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Hyperelliptic Curves (1)

Let k be a field with char(k) 6= 2.

A hyperelliptic curve over k is the smooth projective curve

associated to an affine plane curve given by an equation of the form

y2 = f(x) = fnx
n + fn−1x

n−1 + . . .+ f1x+ f0

with f ∈ k[x] squarefree (i.e., disc(f) 6= 0).

Usually one requires that deg(f) ≥ 5.

We write

C : y2 = f(x)

to denote the projective curve C.
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Hyperelliptic Curves (2)

A more abstract definition (that works over any field k) is as follows.

A hyperelliptic curve over k is a nice (= smooth, projective

and geometrically irreducible) curve C over k

with a map π : C→ P1 of degree 2, which is defined over k.

Writing k(x) for the function field of P1k,
the function field of C is a quadratic extension of k(x),

so is of the form k(x,
√
f(x)) if char(k) 6= 2.

Writing y for
√
f(x), we obtain the equation y2 = f(x).

In characteristic 2, one has to consider more general equations of the form

y2 + h(x)y = f(x) .
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Hyperelliptic Curves (3)

Let C : y2 = f(x) be a hyperelliptic curve. Then

C has genus g ⇐⇒ deg(f) ∈ {2g+ 1, 2g+ 2} .

So deg(f) ≥ 5 corresponds to g ≥ 2.

A smooth projective model of C can be obtained as follows.

Let F ∈ k[x, z] be the binary form of degree 2g+ 2 such that F(x, 1) = f(x).

Then y2 = F(x, z)

defines C as a curve in the weighted projective plane P21,g+1,1.

So the points at infinity on C are ∞s = (1 : s : 0) where s2 = F(1, 0) = f2g+2:

There is one point ∞ =∞0 when deg(f) is odd, otherwise there are two

(which are k-rational iff the leading coefficient of f is a square in k).
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Hyperelliptic Curves (4)

Any (nice) curve C of genus 2 over k is hyperelliptic over k:

The canonical divisor class has degree 2 and 2-dimensional RR space,

so gives rise to a double cover π : C→ P1.

In general, for g ≥ 2, the moduli space of hyperelliptic curves of genus g

has dimension 2g+ 3− dim GL(2) = 2g− 1,

whereas the moduli space of all curves of genus g has dimension 3g− 3,

so the locus of hyperelliptic curves is of codimension g− 2.

Since hyperelliptic curves always have the nontrivial automorphism

ι : (x, y) 7→ (x,−y) (called the ‘hyperelliptic involution’),

there can be curves that are non-isomorphic over k,

but become isomorphic over k̄.
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Rational Points on Hyperelliptic Curves

As usual, we write C(k) for the set of k-rational points on C.

We then have for C : y2 = f(x)

C(k) = {(ξ, η) ∈ k2 : η2 = f(ξ)} ∪ {∞} if deg(f) is odd;

C(k) = {(ξ, η) ∈ k2 : η2 = f(ξ)} if deg(f) is even and lcf(f) 6= �;

C(k) = {(ξ, η) ∈ k2 : η2 = f(ξ)} ∪ {∞s,∞−s} if deg(f) is even and lcf(f) = s2.

In the following, we will concentrate on the case k = Q
(or, more generally, an algebraic number field).

The main question will be:

How can we determine the set C(Q)?
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General Facts on Rational Points on Curves

Recall the following general classification.

Theorem.

Let C be a (nice) curve over Q of genus g.

(1) [classical] If g = 0, then C(Q) = ∅ or else C ∼= P1 over Q.

(2) [Mordell 1922] If g = 1, then C(Q) = ∅ or else, fixing P0 ∈ C(Q),

C(Q) is a finitely generated abelian group with zero element P0
(and (C, P0) is an elliptic curve over Q).

(3) [Faltings 1983] If g ≥ 2, then C(Q) is finite.

Note that this trichotomy is given by the sign (> 0, = 0, < 0)

of the Euler characteristic 2− 2g,

which is a topological invariant of the Riemann surface C(C)!
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Two Problems

We will only consider the case g ≥ 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:

It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!

(2) If P0 ∈ C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.



Two Problems

We will only consider the case g ≥ 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:

It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!

(2) If P0 ∈ C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.



Two Problems

We will only consider the case g ≥ 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:

It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!

(2) If P0 ∈ C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.



Two Problems

We will only consider the case g ≥ 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:

It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!

(2) If P0 ∈ C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.



Two Problems

We will only consider the case g ≥ 2.
Then C(Q) is finite and so the points can be enumerated in principle.

However, none of the known proofs of Faltings’ Theorem is effective:

It is an open problem whether C(Q) is computable in general.

For concrete curves C, we may be able to determine C(Q), though.

We split the problem into two parts:

(1) Decide whether C(Q) is empty or not!

(2) If P0 ∈ C(Q) is given, determine C(Q)!

In this course, we will mainly focus on the first problem.



A Simple Test

Since Q ⊂ R, we also have C(Q) ⊂ C(R),

and we can easily check if C(R) = ∅ or not:

if C : y2 = f(x), then C(R) = ∅ iff f has no real roots and lcf(f) < 0.

