin{array}{cccccc} f_m & f_{m-1} & \cdots & f_1 & f_0 & 0 & \cdots & 0 \\ 0 & f_m & f_{m-1} & \cdots & f_1 & f_0 & 0 & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & f_m & f_{m-1} & \cdots & f_1 & f_0 \\ g_n & g_{n-1} & \cdots & g_1 & g_0 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & g_n & g_{n-1} & \cdots & g_1 & g_0 & 0 \\ 0 & \cdots & 0 & g_n & g_{n-1} & \cdots & g_1 & g_0 \end{array}\right|
$$

is the Resultant of F and G.

The resultant obeys the following rules (exercise!):

• Res $(G, F) = (-1)^{(deg F)(deg G)}$ Res (F, G) .

- Res $(G, F) = (-1)^{(deg F)(deg G)} Res(F, G).$
- Res(F, c) = $c^{deg F}$ if c is constant.

- Res $(G, F) = (-1)^{(deg F)(deg G)} Res(F, G).$
- Res(F, c) = $c^{\text{deg }F}$ if c is constant.
- Res(F, $-\beta x + \alpha z$) = F(α , β).

- Res $(G, F) = (-1)^{(deg F)(deg G)} Res(F, G).$
- Res(F, c) = $c^{\text{deg }F}$ if c is constant.
- Res(F, $-\beta x + \alpha z$) = F(α , β).
- $Res(F, GH) = Res(F, G) Res(F, H)$.

- Res $(G, F) = (-1)^{(deg F)(deg G)}$ Res (F, G) .
- Res(F, c) = $c^{\text{deg }F}$ if c is constant.
- Res(F, $-\beta x + \alpha z$) = F(α , β).
- Res(F, GH) = Res(F, G) Res(F, H).
- Res(F, G) = Res(F, G + FH) if deg F + deg H = deg G.

- Res $(G, F) = (-1)^{(deg F)(deg G)}$ Res (F, G) .
- Res(F, c) = $c^{\text{deg }F}$ if c is constant.
- Res(F, $-\beta x + \alpha z$) = F(α, β).
- $Res(F, GH) = Res(F, G) Res(F, H)$.
- Res(F, G) = Res(F, G + FH) if deg F + deg H = deg G.
- $\bullet \quad \mathsf{Res}(\mathsf{F} \circ \gamma, \mathsf{G} \circ \gamma) = \mathsf{det}(\gamma)^{(\mathsf{deg}\,\mathsf{F})(\mathsf{deg}\,\mathsf{G})} \mathsf{Res}(\mathsf{F},\mathsf{G}) \; \mathsf{for} \; \gamma \in \mathsf{GL}(2,\mathsf{k}).$

The resultant obeys the following rules (exercise!):

- Res $(G, F) = (-1)^{(deg F)(deg G)}$ Res (F, G) .
- Res(F, c) = $c^{\text{deg }F}$ if c is constant.
- Res(F, $-\beta x + \alpha z$) = F(α, β).
- $Res(F, GH) = Res(F, G) Res(F, H)$.
- $Res(F, G) = Res(F, G + FH)$ if deg $F + deg H = deg G$.
- $\bullet \quad \mathsf{Res}(\mathsf{F} \circ \gamma, \mathsf{G} \circ \gamma) = \mathsf{det}(\gamma)^{(\mathsf{deg}\,\mathsf{F})(\mathsf{deg}\,\mathsf{G})} \mathsf{Res}(\mathsf{F},\mathsf{G}) \; \mathsf{for} \; \gamma \in \mathsf{GL}(2,\mathsf{k}).$

Most importantly:

 $Res(F, G) = 0$ if and only if F and G have a common factor.

A Finiteness Statement

Recall the curve D_d : $dy_1^2 = F_1(x, z)$, $dy_2^2 = F_2(x, z)$ and that $p | d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p | Res(F_1, F_2)$.

A Finiteness Statement

Recall the curve D_d : $dy_1^2 = F_1(x, z)$, $dy_2^2 = F_2(x, z)$ and that $p | d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p | Res(F_1, F_2)$.

