UNIVERSITAT
BAYREUTH

V4

Descent and Covering Collections
Part I: Local Solubility

Michael Stoll
Universitat Bayreuth

NATO Advanced Study Institute
Ohrid

September 1, 2014



Hyperelliptic Curves (1)

Let k be a field with char(k) # 2.

A hyperelliptic curve over k is the smooth projective curve
associated to an affine plane curve given by an equation of the form

1

yz = f(x) = fnxn + fn_p(n_ + ...+ fix+ 1)

with f € k[x] squarefree (i.e., disc(f) #0).
Usually one requires that deg(f) > 5.
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1

yz = f(x) = fnxn + fn_p(n_ + ...+ fix+ 1)

with f € k[x] squarefree (i.e., disc(f) #0).
Usually one requires that deg(f) > 5.

We write

to denote the projective curve C.
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Hyperelliptic Curves (2)

A more abstract definition (that works over any field k) is as follows.

A hyperelliptic curve over k is a nice (= smooth, projective
and geometrically irreducible) curve C over k
with a map m: C — P! of degree 2, which is defined over k.

Writing k(x) for the function field of P,

the function field of C is a quadratic extension of k(x),
so is of the form k(x, +/f(x)) if char(k) #£ 2.

Writing y for /f(x), we obtain the equation  y? = f(x).

In characteristic 2, one has to consider more general equations of the form

y? + h(x)y = f(x).
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Hyperelliptic Curves (3)

Let C: y2 =1f(x) be a hyperelliptic curve. Then

C has genus g & deg(f) € {2g+ 1,29 + 2}.

So deg(f) > 5 corresponds to g > 2.

A smooth projective model of C can be obtained as follows.
Let F € k[x,z] be the binary form of degree 2g + 2 such that F(x, 1) = f(x).

Then yz _ F(X, Z)

defines C as a curve in the weighted projective plane IP% MERE
So the points at infinity on C are cos = (1:5:0) where s* = F(1,0) = fy,,:
There is one point co = ooy when deg(f) is odd, otherwise there are two
(which are k-rational iff the leading coefficient of f is a square in k).
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Hyperelliptic Curves (4)

Any (nice) curve C of genus 2 over k is hyperelliptic over k:

The canonical divisor class has degree 2 and 2-dimensional RR space,
SO gives rise to a double cover mt: C — P

In general, for g > 2, the moduli space of hyperelliptic curves of genus g
has dimension 2g+3 —dim GL(2) =2g—1,

whereas the moduli space of all curves of genus g has dimension 3g — 3,
so the locus of hyperelliptic curves is of codimension g — 2.

Since hyperelliptic curves always have the nontrivial automorphism
t: (x,y) — (x,—y) (called the ‘hyperelliptic involution"),

there can be curves that are non-isomorphic over Kk,

but become isomorphic over k.
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Rational Points on Hyperelliptic Curves

As usual, we write C(k) for the set of k-rational points on C.

We then have for C: y? = f(x)

C(k) ={(&m) € k* :n? = f(&)} U{oo} if deg(f) is odd;
C(k) ={(&,n) € kZ:n? = (&)} if deg(f) is even and Icf(f) # OJ;
C(k) ={(&,n) € k? :n? = f(£)} U{oos, 00_s} if deg(f) is even and Icf(f) = s?

In the following, we will concentrate on the case k =0Q
(or, more generally, an algebraic number field).

The main question will be:

How can we determine the set C(Q)?
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General Facts on Rational Points on Curves

Recall the following general classification.

T heorem.

Let C be a (nice) curve over Q of genus g.

(1) [classical] If g =0, then C(Q) =0 or else C = P! over Q.

(2) [Mordell 1922] If g =1, then C(Q) =0 or else, fixing Py € C(Q),
C(Q) is a finitely generated abelian group with zero element P,
(and (C,Py) is an elliptic curve over Q).

(3) [Faltings 1983] If g > 2, then C(Q) is finite.

Note that this trichotomy is given by the sign (>0, =0, < 0)
of the Euler characteristic 2 — 2g,
which is a topological invariant of the Riemann surface C(C)!
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woO Problems

We will only consider the case g > 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:
It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!
(2) If Py € C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.
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and we can easily check if C(R) =0 or not:
if C: yz = f(x), then C(R) =0 iff f has no real roots and lcf(f) < 0.

Example.
Let C: yz = —x®—17, then C(R) =0, whence C(Q) = 0.

What about C:y? = —x®+37

We have C(R) # 0, but we can still prove that C(Q) =0: Let £ Q.
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A Simple Test

Since Q C R, we also have C(Q) c C(R),
and we can easily check if C(R) =0 or not:
if C: yz = f(x), then C(R) =0 iff f has no real roots and lcf(f) < 0.

Example.
Let C: yz = —x®—17, then C(R) =0, whence C(Q) = 0.

What about C:y? = —x®+37

We have C(R) # 0, but we can still prove that C(Q) =0: Let £ Q.
o Ifv3(§) >0, then V3(—E6+3) — 1, so —£°+ 3 cannot be a square:
o if v3(&) <0, then 37V3(8)(—gf 4 3) = —1 mod 3; again —&°+3 £ 0.

