

Descent and Covering Collections Part I: Local Solubility

Michael Stoll Universität Bayreuth

NATO Advanced Study Institute Ohrid September 1, 2014

Hyperelliptic Curves (1)

Let k be a field with $char(k) \neq 2$.

A **hyperelliptic curve** over k is the smooth projective curve associated to an affine plane curve given by an equation of the form

$$
y^2 = f(x) = f_n x^n + f_{n-1} x^{n-1} + \ldots + f_1 x + f_0
$$

with $f \in k[x]$ squarefree (i.e., disc(f) $\neq 0$).

Usually one requires that deg(f) \geq 5.

Hyperelliptic Curves (1)

Let k be a field with $char(k) \neq 2$.

A **hyperelliptic curve** over k is the smooth projective curve associated to an affine plane curve given by an equation of the form

$$
y^{2} = f(x) = f_{n}x^{n} + f_{n-1}x^{n-1} + \ldots + f_{1}x + f_{0}
$$

with $f \in k[x]$ squarefree (i.e., disc(f) $\neq 0$). Usually one requires that deg(f) \geq 5.

We write

$$
C\colon y^2=f(x)
$$

to denote the projective curve C.

Hyperelliptic Curves (2)

A more abstract definition (that works over any field k) is as follows.

A hyperelliptic curve over k is a nice $(=$ smooth, projective and geometrically irreducible) curve C over k with a map $\pi: C \to \mathbb{P}^1$ of degree 2, which is defined over k.

Hyperelliptic Curves (2)

A more abstract definition (that works over any field k) is as follows.

A hyperelliptic curve over k is a nice $(=$ smooth, projective and geometrically irreducible) curve C over k with a map $\pi: C \to \mathbb{P}^1$ of degree 2, which is defined over k.

Writing $k(x)$ for the function field of \mathbb{P}^1_k k , the function field of C is a quadratic extension of $k(x)$, so is of the form $k(x, \sqrt{f(x)})$ if char $(k) \neq 2$. Writing y for $\sqrt{f(x)}$, we obtain the equation $y^2 = f(x)$.

Hyperelliptic Curves (2)

A more abstract definition (that works over any field k) is as follows.

A hyperelliptic curve over k is a nice $(=$ smooth, projective and geometrically irreducible) curve C over k with a map $\pi: C \to \mathbb{P}^1$ of degree 2, which is defined over k.

Writing $k(x)$ for the function field of \mathbb{P}^1_k k , the function field of C is a quadratic extension of $k(x)$, so is of the form $k(x, \sqrt{f(x)})$ if char $(k) \neq 2$. Writing y for $\sqrt{f(x)}$, we obtain the equation $y^2 = f(x)$.

In characteristic 2, one has to consider more general equations of the form

 $y^2 + h(x)y = f(x)$.

Hyperelliptic Curves (3)

Let $C: y^2 = f(x)$ be a hyperelliptic curve. Then

C has genus $g \iff deg(f) \in \{2g + 1, 2g + 2\}.$

So deg(f) \geq 5 corresponds to $g \geq 2$.

Hyperelliptic Curves (3)

Let $C: y^2 = f(x)$ be a hyperelliptic curve. Then

```
C has genus q \iff deg(f) \in \{2q + 1, 2q + 2\}.
```
So deg(f) \geq 5 corresponds to $g \geq 2$.

A smooth projective model of C can be obtained as follows. Let $F \in k[x, z]$ be the binary form of degree $2g + 2$ such that $F(x, 1) = f(x)$. Then y $2 = F(x, z)$

defines C as a curve in the weighted projective plane $\mathbb{P}^2_{1,g+1,1}$.

Hyperelliptic Curves (3)

Let $C: y^2 = f(x)$ be a hyperelliptic curve. Then

```
C has genus q \iff deg(f) \in \{2q + 1, 2q + 2\}.
```
So deg(f) \geq 5 corresponds to $g \geq 2$.