Conclusion: If $p | d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

A Finiteness Statement

Recall the curve D_d : $dy_1^2 = F_1(x, z)$, $dy_2^2 = F_2(x, z)$ and that $p | d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p | Res(F_1, F_2)$.

Conclusion: If $p | d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x) f_2(x)$ as above and set

 $S = \{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p : p \mid d \Rightarrow p \mid Res(F_1, F_2) \}.$
A Finiteness Statement

Recall the curve D_d : $dy_1^2 = F_1(x, z)$, $dy_2^2 = F_2(x, z)$ and that $p | d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p | Res(F_1, F_2)$.

Conclusion: If $p | d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x) f_2(x)$ as above and set

 $S = \{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p : p \mid d \Rightarrow p \mid Res(F_1, F_2) \}.$

Then S is finite and

$$
C(\mathbb{Q})=\bigcup_{d\in S}\pi_d\big(D_d(\mathbb{Q})\big)\,.
$$

A Finiteness Statement

Recall the curve D_d : $dy_1^2 = F_1(x, z)$, $dy_2^2 = F_2(x, z)$ and that $p | d$, $D_d(\mathbb{Q}_p) \neq \emptyset$ together imply $p | Res(F_1, F_2)$.

Conclusion: If $p | d$, but $p \nmid \text{Res}(F_1, F_2)$, then D_d is not ELS, so $D_d(\mathbb{Q}) = \emptyset$.

Proposition.

Let $C: y^2 = f_1(x) f_2(x)$ as above and set

 $S = \{ d \in \mathbb{Z} : d \text{ squarefree and } \forall p : p \mid d \Rightarrow p \mid Res(F_1, F_2) \}.$

Then S is finite and

$$
C(\mathbb{Q})=\bigcup_{d\in S}\pi_d\big(D_d(\mathbb{Q})\big)\,.
$$

In particular: $\forall d \in S: D_d$ not ELS implies $C(\mathbb{Q}) = \emptyset$.

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

Consider

$$
C: y2 = (-x2 - x + 1)(x4 + x3 + x2 + x + 2) = f1(x)f2(x).
$$

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \begin{vmatrix}\n-1 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 & 1 & 2\n\end{vmatrix}
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \begin{vmatrix}\n-1 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
0 & 0 & 2 & 1 & 2 & 0 \\
0 & 0 & 0 & 2 & 1 & 2\n\end{vmatrix}
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

 $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \begin{vmatrix}\n-1 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 & 1 & 2\n\end{vmatrix} = \begin{vmatrix}\n-1 & -1 & 1 & 0 \\
0 & -1 & -1 & 1 \\
2 & 1 & 2 & 0 \\
0 & 2 & 1 & 2\n\end{vmatrix}
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

 $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$ $\begin{array}{c} \hline \end{array}$ $\begin{array}{c} \hline \end{array}$ $\overline{}$

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \begin{vmatrix}\n-1 & -1 & 1 & 0 & 0 & 0 \\
0 & -1 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & 1 & 0 \\
0 & 0 & 0 & -1 & -1 & 1 \\
1 & 1 & 1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1 & 1 & 2\n\end{vmatrix} = \begin{vmatrix}\n-1 & -1 & 1 & 0 \\
0 & -1 & -1 & 1 \\
0 & -1 & 4 & 0 \\
0 & 0 & -1 & 4\n\end{vmatrix}
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \left| \begin{array}{rrrrr} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{array} \right| = \left| \begin{array}{rrrrr} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & -1 & 4 \end{array} \right|
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1, F_2) = \begin{vmatrix} -1 & -1 & 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 & 1 & 0 \\ 0 & 0 & 0 & -1 & -1 & 1 \\ 1 & 1 & 1 & 1 & 2 & 0 \\ 0 & 1 & 1 & 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} -1 & -1 & 1 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 5 & -1 \\ 0 & 0 & -1 & 4 \end{vmatrix} = \begin{vmatrix} 5 & -1 \\ -1 & 4 \end{vmatrix}
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

$$
Res(F_1,F_2)=\left|\begin{array}{cccccc}-1&-1&1&0&0&0\\0&-1&-1&1&0&0\\0&0&-1&-1&1&0\\0&0&0&-1&-1&1\\1&1&1&1&2&0\\0&1&1&1&1&2\end{array}\right|=\left|\begin{array}{cccc}-1&-1&1&0\\0&-1&-1&1\\0&0&5&-1\\0&0&-1&4\end{array}\right|=\left|\begin{array}{cc}5&-1\\-1&4\end{array}\right|=19.
$$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

We compute $Res(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

We compute $Res(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for $d < 0$.