Indeed, this proves that C(Q3) = !
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p-adic Numbers (1)

There are two ways of constructing the field Q, of p-adic numbers:
e as a completion of Q (in analogy to R);

e as the field of fractions of the projective limit Z, = |i£1 Z.)p"™ ..

Define the p-adic absolute value on QQ by

o - 10 if &£=0;
P lp T =p ) if £ =p"8 with pfab.

Then |aflp =lalp - |Blp and [« + Bly < max{l«lp, [Blp} < lalp 4 [Blp,
so we can define Qp as the completion of Q with respect to |- |p.

The closed unit ball Z, = {& € Qp : &}, <1} forms a compact subring;
it is the topological closure of Z in Qy.
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It is then easy to check that p"Z, = {& € Qp: &l <p ™}

and that Z,/p"“Zy = Z/p" L.

This leads to the description of the ring of p-adic integers as
Ly = IiLn 7)o",

which is more suitable for computations. We then have

Qp = Frac(Zy) = Z, []lg}



p-adic Numbers (2)

It is then easy to check that p"Z, = {& € Qp: &l <p ™}
and that Z,/p"“Zy = Z/p" L.

This leads to the description of the ring of p-adic integers as
Ly = IiLn 7)o",
which is more suitable for computations. We then have

and we can think of elements of Q, as ‘Laurent series in p’

o

& = Z anp” with an € {0,1,...,p— 1}

n=my
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LLocal Solubility

It can be shown that R and the Qp, for all primes p
are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over Q is said to be everywhere locally soluble or ELS,
if C(R) #0 and C(Qp) # 0 for all primes p.

Obviously, C(Q) # 0 implies that C is ELS.

The converse is true for g =0 (‘Hasse Principle’), but false in general.

Question. Can we decide if a given curve is ELS?



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.
Let f € Zp[x] be monic; write f for its image in Fp[x].



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.
Let f € Zp[x] be monic; write f for its image in Fp[x].
If a € Fp, such that f(a) =0 and f’(a) #0 (i.e., a is a simple root of f),



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.

Let f € Zp[x] be monic; write f for its image in Fp[x].

If a € Fp, such that f(a) =0 and f’(a) #0 (i.e., a is a simple root of f),
then there is a unique o € Zp with @ = a and f(«) = 0.



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.

Let f € Zp[x] be monic; write f for its image in Fp[x].

If a € Fp, such that f(a) =0 and f’(a) #0 (i.e., a is a simple root of f),
then there is a unique « € Zp with o« = a and f(«) = 0.

Sketch of proof. Take any «y with @y = a and use Newton iteration. U



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.

Let f € Zp[x] be monic; write f for its image in Fp[x].

If a € Fp, such that f(a) =0 and f’(a) #0 (i.e., a is a simple root of f),
then there is a unique « € Zp with o« = a and f(«) = 0.

Sketch of proof. Take any «y with @y = a and use Newton iteration. U

Corollary.
Let C be a curve over Zp and let q € C(I,) be a smooth point on C @z, Ip.



Hensel's Lemma

An important tool for working with Qp IS provided by Hensel's Lemma:

Theorem.

Let f € Zp[x] be monic; write f for its image in Fp[x].

If a € Fp, such that f(a) =0 and f’(a) #0 (i.e., a is a simple root of f),
then there is a unique « € Zp with o« = a and f(«) = 0.

Sketch of proof. Take any «y with @y = a and use Newton iteration. U
Corollary.

Let C be a curve over Zp and let q € C(I,) be a smooth point on C @z, Ip.
Then q lifts to a point Q € C(Qp) (i.e., Q = q).
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Checking for p-adic Points (1)

Theorem (Weil).
Let C be a nice curve of genus g over [,. Then

p+1—2gyp <#C(Fp) <p+1+2g9Vp.

Corollary.

Let C be a nice curve of genus g over Q,
and let p > 4g? be a prime of good reduction for C.
Then C(Qp) # 0.

Proof. Let C be a model of C over Z, with good reduction.
p > 4g? implies p > 2g./p, so by Weil, C(Fp) # 0.
Every point on C ® Fp is smooth, so C(Qp) =C(Qp) # 0 by Hensel.
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Checking for p-adic Points (2)

If p< 492 or the curve has bad reduction at p,
then we still obtain an algorithm for checking if C(Qp) = 0:

Start with some model C of C over Zy.
o If C(Fp) =0, then C(Qp) = 0.
o If C(Fy) contains a smooth point, then C(Qp) # 0.
o Otherwise: for each point P € C(IFp),
‘zoom in" at P to get a new model Cp and repeat.
e If for some P, Cp(Qp) # 0, then C(Qp) #0, else C(Qp) = 0.

Since we assume that C is smooth,
the ‘zooming in’ will eventually produce models with smooth fiber over IFp.
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Deciding Local Solubility

Let
C:y? = f(x)

be a hyperelliptic curve of genus g with f(x) € Z[x].

Then
(1) C(Qp) # 0 if p > 4g® and p 1 disc(f);
(2) we can decide if C(R) # 0;

(3) we can decide if C(Qp) # 0
for the finitely many primes p not covered by (1).

So we can decide whether C is ELS or not!