A smooth projective model of C can be obtained as follows. Let $F \in k[x, z]$ be the binary form of degree $2g + 2$ such that $F(x, 1) = f(x)$. Then y $2 = F(x, z)$

defines C as a curve in the weighted projective plane $\mathbb{P}^2_{1,g+1,1}$.

So the points at infinity on C are $\infty_s = (1:s:0)$ where $s^2 = F(1,0) = f_{2g+2}$. There is one point $\infty = \infty_0$ when deg(f) is odd, otherwise there are two (which are k-rational iff the leading coefficient of f is a square in k).

Hyperelliptic Curves (4)

Any (nice) curve C of genus 2 over k is hyperelliptic over k:

The canonical divisor class has degree 2 and 2-dimensional RR space, so gives rise to a double cover $\pi\colon C\to\mathbb P^1.$

Hyperelliptic Curves (4)

Any (nice) curve C of genus 2 over k is hyperelliptic over k:

The canonical divisor class has degree 2 and 2-dimensional RR space, so gives rise to a double cover $\pi\colon C\to\mathbb P^1.$

In general, for $g \geq 2$, the moduli space of hyperelliptic curves of genus g has dimension $2g + 3 - dim GL(2) = 2g - 1$, whereas the moduli space of all curves of genus g has dimension $3g - 3$,

so the locus of hyperelliptic curves is of codimension $g - 2$.

Hyperelliptic Curves (4)

Any (nice) curve C of genus 2 over k is hyperelliptic over k: The canonical divisor class has degree 2 and 2-dimensional RR space, so gives rise to a double cover $\pi\colon C\to\mathbb P^1.$

In general, for $g \ge 2$, the moduli space of hyperelliptic curves of genus g has dimension $2g + 3 - dim GL(2) = 2g - 1$, whereas the moduli space of all curves of genus g has dimension $3g - 3$, so the locus of hyperelliptic curves is of codimension $g - 2$.

Since hyperelliptic curves always have the nontrivial automorphism $\iota: (x, y) \mapsto (x, -y)$ (called the 'hyperelliptic involution'), there can be curves that are non-isomorphic over k, but become isomorphic over \overline{k} .

Rational Points on Hyperelliptic Curves

As usual, we write $C(k)$ for the set of k-rational points on C.

Rational Points on Hyperelliptic Curves

As usual, we write $C(k)$ for the set of k-rational points on C.

We then have for $C: y^2 = f(x)$

 $C(k) = \{(\xi, \eta) \in k^2 : \eta$ if deg(f) is odd; $C(k) = \{(\xi, \eta) \in k^2 : \eta$ if deg(f) is even and $lcf(f) \neq \Box$; $C(k) = \{(\xi, \eta) \in k^2 : \eta^2 = f(\xi)\} \cup \{\infty_s, \infty_{-s}\}\$ if deg(f) is even and $lcf(f) = s^2$.

Rational Points on Hyperelliptic Curves

As usual, we write $C(k)$ for the set of k-rational points on C.

We then have for $C: y^2 = f(x)$

$$
C(k) = \{(\xi, \eta) \in k^2 : \eta^2 = f(\xi)\} \cup \{\infty\}
$$
 if deg(f) is odd;
\n
$$
C(k) = \{(\xi, \eta) \in k^2 : \eta^2 = f(\xi)\}
$$
 if deg(f) is even and lcf(f) $\neq \square$;
\n
$$
C(k) = \{(\xi, \eta) \in k^2 : \eta^2 = f(\xi)\} \cup \{\infty_s, \infty_{-s}\}
$$
 if deg(f) is even and lcf(f) = s².

In the following, we will concentrate on the case $k = \mathbb{Q}$ (or, more generally, an algebraic number field).

The main question will be:

How can we determine the set $C(\mathbb{Q})$?

Recall the following general classification.

Theorem.

Let C be a (nice) curve over $\mathbb Q$ of genus g.

Recall the following general classification.

Theorem.

Let C be a (nice) curve over $\mathbb Q$ of genus g.

