

Finite Descent Obstructions

and Rational Points

Michael Stoll International University Bremen

MSRI, March 30, 2006

Motivation

k is always a number field.

Question.

Given a smooth projective curve C/k, can we efficiently decide whether $C(k) = \emptyset$ or not?

- If $C(k) \neq \emptyset$, we can find a point $\implies OK$.
- If $C(\mathbb{A}_k) = \emptyset$, then $C(k) = \emptyset \implies \mathsf{OK}$.
- If $C(\mathbb{A}_k) \neq \emptyset$, but apparently $C(k) = \emptyset$, we can try *descent*.

Descent

Let $\pi : D \longrightarrow C$ be finite étale, geometrically Galois (more precisely: a *C*-torsor under a finite *k*-group scheme *G*).

Then we have the *twists* $\pi_{\xi} : D_{\xi} \longrightarrow C$ for $\xi \in H^1(k, G)$.

Theorem.

- $C(k) = \bigcup_{\xi \in H^1(k,G)} \pi_{\xi}(D_{\xi}(k)).$
- Sel^{π}(k, C) := { $\xi \in H^1(k, G) : D_{\xi}(\mathbb{A}_k) \neq \emptyset$ } is finite (and computable).

(Fermat, Chevalley-Weil, ...)

If we find $Sel^{\pi}(k, C) = \emptyset$, then $C(k) = \emptyset \implies OK$.

Questions.

- Does this always work to prove $C(k) = \emptyset$?
- How much information on $C(k) \subset C(\mathbb{A}_k)$ can we get in this way?

A Definition

Note.

At infinite places, we only get information on connected components.

Therefore: for X/k smooth projective, set

$$X(\mathbb{A}_k)_{\bullet} = \prod_{v \nmid \infty} X(k_v) \times \prod_{v \mid \infty} \pi_0(X(k_v))$$

Definition.

- For $\pi: Y \longrightarrow X$ torsor under G set $X(\mathbb{A}_k)^{\pi}_{\bullet} = \bigcup_{\xi \in H^1(k,G)} \pi_{\xi}(Y_{\xi}(\mathbb{A}_k)_{\bullet}).$
- $X(\mathbb{A}_k)^{\mathsf{f-cov}}_{\bullet} = \bigcap_{\pi} X(\mathbb{A}_k)^{\pi}_{\bullet}.$ • $X(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = \bigcap X(\mathbb{A}_k)^{\pi}_{\bullet}.$

 π abelian

First Properties

With $\overline{X(k)}$ the topological closure of X(k) in $X(\mathbb{A}_k)_{\bullet}$: $X(k) \subset \overline{X(k)} \subset X(\mathbb{A}_k)_{\bullet}^{\text{f-cov}} \subset X(\mathbb{A}_k)_{\bullet}^{\text{f-ab}} \subset X(\mathbb{A}_k)_{\bullet}$

• $f: X \longrightarrow Y$ morphism, then

$$f(X(\mathbb{A}_k)^{\mathsf{f-cov}/\mathsf{f-ab}}) \subset Y(\mathbb{A}_k)^{\mathsf{f-cov}/\mathsf{f-ab}}_{\bullet}$$

• K/k finite extension, then

$$i_{K/k}(X(\mathbb{A}_k)^{\mathsf{f-cov/f-ab}}) \subset X(\mathbb{A}_K)^{\mathsf{f-cov/f-ab}}_{\bullet}$$

Abelian Varieties

Let A/k be an abelian variety.

Every (geom. connected) abelian covering of A is a quotient of $A \xrightarrow{\cdot n} A$ for some n.

So we consider Selmer groups:

$$\begin{array}{rcl} \mathsf{Sel}^{(n)}(k,A) & \subset & H^1(k,A[n]) \\ & & & \downarrow \\ A(\mathbb{A}_k)/nA(\mathbb{A}_k) & \hookrightarrow & \prod_v H^1(k_v,A[n]) \end{array}$$

For $n \mid N$, have commutative diagram

$$\begin{array}{cccc} \operatorname{Sel}^{(N)}(k,A) & \longrightarrow & \operatorname{Sel}^{(n)}(k,A) \\ & & & \downarrow \\ A(\mathbb{A}_k)/NA(\mathbb{A}_k) & \longrightarrow & A(\mathbb{A}_k)/nA(\mathbb{A}_k) \end{array}$$

The Pro-Finite Selmer Group

Pass to the limit to obtain the pro-finite Selmer group

$$\widehat{\operatorname{Sel}}(k,A) = \lim_{\leftarrow} \operatorname{Sel}^{(n)}(k,A)$$

The exact sequences

$$0 \longrightarrow A(k)/nA(k) \longrightarrow \operatorname{Sel}^{(n)}(k,A) \longrightarrow \operatorname{III}(k,A)[n] \longrightarrow 0$$

piece together to give

- $T \amalg (k, A) = 0$ if and only if $\amalg (k, A)_{\text{div}} = 0$.
- $A(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}} = \mathsf{image of } \widehat{\mathsf{Sel}}(k,A) \mathsf{ in } A(\mathbb{A}_k)_{\bullet}.$

A Theorem

Theorem.

