

Rational Diophantine Quintuples and Diagonal Genus 5 Curves

Michael Stoll Universität Bayreuth

Diophantine Problems

University of Manchester 15 September 2017

Diophantine m-Tuples

Definition.

A (rational) Diophantine m-tuple is an m-tuple (a_1, \ldots, a_m) of distinct nonzero integers (rational numbers) such that $a_i a_j + 1$ is a square for all $1 \le i < j \le m$.

Examples.

(1,3,8,120) is a Diophantine quadruple (found by Fermat):

$$1 \cdot 3 + 1 = 2^2$$
, $1 \cdot 8 + 1 = 3^2$, $1 \cdot 120 + 1 = 11^2$
 $3 \cdot 8 + 1 = 5^2$, $3 \cdot 120 + 1 = 19^2$, $8 \cdot 120 + 1 = 31^2$

In fact, this is just the case t = 2 in the family

$$(t-1, t+1, 4t, 4t(4t^2-1))$$

of Diophantine quadruples.

(See Andrej Dujella's homepage for exhaustive information.)

A Diophantine Problem

Consider a given rational Diophantine quadruple (a_1, a_2, a_3, a_4) , for example Fermat's quadruple (1, 3, 8, 120).

Problem.

Find all rational numbers a_5 such that $(a_1, a_2, a_3, a_4, a_5)$ is a rational Diophantine quintuple.

Fact.

We can always take (the "regular extensions")

 $a_5 = z_{\pm} = \frac{(a_1 + a_2 + a_3 + a_4)(a_1a_2a_3a_4 + 1) + 2(a_1a_2a_3 + a_1a_2a_4 + a_1a_3a_4 + a_2a_3a_4) \pm 2s}{(a_1a_2a_3a_4 - 1)^2},$

where $s = \sqrt{(a_1a_2 + 1)(a_1a_3 + 1)(a_1a_4 + 1)(a_2a_3 + 1)(a_2a_4 + 1)(a_3a_4 + 1)}$ (unless $z_{\pm} \in \{0, a_1, a_2, a_3, a_4\}$).

Are there more possibilities in our concrete case?

Extending Fermat's Quadruple

For all quadruples in the family shown before, we have $z_{-} = 0$, so there is only one regular extension.

For Fermat's quadruple (1,3,8,120), this is $z_{+} = \frac{777\,480}{8\,288\,641}$. We will show that this is the only extension.

Any extension $z \in \mathbb{Q}^{\times}$ gives rise to a bunch of rational points on the curve

$$z + 1 = u_1^2$$
, $3z + 1 = u_2^2$, $8z + 1 = u_3^2$, $120z + 1 = u_4^2$.

This curve has genus 5, so there are only finitely many solutions.

With
$$x = u_4$$
, this gives $x^2 + 119 = 120u_1^2$, $x^2 + 39 = 40u_2^2$, $x^2 + 14 = 15u_3^2$, hence
 $y^2 = 5(x^2 + 119)(x^2 + 39)(x^2 + 14)$

with $y = 600u_1u_2u_3$.

Rational Points on a Curve of Genus 2

The curve

C:
$$y^2 = 5(x^2 + 119)(x^2 + 39)(x^2 + 14)$$

has genus 2. We want to find its rational points.

A search turns up points with x-coordinates ± 1 and $\pm \frac{10079}{2879}$: > P<x> := PolynomialRing(Rationals()); > C := HyperellipticCurve(5*(x^2+119)*(x^2+39)*(x^2+14)); > ptsC := Points(C : Bound := 10^5); ptsC; {@ (-1 : -600 : 1), (-1 : 600 : 1), (1 : -600 : 1), (1 : 600 : 1), (-10079 : -22426285104600 : 2879), (-10079 : 22426285104600 : 2879), (10079 : -22426285104600 : 2879), (10079 : 22426285104600 : 2879) @} They correspond to z = 0 and $z = \frac{777480}{8288641}$.

Standard Chabauty Does not Work

The differences of the points we found generate a subgroup of rank 2 in the Mordell-Weil group of C (which actually does have rank 2 itself), so the standard version of Chabauty's method does not apply.

```
> bas := ReducedBasis([pt - ptsC[1] : pt in ptsC]); bas;
[ (x^2 - 1, 600, 2), (x^2 - 1, 600*x, 2) ]
> J := Jacobian(C);
> RankBound(J);
2
```

("Quadratic Chabauty" would apply here, since C is bielliptic.)