(1) [classical] If $g = 0$, then $C(\mathbb{Q}) = \emptyset$ or else $C \cong \mathbb{P}^1$ over \mathbb{Q} .

Recall the following general classification.

Theorem.

Let C be a (nice) curve over $\mathbb Q$ of genus g.

- (1) [classical] If $g = 0$, then $C(\mathbb{Q}) = \emptyset$ or else $C \cong \mathbb{P}^1$ over \mathbb{Q} .
- (2) [Mordell 1922] If $g = 1$, then $C(\mathbb{Q}) = \emptyset$ or else, fixing $P_0 \in C(\mathbb{Q})$, $C(\mathbb{Q})$ is a finitely generated abelian group with zero element P₀ (and (C, P_0) is an elliptic curve over $\mathbb Q$).

Recall the following general classification.

Theorem.

Let C be a (nice) curve over $\mathbb Q$ of genus g.

- (1) [classical] If $g = 0$, then $C(\mathbb{Q}) = \emptyset$ or else $C \cong \mathbb{P}^1$ over \mathbb{Q} .
- (2) [Mordell 1922] If $g = 1$, then $C(\mathbb{Q}) = \emptyset$ or else, fixing $P_0 \in C(\mathbb{Q})$, $C(\mathbb{Q})$ is a finitely generated abelian group with zero element P₀ (and (C, P_0) is an elliptic curve over $\mathbb Q$).
- (3) [Faltings 1983] If $g \geq 2$, then $C(\mathbb{Q})$ is finite.

Recall the following general classification.

Theorem.

Let C be a (nice) curve over $\mathbb Q$ of genus g.

- (1) [classical] If $g = 0$, then $C(\mathbb{Q}) = \emptyset$ or else $C \cong \mathbb{P}^1$ over \mathbb{Q} .
- (2) [Mordell 1922] If $g = 1$, then $C(\mathbb{Q}) = \emptyset$ or else, fixing $P_0 \in C(\mathbb{Q})$, $C(\mathbb{Q})$ is a finitely generated abelian group with zero element P₀ (and (C, P_0) is an elliptic curve over $\mathbb Q$).
- (3) [Faltings 1983] If $g \geq 2$, then $C(\mathbb{Q})$ is finite.

Note that this trichotomy is given by the sign (> 0 , $= 0$, < 0) of the Euler characteristic $2 - 2g$, which is a topological invariant of the Riemann surface $C(\mathbb{C})!$

We will only consider the case $g \ge 2$.

Then $C(\mathbb{Q})$ is finite and so the points can be enumerated in principle.

We will only consider the case $g \geq 2$.

Then $C(\mathbb{Q})$ is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings' Theorem is effective: It is an open problem whether $C(\mathbb{Q})$ is computable in general.

We will only consider the case $g \geq 2$.

Then $C(\mathbb{Q})$ is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings' Theorem is effective: It is an open problem whether $C(\mathbb{Q})$ is computable in general.

For concrete curves C, we may be able to determine $C(\mathbb{Q})$, though.

We will only consider the case $g \geq 2$.

Then $C(\mathbb{Q})$ is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings' Theorem is effective: It is an open problem whether $C(\mathbb{Q})$ is computable in general.

For concrete curves C, we may be able to determine $C(\mathbb{Q})$, though.

We split the problem into two parts:

- (1) Decide whether $C(\mathbb{Q})$ is empty or not!
- (2) If $P_0 \in C(\mathbb{Q})$ is given, determine $C(\mathbb{Q})!$

We will only consider the case $g \geq 2$.

Then $C(\mathbb{Q})$ is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings' Theorem is effective: It is an open problem whether $C(\mathbb{Q})$ is computable in general.

For concrete curves C, we may be able to determine $C(\mathbb{Q})$, though.

We split the problem into two parts:

- (1) Decide whether $C(\mathbb{Q})$ is empty or not!
- (2) If $P_0 \in C(\mathbb{Q})$ is given, determine $C(\mathbb{Q})!$

In this course, we will mainly focus on the first problem.