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

We compute $Res(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for $d < 0$.

Also $D_d(\mathbb{F}_3) = \emptyset$ and so $D_d(\mathbb{Q}_3) = \emptyset$ for $d \equiv 1 \mod 3$ $(\overline{F}_1(1,0) = -1 \neq \Box, \overline{f}_2(0) = -1, \overline{f}_1(1) = -1, \overline{f}_2(-1) = -1).$

Consider

C:
$$
y^2 = (-x^2 - x + 1)(x^4 + x^3 + x^2 + x + 2) = f_1(x)f_2(x)
$$
.

Then C is ELS (exercise! — use that $f(0) = 2$, $f(1) = -6$, $f(-2) = -12$).

We compute $Res(F_1, F_2) = 19$, so $S = \{1, -1, 19, -19\}$.

Since $f_2(\xi) > 0$ for all $\xi \in \mathbb{R}$, we have $D_d(\mathbb{R}) = \emptyset$ for $d < 0$.

Also $D_d(\mathbb{F}_3) = \emptyset$ and so $D_d(\mathbb{Q}_3) = \emptyset$ for $d \equiv 1 \mod 3$ $(\overline{F}_1(1,0) = -1 \neq \Box, \overline{f}_2(0) = -1, \overline{f}_1(1) = -1, \overline{f}_2(-1) = -1).$

Conclusion: For all $d \in S$, we have that D_d is not ELS, so $C(\mathbb{Q}) = \emptyset$.

Question: What makes our construction work?

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$
y_1^2 = f_1(x)
$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$
y_1^2 = f_1(x)
$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form 'Res(F_1, F_2) \neq 0') for the finiteness statment.

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$
y_1^2 = f_1(x)
$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form 'Res(F_1, F_2) \neq 0') for the finiteness statment.

(Note: We need (at least one of) deg f_1 and deg f_2 to be even for the cover to be unramified; otherwise it ramifies above infinity.)

Question: What makes our construction work?

Answer: The morphism $\pi: D \to C$, $(x, y_1, y_2) \mapsto (x, y_1y_2)$, where

D:
$$
y_1^2 = f_1(x)
$$
, $y_2^2 = f_2(x)$,

is an unramified double cover.

This is used (in the form 'Res(F_1, F_2) \neq 0') for the finiteness statment.

(Note: We need (at least one of) deg f_1 and deg f_2 to be even for the cover to be unramified; otherwise it ramifies above infinity.)

The result extends to general unramified double covers.

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified double cover $\pi: D \to C$.

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified double cover $\pi: D \to C$. Then the set Sel(π) of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d : D_d \to C$ is the corresponding twist of π , is finite and computable,

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified double cover $\pi: D \to C$. Then the set Sel(π) of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where $\pi_d : D_d \to C$ is the corresponding twist of π , is finite and computable, and we have

> $C(\mathbb{Q}) = \bigcup \pi_d(D_d(\mathbb{Q})).$ $d \in Sel(\pi)$

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified double cover $\pi: D \to C$. Then the set Sel(π) of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where π_d : $D_d \rightarrow C$ is the corresponding twist of π , is finite and computable, and we have

$$
C(\mathbb{Q})=\bigcup_{d\in Sel(\pi)} \pi_d\big(D_d(\mathbb{Q})\big)\,.
$$

In particular, if $\text{Sel}(\pi) = \emptyset$, then $\text{C}(\mathbb{Q}) = \emptyset$.

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified double cover $\pi: D \to C$. Then the set Sel(π) of squarefree $d \in \mathbb{Z}$ such that D_d is ELS, where π_d : $D_d \rightarrow C$ is the corresponding twist of π , is finite and computable, and we have

$$
C(\mathbb{Q})=\bigcup_{d\in Sel(\pi)} \pi_d\big(D_d(\mathbb{Q})\big)\,.
$$

In particular, if $\text{Sel}(\pi) = \emptyset$, then $\text{C}(\mathbb{Q}) = \emptyset$.

