

Rational Diophantine Quintuples and Diagonal Genus 5 Curves

Michael Stoll Universität Bayreuth

Diophantine Problems

University of Manchester 15 September 2017

Diophantine m-Tuples

Definition.

A (rational) Diophantine m-tuple is an m-tuple (a_1, \ldots, a_m) of distinct nonzero integers (rational numbers) such that $a_i a_j + 1$ is a square for all $1 \le i < j \le m$.

Examples.

 $(1, 3, 8, 120)$ is a Diophantine quadruple (found by Fermat):

$$
1 \cdot 3 + 1 = 2^2
$$
, $1 \cdot 8 + 1 = 3^2$, $1 \cdot 120 + 1 = 11^2$
\n $3 \cdot 8 + 1 = 5^2$, $3 \cdot 120 + 1 = 19^2$, $8 \cdot 120 + 1 = 31^2$

In fact, this is just the case $t = 2$ in the family

$$
\left(t-1,t+1,4t,4t(4t^2-1)\right)
$$

of Diophantine quadruples.

(See Andrej Dujella's homepage for exhaustive information.)

A Diophantine Problem

Consider a given rational Diophantine quadruple (a_1, a_2, a_3, a_4) , for example Fermat's quadruple $(1, 3, 8, 120)$.

Problem.

Find all rational numbers a_5 such that $(a_1, a_2, a_3, a_4, a_5)$ is a rational Diophantine quintuple.

Fact.

We can always take (the "regular extensions")

 $a_5 = z_{\pm} = \frac{(a_1 + a_2 + a_3 + a_4)(a_1 a_2 a_3 a_4 + 1) + 2(a_1 a_2 a_3 + a_1 a_2 a_4 + a_1 a_3 a_4 + a_2 a_3 a_4) \pm 2s}{(a_1 a_2 a_3 a_4 - 1)^2}$ $\frac{(a_1a_2a_3a_4-1)^2}{(a_1a_2a_3a_4-1)^2}$,

where $s = \sqrt{(a_1a_2+1)(a_1a_3+1)(a_1a_4+1)(a_2a_3+1)(a_2a_4+1)(a_3a_4+1)}$ $(\text{unless } z_{\pm} \in \{0, a_1, a_2, a_3, a_4\}).$

Are there more possibilities in our concrete case?

Extending Fermat's Quadruple

For all quadruples in the family shown before, we have $z_0 = 0$, so there is only one regular extension.

For Fermat's quadruple $(1,3,8,120)$, this is $z_+ = \frac{777480}{8288641}$. We will show that this is the only extension.

Any extension $z \in \mathbb{Q}^{\times}$ gives rise to a bunch of rational points on the curve

$$
z + 1 = u_1^2
$$
, $3z + 1 = u_2^2$, $8z + 1 = u_3^2$, $120z + 1 = u_4^2$.

This curve has genus 5, so there are only finitely many solutions.

With
$$
x = u_4
$$
, this gives $x^2 + 119 = 120u_1^2$, $x^2 + 39 = 40u_2^2$, $x^2 + 14 = 15u_3^2$, hence

$$
y^2 = 5(x^2 + 119)(x^2 + 39)(x^2 + 14)
$$

with $y = 600u_1u_2u_3$.

Rational Points on a Curve of Genus 2

The curve

$$
C: y^2 = 5(x^2 + 119)(x^2 + 39)(x^2 + 14)
$$

has genus 2. We want to find its rational points.

A search turns up points with x-coordinates ± 1 and $\pm \frac{10079}{2879}$: > P<x> := PolynomialRing(Rationals()); > C := HyperellipticCurve(5*(x^{-2+119)*(x^{-2+39)*(x⁻²⁺¹⁴⁾);}} $>$ ptsC := $Points(C : Bound := 10⁰5); ptsC;$ ${0 (-1 : -600 : 1), (-1 : 600 : 1), (1 : -600 : 1), (1 : 600 : 1),}$ (-10079 : -22426285104600 : 2879), (-10079 : 22426285104600 : 2879), (10079 : -22426285104600 : 2879), (10079 : 22426285104600 : 2879) @} They correspond to $z = 0$ and $z = \frac{777480}{8288641}$.

Standard Chabauty Does not Work

The differences of the points we found generate a subgroup of rank 2 in the Mordell-Weil group of C (which actually does have rank 2 itself), so the standard version of Chabauty's method does not apply.

```
> bas := ReducedBasis([pt - ptsC[1] : pt in ptsC]); bas;
\left[ (x^2 - 1, 600, 2), (x^2 - 1, 600*x, 2) \right]> J := Jacobian(C);
> RankBound(J);
2
```
("Quadratic Chabauty" would apply here, since C is bielliptic.)