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not:

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

What about $C: y^2 = -x^6 + 3$?

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

What about $C: y^2 = -x^6 + 3$?

We have $C(\mathbb{R})\neq \emptyset$, but we can still prove that $C(\mathbb{Q}) = \emptyset$:

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

What about $C: y^2 = -x^6 + 3$?

We have $C(\mathbb{R})\neq \emptyset$, but we can still prove that $C(\mathbb{Q})=\emptyset$: Let $\xi\in \mathbb{Q}$.

• If $v_3(\xi) > 0$, then $v_3(-\xi^6 + 3) = 1$, so $-\xi^6 + 3$ cannot be a square;

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

What about $C: y^2 = -x^6 + 3$?

We have $C(\mathbb{R})\neq \emptyset$, but we can still prove that $C(\mathbb{Q})=\emptyset$: Let $\xi\in \mathbb{Q}$.

- If $v_3(\xi) > 0$, then $v_3(-\xi^6 + 3) = 1$, so $-\xi^6 + 3$ cannot be a square;
- if $v_3(\xi) \le 0$, then $3^{-6v_3(\xi)}(-\xi^6 + 3) \equiv -1 \mod 3$; again $-\xi^6 + 3 \ne \Box$.

Since $\mathbb{Q} \subset \mathbb{R}$, we also have $C(\mathbb{Q}) \subset C(\mathbb{R})$, and we can easily check if $C(\mathbb{R}) = \emptyset$ or not: if $C: y^2 = f(x)$, then $C(\mathbb{R}) = \emptyset$ iff f has no real roots and $lcf(f) < 0$.

Example.

Let $C: y^2 = -x^6 - 17$, then $C(\mathbb{R}) = \emptyset$, whence $C(\mathbb{Q}) = \emptyset$.

What about $C: y^2 = -x^6 + 3$?

We have $C(\mathbb{R})\neq \emptyset$, but we can still prove that $C(\mathbb{Q}) = \emptyset$: Let $\xi \in \mathbb{Q}$.

- If $v_3(\xi) > 0$, then $v_3(-\xi^6 + 3) = 1$, so $-\xi^6 + 3$ cannot be a square;
- if $v_3(\xi) \le 0$, then $3^{-6v_3(\xi)}(-\xi^6 + 3) \equiv -1 \mod 3$; again $-\xi^6 + 3 \ne \Box$.

Indeed, this proves that $C(\mathbb{Q}_3) = \emptyset!$

p-adic Numbers (1)

There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

p-adic Numbers (1)

There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

• as a completion of $\mathbb Q$ (in analogy to $\mathbb R$);

p-adic Numbers (1)

There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

- as a completion of $\mathbb Q$ (in analogy to $\mathbb R$);
- as the field of fractions of the projective limit $\mathbb{Z}_p = \lim \mathbb{Z}/p^n\mathbb{Z}$.

 $\frac{1}{\sqrt{2}}$
There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

- as a completion of $\mathbb Q$ (in analogy to $\mathbb R$);
- as the field of fractions of the projective limit $\mathbb{Z}_p = \lim \mathbb{Z}/p^n\mathbb{Z}$.

Define the p-adic absolute value on $\mathbb Q$ by

$$
|\xi|_p=\begin{cases}0 & \text{if }\xi=0;\\ p^{-n}=p^{-\nu_p(\xi)} & \text{if }\xi=p^n\frac{a}{b}\text{ with }p\nmid ab.\end{cases}
$$

 $\frac{1}{\sqrt{2}}$

There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

- as a completion of $\mathbb Q$ (in analogy to $\mathbb R$);
- as the field of fractions of the projective limit $\mathbb{Z}_p = \lim \mathbb{Z}/p^n\mathbb{Z}$.