Let $Z \subset A$ be a finite subscheme and

$$\widehat{\mathsf{Sel}}(k,A) \ni \widehat{P} \longmapsto (P_v)_v \in A(\mathbb{A}_k)_{\bullet}$$

such that $P_v \in Z(k_v)$ for v in a set of density 1. Then $\hat{P} \in Z(k)$.

Consequences.

- $\widehat{\text{Sel}}(k, A)$ injects into $A(\mathbb{A}_k)_{\bullet}$, identifying $\widehat{A(k)}$ with $\overline{A(k)}$.
- $A(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = \widehat{\mathsf{Sel}}(k, A)$, and $Z(\mathbb{A}_k)_{\bullet} \cap A(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = Z(k)$.
- We even have $\widehat{Sel}(k, A) \hookrightarrow \prod_{v \in S} A(\mathbb{F}_v)$ if S has density 1.

Obstruction on Abelian Varieties and PHSs

With the identifications just found, we have an exact sequence

$$0 \longrightarrow \overline{A(k)} \longrightarrow A(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} \longrightarrow T \amalg(k, A) \longrightarrow 0$$

This implies

•
$$\overline{A(k)} = A(\mathbb{A}_k)^{\text{f-ab}}_{\bullet} \iff \amalg(k,A)_{\text{div}} = 0.$$

• $A(k) = A(\mathbb{A}_k)^{\text{f-ab}}_{\bullet} \iff \amalg(k, A)_{\text{div}} = 0$ and $\operatorname{rank} A(k) = 0$ (e.g., A/\mathbb{Q} modular of analytic rank zero (Kolyvagin-Logachev)).

If X is a principal homogeneous space for A with $X(k) = \emptyset$, $X(\mathbb{A}_k)_{\bullet} \neq \emptyset$, then X represents $0 \neq \xi \in \coprod(k, A)$, and

•
$$\emptyset = X(k) = X(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} \iff \xi \notin \amalg(k, A)_{\mathsf{div}}.$$

Proof of Theorem (Sketch)

- Let $k_N = k(A[N])$ be the *N*-division field.
- Result of Serre's on image of Galois in $Aut(A_{tors})$ implies

 $\exists m \forall N : m \text{ kills } \ker(\operatorname{Sel}^{(N)}(k,A) \to \operatorname{Sel}^{(N)}(k_N,A))$

- From this: if Q ∈ Sel^(N)(k, A), ord(mQ) = n, then the set of places v such that
 (i) v splits completely in k_N/k, and (ii) Q_v = 0 ∈ H¹(k_v, A[N]) has density ≤ 1/(n[k_N : k]) (Chebotarev).
- Assume that $Z(\overline{k}) = Z(k)$ (make field extension in general case).
- If P ∉ Z(k) + A(k)_{tors}, then we find set of v of positive density such that P_v ≠ Q for all Q ∈ Z(k), contradiction.
 (Note Sel(k, A)_{tors} = A(k)_{tors}.)
- So $\hat{P} \in Z(k) + A(k)_{tors} \subset A(k) \hookrightarrow A(k_v)$, and $\hat{P} = P_v \in Z(k)$ (pick suitable v).

Curves

Let C/k be a curve of genus g with Jacobian J.

- g = 0: Hasse Principle.
- g = 1: C is abelian variety or PHS.
- $g \ge 2$: C(k) is finite, so $C(k) = \overline{C(k)}$.

By Geometric Class Field Theory, all abelian coverings of C come from J.

- If $\operatorname{Pic}_{C}^{1}(k) = \emptyset$ and $[\operatorname{Pic}_{C}^{1}] \notin \amalg(k, J)_{\operatorname{div}}$, then $C(k) = C(\mathbb{A}_{k})_{\bullet}^{\operatorname{f-ab}} = \emptyset$.
- If $\operatorname{Pic}_{C}^{1}(k) \neq \emptyset$, then $\exists \iota : C \hookrightarrow J$, and $C(\mathbb{A}_{k})_{\bullet}^{\mathsf{f}-\mathsf{ab}} = \iota^{-1}(\widehat{\operatorname{Sel}}(k,J))$. If $\operatorname{III}(k,J)_{\mathsf{div}} = 0$, and we identify C with $\iota(C)$:

$$C(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = \overline{J(k)} \cap C(\mathbb{A}_k)_{\bullet}$$

(this can be used for computations).