So we need to do something else.

Two-Cover Descent

```
We compute the "fake 2-Selmer set" \mathsf{Sel}^{(2)}_\mathsf{fake}(\mathsf{C}) of C.
> Sel, mSel := TwoCoverDescent(C);
> #Sel;
\mathcal{D}> A <br> 1 \rightarrow A <br> 2 \rightarrow A <br> 3 \rightarrow B <br> 4 \rightarrow B> Sel eq {msel(x0 - th) : x0 in {1, -1}};true
```
The last line verifies that the points $(\pm 1, \pm 600)$ account for all of Sel $_{\text{fake}}^{(2)}(C)$. So if $(\xi, \eta) \in C(\mathbb{Q})$, then (for one choice of sign and some $a \in \mathbb{Q}^{\times}$)

$$
\tfrac{\xi-\sqrt{-119}}{\pm 1-\sqrt{-119}}\in a\mathbb{Q}(\sqrt{-119})^{\times 2},\quad \tfrac{\xi-\sqrt{-39}}{\pm 1-\sqrt{-39}}\in a\mathbb{Q}(\sqrt{-39})^{\times 2},\quad \tfrac{\xi-\sqrt{-14}}{\pm 1-\sqrt{-14}}\in a\mathbb{Q}(\sqrt{-14})^{\times 2}
$$

The automorphism $x \mapsto -x$ of C swaps the two elements, hence it suffices to consider one of them. We take the image of $(1, \pm 600)$.

An Elliptic Curve

Recall that we have (w.l.o.g.)

ξ− √ -119 1− $\frac{\sqrt{-119}}{\sqrt{-119}} \in a\mathbb{Q}$ √ $(-119)^{\times 2}$, $\frac{\xi-1}{1}$ √ -39 1− $\frac{\sqrt{-39}}{\sqrt{-39}}$ ∈ aQ(√ $\overline{-39}$ \times 2, ξ $\overline{-1}$ √ -14 1− $\frac{\sqrt{-14}}{\sqrt{-14}} \in \mathfrak{a} \mathbb{Q}$ √ $\overline{-14})^{\times 2}$.

This implies in particular that there is $\tau \in K = \mathbb{Q}(k)$ $\sqrt{-119}, \sqrt{-39}$ such that

$$
\tau^2 = 15(1-\sqrt{-119})(1-\sqrt{-39})\cdot (\xi^2+14)(\xi-\sqrt{-119})(\xi-\sqrt{-39}),
$$

so we get a K-rational point with rational X-coordinate on the elliptic curve

$$
E\colon Y^2=15(1-\sqrt{-119})(1-\sqrt{-39})\cdot(X^2+14)(X-\sqrt{-119})(X-\sqrt{-39})\,.
$$

This is the setting for Elliptic Curve Chabauty.

Elliptic Curve Chabauty

```
We want to find all points (\xi, \tau) \in E(K) with \xi \in \mathbb{Q}.
This works when rank E(K) < [K : \mathbb{Q}] = 4.
```

```
> K := AbsoluteField(ext<Rationals() | x^2 + 119, x^2 + 39);
> w119 := Roots(x<sup>\sim</sup>2 + 119, K)[1,1]; w39 := Roots(x\sim2 + 39, K)[1,1];
> PK<X> := PolynomialRing(K);
> E := HyperellipticCurve(15*(1-w119)*(1-w39)*(X^2+14)*(X-w119)*(X-w39));
> EE, EtoEE := EllipticCurve(E, E![1, 15*(1-w119)*(1-w39)]);
> Invariants(TorsionSubgroup(EE)); Invariants(TwoSelmerGroup(EE));
\lceil 2 \rceil[ 2, 2, 2 ]
> bas := Saturation(ReducedBasis([EtoEE(pt) : pt in Points(E, 10079/2879)]), 7); #bas;
3
> MW := AbelianGroup([2,0,0]);
> MWmap := map<MW -> EE | m :-> k+[s[i]*bas[i] : i in [1..3]] where s := Eltseq(m)>;
> P1 := ProjectiveSpace(Rationals(), 1);
> pi := Expand(Inverse(EtoEE)*map<E -> P1 | [E.1, E.3]>);
> chab := Chabauty(MWmap, pi : IndexBound := 2*3*5*7);
> {pi(MWmap(pt)) : pt in chab};
\{ (1 : 1), (10079/2879 : 1) \}
```
This finishes the proof.