Define the p-adic absolute value on $\mathbb Q$ by

$$
|\xi|_p=\begin{cases}0 & \text{if }\xi=0;\\ p^{-n}=p^{-\nu_p(\xi)} & \text{if }\xi=p^n\frac{a}{b}\text{ with }p\nmid ab.\end{cases}
$$

 $\frac{1}{\sqrt{2}}$

Then $|\alpha \beta|_p = |\alpha|_p \cdot |\beta|_p$ and $|\alpha + \beta|_p \le \max\{|\alpha|_p, |\beta|_p\} \le |\alpha|_p + |\beta|_p$, so we can define \mathbb{Q}_p as the completion of $\mathbb Q$ with respect to $|\cdot|_p$.

There are two ways of constructing the field \mathbb{Q}_p of p-adic numbers:

- as a completion of $\mathbb Q$ (in analogy to $\mathbb R$);
- as the field of fractions of the projective limit $\mathbb{Z}_p = \lim \mathbb{Z}/p^n\mathbb{Z}$.

Define the p-adic absolute value on $\mathbb Q$ by

$$
|\xi|_p=\begin{cases}0 & \text{if }\xi=0;\\ p^{-n}=p^{-\nu_p(\xi)} & \text{if }\xi=p^n\frac{a}{b}\text{ with }p\nmid ab.\end{cases}
$$

 $\frac{1}{\sqrt{2}}$

Then $|\alpha \beta|_p = |\alpha|_p \cdot |\beta|_p$ and $|\alpha + \beta|_p \le \max\{|\alpha|_p, |\beta|_p\} \le |\alpha|_p + |\beta|_p$, so we can define \mathbb{Q}_p as the completion of $\mathbb Q$ with respect to $|\cdot|_p$.

The closed unit ball $\mathbb{Z}_p = \{ \xi \in \mathbb{Q}_p : |\xi|_p \leq 1 \}$ forms a compact subring; it is the topological closure of $\mathbb Z$ in $\mathbb Q_p$.

It is then easy to check that $p^n{\mathbb Z}_p=\left\{\xi\in {\mathbb Q}_p : |\xi|_p\leq p^{-n}\right\}$ and that $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$.

It is then easy to check that $p^n{\mathbb Z}_p=\left\{\xi\in {\mathbb Q}_p : |\xi|_p\leq p^{-n}\right\}$ and that $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$.

This leads to the description of the ring of p-adic integers as

$$
\mathbb{Z}_p=\lim_{\leftarrow}\mathbb{Z}/p^n\mathbb{Z}\,,
$$

which is more suitable for computations.

It is then easy to check that $p^n{\mathbb Z}_p=\left\{\xi\in {\mathbb Q}_p : |\xi|_p\leq p^{-n}\right\}$ and that $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$.

This leads to the description of the ring of p-adic integers as

$$
\mathbb{Z}_p=\lim_{\leftarrow}\mathbb{Z}/p^n\mathbb{Z}\,,
$$

which is more suitable for computations. We then have

$$
\mathbb{Q}_p = \text{Frac}(\mathbb{Z}_p) = \mathbb{Z}_p\big[\tfrac{1}{p}\big]
$$

It is then easy to check that $p^n{\mathbb Z}_p=\left\{\xi\in {\mathbb Q}_p : |\xi|_p\leq p^{-n}\right\}$ and that $\mathbb{Z}_p/p^n\mathbb{Z}_p \cong \mathbb{Z}/p^n\mathbb{Z}$.

This leads to the description of the ring of p-adic integers as

 $\mathbb{Z}_p = \lim \mathbb{Z}/p^n\mathbb{Z}$, ←

which is more suitable for computations. We then have

$$
\mathbb{Q}_p = \text{Frac}(\mathbb{Z}_p) = \mathbb{Z}_p\big[\tfrac{1}{p}\big],
$$

and we can think of elements of \mathbb{Q}_p as 'Laurent series in p'

$$
\xi=\sum_{n=n_0}^\infty a_n p^n\qquad\text{with }a_n\in\{0,1,\ldots,p-1\}.
$$

It can be shown that $\mathbb R$ and the $\mathbb Q_p$ for all primes p are all the possible completions of Q.