Note: $\amalg(k,J)_{\text{div}} = 0$ and J(k) finite $\implies C(\mathbb{A}_k)^{\text{f-ab}}_{\bullet} = C(k)$.

Adelic Mordell-Lang?

Question.

Is there an Adelic Mordell-Lang Conjecture?

E.g., if $X \subset A$ not containing a nontrivial subabelian variety, then $\exists Z \subset X$ finite : $X(\mathbb{A}_k)_{\bullet} \cap \widehat{\text{Sel}}(k, A) \subset Z(\mathbb{A}_k)_{\bullet}$

Remark.

True with $\overline{A(k)}$ instead of $\widehat{Sel}(k, A)$ if k is global function field, A ordinary, X not defined over k^p (Voloch).

If the above is true, then for a curve $C \subset J$, we have

 $C(k) \subset C(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}} = C(\mathbb{A}_k)_{\bullet} \cap \widehat{\mathsf{Sel}}(k,J) \subset Z(\mathbb{A}_k)_{\bullet} \cap \widehat{\mathsf{Sel}}(k,J) = Z(k) \subset C(k)$ and so $C(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}}_{\bullet} = C(k).$

Main Conjecture

Conjecture.

If C/k is a smooth projective curve of genus ≥ 2 , then $C(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = C(k)$.

- K/k finite extension, $C(\mathbb{A}_K)^{\text{f-ab}}_{\bullet} = C(K)$, then $C(\mathbb{A}_k)^{\text{f-ab}}_{\bullet} = C(k)$.
- $C \longrightarrow X$ non-constant, $X(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}} = X(k)$, then $C(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}} = C(k)$. (Use Theorem $\Longrightarrow Z(\mathbb{A}_k)_{\bullet} \cap C(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}} = Z(k)$ for $Z \subset C$ finite.)
- $C = X_0(N), X_1(N), X(N)$ satisfy $C(\mathbb{A}_{\mathbb{Q}})^{\mathsf{f-ab}}_{\bullet} = C(\mathbb{Q})$ if genus ≥ 1 .
- Many more examples.
- $C: y^2 = f(x), g = 2$, coeffs of f in $\{-3, ..., 3\}$, then $C(\mathbb{A}_{\mathbb{Q}})^{\text{f-ab}} = \emptyset$ whenever $C(\mathbb{Q}) = \emptyset$. (Bruin-Stoll) (need to assume $III(k, J)_{\text{div}} = 0$ for 1492 cases, BSD for 42 cases)
- Poonen has a stronger conjecture when $C(k) = \emptyset$, supported by heuristic arguments.

Consequences

- We can effectively decide if $C(k) = \emptyset$ or not.
- The Brauer-Manin Obstruction is the only obstruction against rational points on Cand against weak approximation in $C(\mathbb{A}_k)_{\bullet}$.

Comparison With Brauer-Manin Obstruction

X/k smooth projective, geometrically irreducible.

Recall

 $Br_1(X) = \ker(Br(X) \to Br(X \times_k \overline{k}))$ and $Br_1(X) \longrightarrow H^1(k, \operatorname{Pic}_X)$ Let $Br_{1/2}(X) \subset Br_1(X)$ be the preimage of the image of $H^1(k, \operatorname{Pic}_X^0)$. Then

$$X(\mathbb{A}_k)^{\mathsf{Br}}_{\bullet} \subset X(\mathbb{A}_k)^{\mathsf{Br}_1}_{\bullet} \subset X(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} \subset X(\mathbb{A}_k)^{\mathsf{Br}_{1/2}}_{\bullet}$$

 $(X(\mathbb{A}_k)^{\mathsf{Br}_1}_{\bullet} \subset X(\mathbb{A}_k)^{\mathsf{f}-\mathsf{ab}}_{\bullet}$: Collict-Thélène & Sansuc, Skorobogatov)

If X = C is a curve, then $Br(C) = Br_1(C) = Br_{1/2}(C)$, and so

$$C(\mathbb{A}_k)^{\mathsf{f-ab}}_{\bullet} = C(\mathbb{A}_k)^{\mathsf{Br}}_{\bullet}$$