What is Going on Here?

Given a Diophantine quadruple (a_1, a_2, a_3, a_4) , the equations

$$
a_1z + 1 = u_1^2
$$
, $a_2z + 1 = u_2^2$, $a_3z + 1 = u_3^2$, $a_4z + 1 = u_4^2$

define (after homogenising via $1=u_0^2$ $\frac{2}{0}$ and eliminating z) a diagonal curve $X\subset \mathbb{P}^4$ of genus 5:

$$
(a_4 - a_1)u_0^2 - a_4u_1^2 + a_1u_4^2 = 0
$$

\n
$$
(a_4 - a_2)u_0^2 - a_4u_2^2 + a_2u_4^2 = 0
$$

\n
$$
(a_4 - a_3)u_0^2 - a_4u_2^2 + a_3u_4^2 = 0
$$

Eliminating u_i gives a double cover $X \rightarrow F_i$ with F_i of genus 1. Eliminating u_i and u_j gives a degree 4 map $X \rightarrow Q_{ij}$ with a conic Q_{ij} .

Isogeny and 2-Torsion

There is a "Richelot-type isogeny" $\varphi\colon \textsf{Jac}(X)\to \prod\limits_i\textsf{Jac}(F_i).$ 4 $i=0$ Its kernel is ker $\varphi \simeq (\mathbb{Z}/2\mathbb{Z})^5$; all points are defined over $\mathbb{Q}.$

So we can easily compute the $\hat{\varphi}$ -Selmer set Sel $\hat{\varphi}(X)$.

The kernel gives us 31 distinct étale double covers $A_T \rightarrow \text{Jac}(X)$, which we can pull back to étale double covers $Y_T \to X$.

30 of these have a nice explicit description. For each $\xi \in \mathsf{Sel}^{\hat{\phi}}(X)$ there is a twist $Y_{T,\xi} \to X$; each point $P \in X(\mathbb{Q})$ lifts to one of these twists (same ξ for all T).

The Prym variety of $Y_{T,\xi} \to X$ is (generically) the Weil restriction of an elliptic curve E_{T,ξ} over a biquadratic field K_T. There are morphisms $Y_{T, \xi} \to E_{T, \xi}$ and $E_{T, \xi} \to \mathbb{P}^1$ whose composition is defined over $\mathbb Q$.

In this setting, Elliptic Curve Chabauty can be used to find $Y_{T,\xi}(\mathbb{Q})$.

"Algorithm"

Given a diagonal genus 5 curve X with $X(\mathbb{Q}) \neq \emptyset$:

- 1. Compute $S = \mathsf{Sel}^{\hat{\phi}}(X)$.
- 2. For each $\xi \in S$ (modulo action of Aut(X)) do:
	- 2a. Find $0 \neq T \in \text{ker } \varphi$ such that
		- $E_{T,\xi}(K_T)$ can be determined (up to finite index), and
		- rank $E_{T,\xi}(K_T) < 4$.
	- 2b. Apply Elliptic Curve Chabauty to find $Y_{T,\xi}(\mathbb{Q})$ and its image $X(\mathbb{Q})_{\xi}$ in $X(\mathbb{Q})$.
- 3. If Step 2 was successful, then $X(\mathbb{Q}) = Aut(X) \cdot \bigcup X(\mathbb{Q})_{\xi}$. ξ∈S

(This extends and improves on recent work by Gonzáles-Jiménez.)

Further Results

We have applied this "algorithm" to quadruples from the family

$$
(t-1,t+1,4t,4t(4t^2-1))
$$

(where $\pm t \neq 0, 1, \frac{1}{2}, \frac{1}{3}$ $\frac{1}{3}, \frac{1}{4}$ $\frac{1}{4}$.

In this way, we could show that the regular extension is the only one for

t = 2 (see above), 3,
$$
\frac{2}{3}
$$
, $\frac{3}{2}$, 4, $\frac{3}{4}$, $\frac{4}{3}$, 5, $\frac{1}{5}$, $\frac{2}{5}$, $\frac{3}{5}$, $\frac{5}{4}$, $\frac{4}{5}$.

(For $t = \frac{3}{5}$ $\frac{3}{5}$, there is a second "illegal" extension besides 0 given by $\frac{12}{5}$, which is already present. Note that $(\frac{12}{5})$ $\left(\frac{12}{5}\right)^2 + 1 = \left(\frac{13}{5}\right)$ 5 $)^2$.) Thank You!