It can be shown that R and the \mathbb{Q}_p for all primes p are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

It can be shown that R and the \mathbb{Q}_p for all primes p are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Obviously, $C(\mathbb{Q})\neq \emptyset$ implies that C is ELS.

It can be shown that R and the \mathbb{Q}_p for all primes p are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Obviously, $C(\mathbb{Q})\neq \emptyset$ implies that C is ELS. The converse is true for $g = 0$ ('Hasse Principle')

It can be shown that R and the \mathbb{Q}_p for all primes p are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Obviously, $C(\mathbb{Q})\neq \emptyset$ implies that C is ELS.

The converse is true for $g = 0$ ('Hasse Principle'), but false in general.

It can be shown that R and the \mathbb{Q}_p for all primes p are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over $\mathbb Q$ is said to be everywhere locally soluble or ELS, if $C(\mathbb{R}) \neq \emptyset$ and $C(\mathbb{Q}_p) \neq \emptyset$ for all primes p.

Obviously, $C(\mathbb{Q})\neq \emptyset$ implies that C is ELS.

The converse is true for $g = 0$ ('Hasse Principle'), but false in general.

Question. Can we decide if a given curve is ELS?

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_p[x]$ be monic; write \overline{f} for its image in $\mathbb{F}_p[x]$.

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_p[x]$ be monic; write \overline{f} for its image in $\mathbb{F}_p[x]$. If $a\in\mathbb{F}_p$ such that $\bar{f}(a)=0$ and $\bar{f}'(a)\neq 0$ (i.e., a is a simple root of \bar{f}),

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_p[x]$ be monic; write \overline{f} for its image in $\mathbb{F}_p[x]$. If $a\in\mathbb{F}_p$ such that $\bar{f}(a)=0$ and $\bar{f}'(a)\neq 0$ (i.e., a is a simple root of \bar{f}), then there is a unique $\alpha \in \mathbb{Z}_p$ with $\bar{\alpha} = \alpha$ and $f(\alpha) = 0$.

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_p[x]$ be monic; write \overline{f} for its image in $\mathbb{F}_p[x]$. If $a\in\mathbb{F}_p$ such that $\bar{f}(a)=0$ and $\bar{f}'(a)\neq 0$ (i.e., a is a simple root of \bar{f}), then there is a unique $\alpha \in \mathbb{Z}_p$ with $\overline{\alpha} = \alpha$ and $f(\alpha) = 0$.

Sketch of proof. Take any α_0 with $\bar{\alpha}_0 = \alpha$ and use Newton iteration. \Box

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_{p}[x]$ be monic; write f for its image in $\mathbb{F}_{p}[x]$. If $a\in\mathbb{F}_p$ such that $\bar{f}(a)=0$ and $\bar{f}'(a)\neq 0$ (i.e., a is a simple root of \bar{f}), then there is a unique $\alpha \in \mathbb{Z}_p$ with $\bar{\alpha} = \alpha$ and $f(\alpha) = 0$.

Sketch of proof. Take any α_0 with $\bar{\alpha}_0 = \alpha$ and use Newton iteration. \Box

Corollary.

Let $\mathcal C$ be a curve over $\mathbb Z_p$ and let $\mathfrak q\in \mathcal C(\mathbb F_p)$ be a smooth point on $\mathcal C\otimes_{\mathbb Z_p}\mathbb F_p.$

An important tool for working with \mathbb{Q}_p is provided by Hensel's Lemma:

Theorem.

Let $f \in \mathbb{Z}_{p}[x]$ be monic; write f for its image in $\mathbb{F}_{p}[x]$. If $a\in\mathbb{F}_p$ such that $\bar{f}(a)=0$ and $\bar{f}'(a)\neq 0$ (i.e., a is a simple root of \bar{f}), then there is a unique $\alpha \in \mathbb{Z}_p$ with $\bar{\alpha} = \alpha$ and $f(\alpha) = 0$.

Sketch of proof. Take any α_0 with $\bar{\alpha}_0 = \alpha$ and use Newton iteration. \Box

Corollary.