The set Sel(π) is called the Selmer set of π .

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$.

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{\mathbb{Q}}(C) \subset \overline{\mathbb{Q}}(D)$ of function fields is a Galois extension

 $($ \iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π).

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{Q}(C) \subset \overline{Q}(D)$ of function fields is a Galois extension $($ \iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{Q}(C) \subset \overline{Q}(D)$ of function fields is a Galois extension $($ \iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi' : D' \to C$ that over \overline{Q} is isomorphic to π : there is an isomorphism $\phi\colon \mathrm{D}_{\bar{\mathbb{Q}}} \to \mathrm{D}_{\bar{\mathbb{Q}}}^\prime$ such that $\pi^\prime \circ \phi = \pi.$

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{Q}(C) \subset \overline{Q}(D)$ of function fields is a Galois extension $($ \iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi' : D' \to C$ that over \overline{Q} is isomorphic to π : there is an isomorphism $\phi\colon \mathrm{D}_{\bar{\mathbb{Q}}} \to \mathrm{D}_{\bar{\mathbb{Q}}}^\prime$ such that $\pi^\prime \circ \phi = \pi.$

Twists of π are classified by the elements of $H^1(\mathbb{Q}, \mathsf{Aut}(\pi))$.

Not every curve over $\mathbb Q$ allows unramified double covers over $\mathbb Q$. However, we can generalize the preceding theorem to more general covers.

Let $\pi: D \to C$ be an unramified covering that is in addition geometrically Galois:

The extension $\overline{Q}(C) \subset \overline{Q}(D)$ of function fields is a Galois extension $($ \iff the group of deck transformations of $D(\mathbb{C}) \to C(\mathbb{C})$ has order deg π). Note that this is automatic when deg $\pi = 2$.

A twist of π is a covering $\pi' : D' \to C$ that over \overline{Q} is isomorphic to π : there is an isomorphism $\phi\colon \mathrm{D}_{\bar{\mathbb{Q}}} \to \mathrm{D}_{\bar{\mathbb{Q}}}^\prime$ such that $\pi^\prime \circ \phi = \pi.$

Twists of π are classified by the elements of $H^1(\mathbb{Q}, \mathsf{Aut}(\pi))$. (For example, $H^1(\mathbb{Q}, \{\pm 1\}) \cong \mathbb{Q}^\times$ /squares \cong {squarefree integers}.)

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$.

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $\mathsf{Sel}(\pi)$ of $\xi \in \mathsf{H}^1(\mathbb{Q}, \mathsf{Aut}(\pi))$ such that D_ξ is $\mathsf{ELS},$ where $\pi_{\xi} \colon D_{\xi} \to C$ is the corresponding twist of π , is finite and computable,

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $\mathsf{Sel}(\pi)$ of $\xi \in \mathsf{H}^1(\mathbb{Q}, \mathsf{Aut}(\pi))$ such that D_ξ is $\mathsf{ELS},$ where $\pi_{\xi} \colon D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

> $C(\mathbb{Q}) = \bigcup \pi_{\xi}(D_{\xi}(\mathbb{Q})).$ $\xi \in Sel(\pi)$

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $\mathsf{Sel}(\pi)$ of $\xi \in \mathsf{H}^1(\mathbb{Q}, \mathsf{Aut}(\pi))$ such that D_ξ is $\mathsf{ELS},$ where $\pi_{\xi} \colon D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$
C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi} \big(D_{\xi}(\mathbb{Q})\big) .
$$

In particular, if $\text{Sel}(\pi) = \emptyset$, then $\text{C}(\mathbb{Q}) = \emptyset$.
The General Descent Theorem

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $\mathsf{Sel}(\pi)$ of $\xi \in \mathsf{H}^1(\mathbb{Q}, \mathsf{Aut}(\pi))$ such that D_ξ is $\mathsf{ELS},$ where $\pi_{\xi} \colon D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$
C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi} \big(D_{\xi}(\mathbb{Q})\big) .
$$

In particular, if $\text{Sel}(\pi) = \emptyset$, then $\text{C}(\mathbb{Q}) = \emptyset$.