So we need to do something else.

Two-Cover Descent

```
We compute the "fake 2-Selmer set" Sel<sup>(2)</sup><sub>fake</sub>(C) of C.
> Sel, mSel := TwoCoverDescent(C);
> #Sel;
2
> A> := Domain(mSel);
> Sel eq {mSel(x0 - th) : x0 in {1,-1}};
true
```

The last line verifies that the points $(\pm 1, \pm 600)$ account for all of $Sel_{fake}^{(2)}(C)$. So if $(\xi, \eta) \in C(\mathbb{Q})$, then (for one choice of sign and some $\mathfrak{a} \in \mathbb{Q}^{\times}$)

$$\frac{\xi - \sqrt{-119}}{\pm 1 - \sqrt{-119}} \in \mathfrak{a}\mathbb{Q}(\sqrt{-119})^{\times 2}, \quad \frac{\xi - \sqrt{-39}}{\pm 1 - \sqrt{-39}} \in \mathfrak{a}\mathbb{Q}(\sqrt{-39})^{\times 2}, \quad \frac{\xi - \sqrt{-14}}{\pm 1 - \sqrt{-14}} \in \mathfrak{a}\mathbb{Q}(\sqrt{-14})^{\times 2}$$

The automorphism $x \mapsto -x$ of C swaps the two elements, hence it suffices to consider one of them. We take the image of $(1, \pm 600)$.

An Elliptic Curve

Recall that we have (w.l.o.g.)

 $\frac{\xi - \sqrt{-119}}{1 - \sqrt{-119}} \in \mathfrak{aQ}(\sqrt{-119})^{\times 2}, \quad \frac{\xi - \sqrt{-39}}{1 - \sqrt{-39}} \in \mathfrak{aQ}(\sqrt{-39})^{\times 2}, \quad \frac{\xi - \sqrt{-14}}{1 - \sqrt{-14}} \in \mathfrak{aQ}(\sqrt{-14})^{\times 2}.$

This implies in particular that there is $\tau \in K = \mathbb{Q}(\sqrt{-119}, \sqrt{-39})$ such that

$$\tau^2 = 15(1 - \sqrt{-119})(1 - \sqrt{-39}) \cdot (\xi^2 + 14)(\xi - \sqrt{-119})(\xi - \sqrt{-39}),$$

so we get a K-rational point with rational X-coordinate on the elliptic curve

E:
$$Y^2 = 15(1 - \sqrt{-119})(1 - \sqrt{-39}) \cdot (X^2 + 14)(X - \sqrt{-119})(X - \sqrt{-39})$$
.

This is the setting for Elliptic Curve Chabauty.

Elliptic Curve Chabauty

```
We want to find all points (\xi, \tau) \in E(K) with \xi \in \mathbb{Q}.
This works when rank E(K) < [K : \mathbb{Q}] = 4.
```

```
> K := AbsoluteField(ext<Rationals() | x^2 + 119, x^2 + 39);
> w119 := Roots(x<sup>2</sup> + 119, K)[1,1]; w39 := Roots(x<sup>2</sup> + 39, K)[1,1];
> PK<X> := PolynomialRing(K);
> E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X^2+14)*(X-w119)*(X-w39));
> EE, EtoEE := EllipticCurve(E, E![1, 15*(1-w119)*(1-w39)]);
> Invariants(TorsionSubgroup(EE)); Invariants(TwoSelmerGroup(EE));
[2]
[2, 2, 2]
> bas := Saturation(ReducedBasis([EtoEE(pt) : pt in Points(E, 10079/2879)]), 7); #bas;
3
> MW := AbelianGroup([2,0,0]);
> MWmap := map<MW -> EE | m :-> &+[s[i]*bas[i] : i in [1..3]] where s := Eltseq(m)>;
> P1 := ProjectiveSpace(Rationals(), 1);
> pi := Expand(Inverse(EtoEE)*map<E -> P1 | [E.1, E.3]>);
> chab := Chabauty(MWmap, pi : IndexBound := 2*3*5*7);
> {pi(MWmap(pt)) : pt in chab};
\{ (1 : 1), (10079/2879 : 1) \}
```

This finishes the proof.