Let $\mathcal C$ be a curve over $\mathbb Z_p$ and let $\mathfrak q\in \mathcal C(\mathbb F_p)$ be a smooth point on $\mathcal C\otimes_{\mathbb Z_p}\mathbb F_p.$ Then q lifts to a point $Q \in \mathcal{C}(\mathbb{Q}_p)$ (i.e., $\overline{Q} = q$).

Theorem (Weil).

Let C be a nice curve of genus g over \mathbb{F}_p . Then

 $p+1-2g\sqrt{p} \leq \#C(\mathbb{F}_p) \leq p+1+2g\sqrt{p}.$

Theorem (Weil).

Let C be a nice curve of genus g over \mathbb{F}_p . Then

 $p+1-2g\sqrt{p} \leq \#C(\mathbb{F}_p) \leq p+1+2g\sqrt{p}.$

Corollary.

Let C be a nice curve of genus g over $\mathbb Q$, and let $p \geq 4g^2$ be a prime of good reduction for C. Then $C(\mathbb{Q}_p)\neq \emptyset$.

Theorem (Weil).

Let C be a nice curve of genus g over \mathbb{F}_p . Then

 $p+1-2g\sqrt{p} \leq \#C(\mathbb{F}_p) \leq p+1+2g\sqrt{p}.$

Corollary.

Let C be a nice curve of genus g over $\mathbb Q$, and let $p \geq 4g^2$ be a prime of good reduction for C. Then $C(\mathbb{Q}_p)\neq \emptyset$.

Proof. Let C be a model of C over \mathbb{Z}_p with good reduction. implies p ≥ 2g√
p 2g 2g 2g 2g

Theorem (Weil).

Let C be a nice curve of genus g over \mathbb{F}_p . Then

 $p+1-2g\sqrt{p} \leq \#C(\mathbb{F}_p) \leq p+1+2g\sqrt{p}.$

Corollary.

Let C be a nice curve of genus g over $\mathbb Q$, and let $p \geq 4g^2$ be a prime of good reduction for C. Then $C(\mathbb{Q}_p)\neq \emptyset$.

Proof. Let C be a model of C over \mathbb{Z}_p with good reduction. $p \ge 4g^2$ implies $p \ge 2g\sqrt{p}$, so by Weil, $C(\mathbb{F}_p) \ne \emptyset$.

Theorem (Weil).

Let C be a nice curve of genus g over \mathbb{F}_p . Then

 $p+1-2g\sqrt{p} \leq \#C(\mathbb{F}_p) \leq p+1+2g\sqrt{p}.$

Corollary.

Let C be a nice curve of genus g over $\mathbb Q$, and let $p > 4g^2$ be a prime of good reduction for C. Then $C(\mathbb{Q}_p)\neq \emptyset$.

Proof. Let C be a model of C over \mathbb{Z}_p with good reduction. $p \ge 4g^2$ implies $p \ge 2g\sqrt{p}$, so by Weil, $C(\mathbb{F}_p) \ne \emptyset$. Every point on $C \otimes \mathbb{F}_p$ is smooth, so $C(\mathbb{Q}_p) = C(\mathbb{Q}_p) \neq \emptyset$ by Hensel.

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model C of C over \mathbb{Z}_p .

If $p < 4q^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model C of C over \mathbb{Z}_p .

• If $C(\mathbb{F}_p) = \emptyset$, then $C(\mathbb{Q}_p) = \emptyset$.

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model C of C over \mathbb{Z}_p .

- If $C(\mathbb{F}_p) = \emptyset$, then $C(\mathbb{Q}_p) = \emptyset$.
- If $C(\mathbb{F}_p)$ contains a smooth point, then $C(\mathbb{Q}_p) \neq \emptyset$.

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model $\mathcal C$ of C over $\mathbb Z_p$.

- If $\mathcal{C}(\mathbb{F}_p) = \emptyset$, then $C(\mathbb{Q}_p) = \emptyset$.
- If $C(\mathbb{F}_p)$ contains a smooth point, then $C(\mathbb{Q}_p) \neq \emptyset$.
- Otherwise: for each point $P \in \mathcal{C}(\mathbb{F}_p)$,

'zoom in' at P to get a new model $C_{\rm P}$ and repeat.

