

An Application of "Selmer Group Chabauty" to Arithmetic Dynamics

Michael Stoll Universität Bayreuth

MIT November 19, 2019

Let $\mathbf{c} \in \mathbb{Q}$ and define

 $f_c(x) = x^2 + c \in \mathbb{Q}[x]$.

Let $\mathbf{c} \in \mathbb{Q}$ and define

 $f_{c}(x) = x^{2} + c \in \mathbb{Q}[x].$

The iterates of f_c are

 $f_{c}^{\circ 0}(x) = x,$

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

 $f_c^{\circ 0}(x) = x$, $f_c^{\circ 1}(x) = f_c(x) = x^2 + c$,

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

 $f_c^{\circ 0}(x) = x$, $f_c^{\circ 1}(x) = f_c(x) = x^2 + c$, $f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c$, ...,

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

$$\begin{aligned} f_c^{\circ 0}(x) &= x \,, \quad f_c^{\circ 1}(x) = f_c(x) = x^2 + c \,, \quad f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c \,, & \dots \,, \\ f_c^{\circ (n+1)}(x) &= f_c(f_c^{\circ n}(x)) = f_c^{\circ n}(f_c(x)) \,, & \dots \,. \end{aligned}$$

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

$$\begin{aligned} f_c^{\circ 0}(x) &= x \,, \quad f_c^{\circ 1}(x) = f_c(x) = x^2 + c \,, \quad f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c \,, & \dots \,, \\ f_c^{\circ (n+1)}(x) &= f_c(f_c^{\circ n}(x)) = f_c^{\circ n}(f_c(x)) \,, & \dots \,. \end{aligned}$$

Question.

For which c and n is $f_c^{\circ n}$ irreducible in $\mathbb{Q}[x]$?

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

$$\begin{aligned} f_c^{\circ 0}(x) &= x \,, \quad f_c^{\circ 1}(x) = f_c(x) = x^2 + c \,, \quad f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c \,, & \dots \,, \\ f_c^{\circ (n+1)}(x) &= f_c(f_c^{\circ n}(x)) = f_c^{\circ n}(f_c(x)) \,, & \dots \,. \end{aligned}$$

Question.

For which c and n is $f_c^{\circ n}$ irreducible in $\mathbb{Q}[x]$?

Conjecture.

For all $c \in \mathbb{Q}$, if $f_c^{\circ 2}$ is irreducible, then $f_c^{\circ n}$ is irreducible for all n.

Let $\mathbf{c} \in \mathbb{Q}$ and define

$$f_c(x) = x^2 + c \in \mathbb{Q}[x]$$
.

The iterates of f_c are

$$\begin{aligned} f_c^{\circ 0}(x) &= x \,, \quad f_c^{\circ 1}(x) = f_c(x) = x^2 + c \,, \quad f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c \,, & \dots \,, \\ f_c^{\circ (n+1)}(x) &= f_c(f_c^{\circ n}(x)) = f_c^{\circ n}(f_c(x)) \,, & \dots \,. \end{aligned}$$

Question.

For which c and n is $f_c^{\circ n}$ irreducible in $\mathbb{Q}[x]$?

Conjecture.

For all $c \in \mathbb{Q}$, if $f_c^{\circ 2}$ is irreducible, then $f_c^{\circ n}$ is irreducible for all n.

Remark.

 $f_c^{\circ 2} \text{ reducible } \iff c = -t^2 \text{ or } 1/c = 4t^2(t^2-1) \text{ with } t \in \mathbb{Q}.$

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

 $\label{eq:proof.f} \begin{array}{l} \mbox{Proof.} \\ f_c^{\circ(n+1)}(x) = f_c^{\circ n}(x^2+c) \mbox{ is an even polynomial.} \end{array}$

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

Proof. $f_c^{\circ(n+1)}(x) = f_c^{\circ n}(x^2 + c) \text{ is an even polynomial.}$ So $x \mapsto -x$ induces an involution on the set of irreducible factors of $f_c^{\circ(n+1)}$.

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

Proof.

 $f_c^{\circ(n+1)}(x) = f_c^{\circ n}(x^2 + c)$ is an even polynomial.

So $x \mapsto -x$ induces an involution on the set of irreducible factors of $f_c^{\circ(n+1)}$. Fixed points of this involution correspond to factors of $f_c^{\circ n}$.