Example.

Let C : y2 = −x6 − 17, then C(R) = ∅, whence C(Q) = ∅.

What about C : y2 = −x6 + 3?

We have C(R) 6= ∅, but we can still prove that C(Q) = ∅: Let ξ ∈ Q.

• If v3(ξ) > 0, then v3(−ξ
6 + 3) = 1, so −ξ6 + 3 cannot be a square;

• if v3(ξ) ≤ 0, then 3−6v3(ξ)(−ξ6 + 3) ≡ −1 mod 3; again −ξ6 + 3 6= �.

Indeed, this proves that C(Q3) = ∅!
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p-adic Numbers (1)

There are two ways of constructing the field Qp of p-adic numbers:

• as a completion of Q (in analogy to R);

• as the field of fractions of the projective limit Zp = lim← Z/pnZ.

Define the p-adic absolute value on Q by

|ξ|p =

{
0 if ξ = 0;

p−n = p−vp(ξ) if ξ = pnab with p - ab.

Then |αβ|p = |α|p · |β|p and |α+ β|p ≤max
{
|α|p, |β|p

}
≤ |α|p + |β|p,

so we can define Qp as the completion of Q with respect to | · |p.

The closed unit ball Zp =
{
ξ ∈ Qp : |ξ|p ≤ 1

}
forms a compact subring;

it is the topological closure of Z in Qp.
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ξ ∈ Qp : |ξ|p ≤ 1

}
forms a compact subring;

it is the topological closure of Z in Qp.
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It is then easy to check that pnZp =
{
ξ ∈ Qp : |ξ|p ≤ p−n

}
and that Zp/pnZp ∼= Z/pnZ.

This leads to the description of the ring of p-adic integers as

Zp = lim← Z/pnZ ,

which is more suitable for computations. We then have

Qp = Frac(Zp) = Zp
[
1
p

]
,

and we can think of elements of Qp as ‘Laurent series in p’

ξ =

∞∑
n=n0

anp
n with an ∈ {0, 1, . . . , p− 1}.
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Local Solubility

It can be shown that R and the Qp for all primes p

are all the possible completions of Q.

So the following definition makes sense.

Definition.

A (nice) curve C over Q is said to be everywhere locally soluble or ELS,

if C(R) 6= ∅ and C(Qp) 6= ∅ for all primes p.

Obviously, C(Q) 6= ∅ implies that C is ELS.

The converse is true for g = 0 (‘Hasse Principle’), but false in general.

Question. Can we decide if a given curve is ELS?
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Hensel’s Lemma

An important tool for working with Qp is provided by Hensel’s Lemma:

Theorem.

Let f ∈ Zp[x] be monic; write f̄ for its image in Fp[x].
If a ∈ Fp such that f̄(a) = 0 and f̄ ′(a) 6= 0 (i.e., a is a simple root of f̄),

then there is a unique α ∈ Zp with ᾱ = a and f(α) = 0.

Sketch of proof. Take any α0 with ᾱ0 = a and use Newton iteration. q

Corollary.

Let C be a curve over Zp and let q ∈ C(Fp) be a smooth point on C ⊗Zp Fp.

Then q lifts to a point Q ∈ C(Qp) (i.e., Q̄ = q).
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Checking for p-adic Points (1)

Theorem (Weil).

Let C be a nice curve of genus g over Fp. Then

p+ 1− 2g
√
p ≤#C(Fp) ≤ p+ 1+ 2g

√
p .

Corollary.

Let C be a nice curve of genus g over Q,

and let p ≥ 4g2 be a prime of good reduction for C.

Then C(Qp) 6= ∅.

Proof. Let C be a model of C over Zp with good reduction.

p ≥ 4g2 implies p ≥ 2g√p, so by Weil, C(Fp) 6= ∅.
Every point on C ⊗ Fp is smooth, so C(Qp) = C(Qp) 6= ∅ by Hensel. q
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Checking for p-adic Points (2)

If p < 4g2 or the curve has bad reduction at p,

then we still obtain an algorithm for checking if C(Qp) = ∅:

Start with some model C of C over Zp.

• If C(Fp) = ∅, then C(Qp) = ∅.
• If C(Fp) contains a smooth point, then C(Qp) 6= ∅.
• Otherwise: for each point P ∈ C(Fp),

‘zoom in’ at P to get a new model CP and repeat.

• If for some P, CP(Qp) 6= ∅, then C(Qp) 6= ∅, else C(Qp) = ∅.

Since we assume that C is smooth,

the ‘zooming in’ will eventually produce models with smooth fiber over

Fp.
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Deciding Local Solubility

Let

C : y2 = f(x)

be a hyperelliptic curve of genus g with f(x) ∈ Z[x].

Then

(1) C(Qp) 6= ∅ if p ≥ 4g2 and p - disc(f);

(2) we can decide if C(R) 6= ∅;
(3) we can decide if C(Qp) 6= ∅

for the finitely many primes p not covered by (1).

So we can decide whether C is ELS or not!
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