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model $\mathcal C$ of C over $\mathbb Z_p$.

- If $\mathcal{C}(\mathbb{F}_p)=\emptyset$, then $C(\mathbb{Q}_p)=\emptyset$.
- If $C(\mathbb{F}_p)$ contains a smooth point, then $C(\mathbb{Q}_p) \neq \emptyset$.
- Otherwise: for each point $P \in \mathcal{C}(\mathbb{F}_p)$, 'zoom in' at P to get a new model $C_{\rm P}$ and repeat.
- If for some P, $\mathcal{C}_{\mathsf{P}}(\mathbb{Q}_{\mathsf{p}}) \neq \emptyset$, then $\mathsf{C}(\mathbb{Q}_{\mathsf{p}}) \neq \emptyset$, else $\mathsf{C}(\mathbb{Q}_{\mathsf{p}}) = \emptyset$.

If $p < 4g^2$ or the curve has bad reduction at p, then we still obtain an algorithm for checking if $C(\mathbb{Q}_p) = \emptyset$:

Start with some model $\mathcal C$ of C over $\mathbb Z_p$.

- If $\mathcal{C}(\mathbb{F}_p)=\emptyset$, then $C(\mathbb{Q}_p)=\emptyset$.
- If $C(\mathbb{F}_p)$ contains a smooth point, then $C(\mathbb{Q}_p) \neq \emptyset$.
- Otherwise: for each point $P \in \mathcal{C}(\mathbb{F}_p)$, 'zoom in' at P to get a new model $C_{\rm P}$ and repeat.
- If for some P, $C_{\mathsf{P}}(\mathbb{Q}_p) \neq \emptyset$, then $C(\mathbb{Q}_p) \neq \emptyset$, else $C(\mathbb{Q}_p) = \emptyset$.

Since we assume that C is smooth,

the 'zooming in' will eventually produce models with smooth fiber over \mathbb{F}_p .

Let

 $C: y^2 = f(x)$

be a hyperelliptic curve of genus g with $f(x) \in \mathbb{Z}[x]$.

Let

 $C: y^2 = f(x)$

be a hyperelliptic curve of genus g with $f(x) \in \mathbb{Z}[x]$.

Then (1) $C(\mathbb{Q}_p) \neq \emptyset$ if $p \geq 4g^2$ and $p \nmid \text{disc}(f)$;

Let

 $C: y^2 = f(x)$

be a hyperelliptic curve of genus g with $f(x) \in \mathbb{Z}[x]$.

Then (1) $C(\mathbb{Q}_p) \neq \emptyset$ if $p \geq 4g^2$ and $p \nmid \text{disc}(f)$; (2) we can decide if $C(\mathbb{R}) \neq \emptyset$;

Let

 $C: y^2 = f(x)$

be a hyperelliptic curve of genus g with $f(x) \in \mathbb{Z}[x]$.

Then

- (1) $C(\mathbb{Q}_p) \neq \emptyset$ if $p \geq 4g^2$ and $p \nmid \text{disc}(f)$;
- (2) we can decide if $C(\mathbb{R})\neq \emptyset$;
- (3) we can decide if $C(\mathbb{Q}_p)\neq \emptyset$

for the finitely many primes p not covered by (1) .
Deciding Local Solubility

Let

 $C: y^2 = f(x)$

be a hyperelliptic curve of genus g with $f(x) \in \mathbb{Z}[x]$.

Then

- (1) $C(\mathbb{Q}_p) \neq \emptyset$ if $p \geq 4g^2$ and $p \nmid \text{disc}(f)$;
- (2) we can decide if $C(\mathbb{R})\neq \emptyset$;
- (3) we can decide if $C(\mathbb{Q}_p)\neq \emptyset$ for the finitely many primes p not covered by (1) .

So we can decide whether C is ELS or not!