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

Proof.

 $f_c^{\circ(n+1)}(x) = f_c^{\circ n}(x^2 + c)$ is an even polynomial. So $x \mapsto -x$ induces an involution on the set of irreducible factors of $f_c^{\circ(n+1)}$. Fixed points of this involution correspond to factors of $f_c^{\circ n}$. So when $f_c^{\circ(n+1)}$ is reducible, it factors as $f_c^{\circ(n+1)}(x) = h(x)h(-x)$, and $f_c^{\circ(n+1)}(0) = h(0)^2$. (Note that deg h is even, since $n \ge 1$.)

Lemma.

Assume that $n \ge 1$, $f_c^{\circ n}$ is irreducible and $f_c^{\circ (n+1)}$ is reducible. Then the constant term of $f_c^{\circ (n+1)}$ must be a square.

Proof.

 $f_c^{\circ(n+1)}(x) = f_c^{\circ n}(x^2 + c)$ is an even polynomial. So $x \mapsto -x$ induces an involution on the set of irreducible factors of $f_c^{\circ(n+1)}$. Fixed points of this involution correspond to factors of $f_c^{\circ n}$. So when $f_c^{\circ(n+1)}$ is reducible, it factors as $f_c^{\circ(n+1)}(x) = h(x)h(-x)$, and $f_c^{\circ(n+1)}(0) = h(0)^2$. (Note that deg h is even, since $n \ge 1$.)

Remark.

 $f_c^{\circ(n+1)}$ can be irreducible even though its constant term is a square; e.g., $f_{1/3}^{\circ 2}(x) = x^4 + \frac{2}{3}x^2 + \frac{4}{9}$ is irreducible.

We define $A_n(c)$ to be the constant term of $f_c^{\circ n}$:

 $A_0(c) = 0$, $A_1(c) = c$, $A_2(c) = c^2 + c$, ..., $A_{n+1}(c) = A_n(c)^2 + c$,

We define $A_n(c)$ to be the constant term of $f_c^{\circ n}$:

 $A_0(c) = 0$, $A_1(c) = c$, $A_2(c) = c^2 + c$, ..., $A_{n+1}(c) = A_n(c)^2 + c$,

Proposition.

Let $c \in \mathbb{Q}$. Then

- **2** $A_4(c)$ is a square $\iff c \in \{0, -1\}.$

We define $A_n(c)$ to be the constant term of $f_c^{\circ n}$:

 $A_0(c) = 0$, $A_1(c) = c$, $A_2(c) = c^2 + c$, ..., $A_{n+1}(c) = A_n(c)^2 + c$,

Proposition.

Let $\mathbf{c} \in \mathbb{Q}$. Then

- **2** $A_4(c)$ is a square $\iff c \in \{0, -1\}.$

Proof (sketch; [Jones, Hindes et al.]). $y^2 = A_3(x)$ is a rank-zero elliptic curve, $y^2 = A_4(x)$ is a hyperelliptic genus-3 curve with rank-zero Jacobian.

We define $A_n(c)$ to be the constant term of $f_c^{\circ n}$:

 $A_0(c) = 0$, $A_1(c) = c$, $A_2(c) = c^2 + c$, ..., $A_{n+1}(c) = A_n(c)^2 + c$,

Proposition.

Let $c \in \mathbb{Q}$. Then

- **2** $A_4(c)$ is a square $\iff c \in \{0, -1\}.$

Proof (sketch; [Jones, Hindes et al.]). $y^2 = A_3(x)$ is a rank-zero elliptic curve, $y^2 = A_4(x)$ is a hyperelliptic genus-3 curve with rank-zero Jacobian.

Conclusion.

If $c\in \mathbb{Q}$ is such that $f_c^{\circ 2}$ is irreducible, then $f_c^{\circ 4}$ is irreducible.

We want to show that $A_5(c)$ is a square only for c = 0.

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$.

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$. Write

C:
$$y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;$$

this is an odd degree hyperelliptic curve of genus g = 7.

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$. Write

C:
$$y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;$$

this is an odd degree hyperelliptic curve of genus g = 7.

Its Jacobian variety J has 2-Selmer rank 2,

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$. Write

C:
$$y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;$$

this is an odd degree hyperelliptic curve of genus g = 7.