As before, the set $\text{Sel}(\pi)$ is called the Selmer set of π .

The General Descent Theorem

Theorem.

Let C and D be nice curves over $\mathbb Q$ such that there is an unramified and geometrically Galois covering $\pi: D \to C$. Then the set $\mathsf{Sel}(\pi)$ of $\xi \in \mathsf{H}^1(\mathbb{Q}, \mathsf{Aut}(\pi))$ such that D_ξ is $\mathsf{ELS},$ where $\pi_{\xi} \colon D_{\xi} \to C$ is the corresponding twist of π , is finite and computable, and we have

$$
C(\mathbb{Q}) = \bigcup_{\xi \in Sel(\pi)} \pi_{\xi} \big(D_{\xi}(\mathbb{Q})\big) .
$$

In particular, if $\text{Sel}(\pi) = \emptyset$, then $\text{C}(\mathbb{Q}) = \emptyset$.

As before, the set $\mathsf{Sel}(\pi)$ is called the Selmer set of π .

The computability holds 'in principle'.

On Friday, we will see one case in which it is also practical.

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

• If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

- If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in \mathsf{Sel}(\pi)$, with coverings $\pi_{\xi} \colon D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in \mathsf{Sel}(\pi)}$ is a covering collection for C.

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

- If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in \mathsf{Sel}(\pi)$, with coverings $\pi_{\xi} \colon D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in \mathsf{Sel}(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in \mathsf{Sel}(\pi)$, then we also know $C(\mathbb{Q})$.

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

- If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in \mathsf{Sel}(\pi)$, with coverings $\pi_{\xi} \colon D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in \mathsf{Sel}(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in \mathsf{Sel}(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger).

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

- If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in \mathsf{Sel}(\pi)$, with coverings $\pi_{\xi} \colon D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in \mathsf{Sel}(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in \mathsf{Sel}(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger). But there may be morphisms $\phi: D_{\xi} \to C'$ to other curves. If we can find $\mathsf{C}'(\mathbb{Q})$ and this set is finite, then we can compute $\mathsf{D}_\xi(\mathbb{Q})$:

If we can compute Sel(π) for some covering $\pi: D \to C$, then:

- If Sel $(\pi) = \emptyset$, then $C(\mathbb{Q}) = \emptyset$.
- Otherwise, we obtain a finite list of curves D_{ξ} , $\xi \in \mathsf{Sel}(\pi)$, with coverings $\pi_{\xi} \colon D_{\xi} \to C$ such that $C(\mathbb{Q}) = \bigcup_{\xi \in \mathsf{Sel}(\pi)} \pi_{\xi} (D_{\xi}(\mathbb{Q}))$: the family $(\pi_{\xi})_{\xi \in \mathsf{Sel}(\pi)}$ is a covering collection for C.

If we can determine $D_{\xi}(\mathbb{Q})$ for all $\xi \in \mathsf{Sel}(\pi)$, then we also know $C(\mathbb{Q})$.

The D_{ξ} are more complicated than C (for example, the genus is larger). But there may be morphisms $\phi: D_{\xi} \to C'$ to other curves. If we can find $\mathsf{C}'(\mathbb{Q})$ and this set is finite, then we can compute $\mathsf{D}_\xi(\mathbb{Q})$: for each $P \in C'(\mathbb{Q})$, check the fiber $\varphi^{-1}(P)$ for rational points.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \geq 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \geq 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \geq 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset$.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n \geq 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset$.

In particular, this would imply that the question $C(\mathbb{Q}) = \emptyset$?' is decidable.

If C possesses a rational divisor class of degree 1, then C can be embedded into its Jacobian variety J.

For each $n > 2$, we then obtain an unramified and geometrically Galois covering of C by pulling C back under the multiplication-by-n map of J. We write $Sel_n(C)$ for the associated Selmer set.

Conjecture. $C(\mathbb{Q}) = \emptyset \iff \exists n: Sel_n(C) = \emptyset$.

In particular, this would imply that the question ' $C(\mathbb{Q}) = \emptyset$?' is decidable.

On Friday, we will consider $Sel_2(C)$ for C hyperelliptic.