What is Going on Here?

Given a Diophantine quadruple (a_1, a_2, a_3, a_4) , the equations

$$a_1z + 1 = u_1^2$$
, $a_2z + 1 = u_2^2$, $a_3z + 1 = u_3^2$, $a_4z + 1 = u_4^2$

define (after homogenising via $1 = u_0^2$ and eliminating z) a diagonal curve $X \subset \mathbb{P}^4$ of genus 5:

$$(a_4 - a_1)u_0^2 - a_4u_1^2 + a_1u_4^2 = 0$$

$$(a_4 - a_2)u_0^2 - a_4u_2^2 + a_2u_4^2 = 0$$

$$(a_4 - a_3)u_0^2 - a_4u_3^2 + a_3u_4^2 = 0$$

Eliminating u_i gives a double cover $X \to F_i$ with F_i of genus 1. Eliminating u_i and u_j gives a degree 4 map $X \to Q_{ij}$ with a conic Q_{ij} .

Isogeny and 2-Torsion

There is a "Richelot-type isogeny" $\varphi: \operatorname{Jac}(X) \to \prod_{i=0}^{r} \operatorname{Jac}(F_i)$. Its kernel is ker $\varphi \simeq (\mathbb{Z}/2\mathbb{Z})^5$; all points are defined over \mathbb{Q} . So we can easily compute the $\hat{\varphi}$ -Selmer set $\operatorname{Sel}^{\hat{\varphi}}(X)$.

The kernel gives us 31 distinct étale double covers $A_T \rightarrow Jac(X)$, which we can pull back to étale double covers $Y_T \rightarrow X$.

30 of these have a nice explicit description. For each $\xi \in \text{Sel}^{\hat{\varphi}}(X)$ there is a twist $Y_{T,\xi} \to X$; each point $P \in X(\mathbb{Q})$ lifts to one of these twists (same ξ for all T).

The Prym variety of $Y_{T,\xi} \to X$ is (generically) the Weil restriction of an elliptic curve $E_{T,\xi}$ over a biquadratic field K_T . There are morphisms $Y_{T,\xi} \to E_{T,\xi}$ and $E_{T,\xi} \to \mathbb{P}^1$ whose composition is defined over \mathbb{Q} .

In this setting, Elliptic Curve Chabauty can be used to find $Y_{T,\xi}(\mathbb{Q})$.

"Algorithm"

Given a diagonal genus 5 curve X with $X(\mathbb{Q}) \neq \emptyset$:

- 1. Compute $S = Sel^{\hat{\phi}}(X)$.
- 2. For each $\xi \in S$ (modulo action of Aut(X)) do:
 - 2a. Find $0 \neq T \in \ker \phi$ such that
 - $E_{T,\xi}(K_T)$ can be determined (up to finite index), and
 - rank $E_{T,\xi}(K_T) < 4$.
 - 2b. Apply Elliptic Curve Chabauty to find $Y_{T,\xi}(\mathbb{Q})$ and its image $X(\mathbb{Q})_{\xi}$ in $X(\mathbb{Q})$.
- 3. If Step 2 was successful, then $X(\mathbb{Q}) = Aut(X) \cdot \bigcup_{\xi \in S} X(\mathbb{Q})_{\xi}$.

(This extends and improves on recent work by Gonzáles-Jiménez.)

Further Results

We have applied this "algorithm" to quadruples from the family

$$(t-1, t+1, 4t, 4t(4t^2-1))$$

(where $\pm t \neq 0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}$).

In this way, we could show that the regular extension is the only one for

$$t = 2$$
 (see above), 3, $\frac{2}{3}$, $\frac{3}{2}$, 4, $\frac{3}{4}$, $\frac{4}{3}$, 5, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{5}{4}$, $\frac{4}{5}$.

(For $t = \frac{3}{5}$, there is a second "illegal" extension besides 0 given by $\frac{12}{5}$, which is already present. Note that $\left(\frac{12}{5}\right)^2 + 1 = \left(\frac{13}{5}\right)^2$.)

Thank You!