Its Jacobian variety J has 2-Selmer rank 2, but we are unable to find points of infinite order in $J(\mathbb{Q})$. So standard Chabauty techniques cannot be applied.

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$. Write

C:
$$y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;$$

this is an odd degree hyperelliptic curve of genus g = 7.

Its Jacobian variety J has 2-Selmer rank 2, but we are unable to find points of infinite order in $J(\mathbb{Q})$. So standard Chabauty techniques cannot be applied.

We will instead use "Selmer Group Chabauty".

We want to show that $A_5(c)$ is a square only for c = 0. Equivalently, $a_5(x)$ is a square only for x = 0, where $a_5(x) = x^{16}A_5(1/x)$. Write

C:
$$y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;$$

this is an odd degree hyperelliptic curve of genus g = 7.

Its Jacobian variety J has 2-Selmer rank 2, but we are unable to find points of infinite order in $J(\mathbb{Q})$. So standard Chabauty techniques cannot be applied.

We will instead use "Selmer Group Chabauty".

We have three rational points on C whose image in J has odd order:

$$C(\mathbb{Q})_{odd} = \{\infty, (0,1), (0,-1)\}.$$

We check that σ is injective.

We check that σ is injective.

Let $P \in C(\mathbb{Q}) \setminus C(\mathbb{Q})_{odd}$ and write $i(P) = 2^n \cdot Q$ with $Q \in J(\mathbb{Q})$ and n maximal.

We check that σ is injective.

Let $P \in C(\mathbb{Q}) \setminus C(\mathbb{Q})_{odd}$ and write $i(P) = 2^n \cdot Q$ with $Q \in J(\mathbb{Q})$ and n maximal. Then $\overline{2^{-n} \log i(P)} = \overline{\log Q} = \overline{\log \sigma} \delta(Q) \in \overline{\log \sigma}(\operatorname{Sel}_2(J)).$

We check that σ is injective.

Let $P \in C(\mathbb{Q}) \setminus C(\mathbb{Q})_{odd}$ and write $i(P) = 2^n \cdot Q$ with $Q \in J(\mathbb{Q})$ and n maximal. Then $\overline{2^{-n} \log i(P)} = \overline{\log Q} = \overline{\log \sigma} \delta(Q) \in \overline{\log \sigma}(\operatorname{Sel}_2(J))$. We show $\forall P \in C(\mathbb{Q}_2) \setminus C(\mathbb{Q})_{odd} : \overline{2^{-n} \log i(P)} \notin \overline{\log \sigma}(\operatorname{Sel}_2(J))$. This implies that $C(\mathbb{Q}) = C(\mathbb{Q})_{odd}$.

Let θ be a root of a_5 (which is irreducible) and set $K = \mathbb{Q}(\theta)$.

Let θ be a root of a_5 (which is irreducible) and set $K = \mathbb{Q}(\theta)$. For every field extension L/\mathbb{Q} , there is an injective homomorphism

 $\delta_{\mathbf{L}}: J(\mathbf{L})/2J(\mathbf{L}) \to (\mathbf{L} \otimes_{\mathbb{Q}} \mathbf{K})^{\times}/(\mathbf{L} \otimes_{\mathbb{Q}} \mathbf{K})^{\times 2};$

The 2-Selmer group can be identified with the subgroup of $K^{\times}/K^{\times 2}$ whose elements have image in $im \delta_{\mathbb{Q}_{\nu}}$ under the obvious map, for all ν .

Let θ be a root of a_5 (which is irreducible) and set $K = \mathbb{Q}(\theta)$. For every field extension L/\mathbb{Q} , there is an injective homomorphism

$$\delta_{\mathsf{L}}: J(\mathsf{L})/2J(\mathsf{L}) \to (\mathsf{L} \otimes_{\mathbb{Q}} \mathsf{K})^{\times}/(\mathsf{L} \otimes_{\mathbb{Q}} \mathsf{K})^{\times 2};$$

The 2-Selmer group can be identified with the subgroup of $K^{\times}/K^{\times 2}$ whose elements have image in $im \delta_{\mathbb{Q}_{\nu}}$ under the obvious map, for all ν . The discriminant of a_5 ,

 $disc(a_5) = 13 \cdot 24554691821639909$

is odd and squarefree and the class group of K is trivial, which implies that

 $\operatorname{Sel}_2(J) \subset \mathcal{O}_K^{\times}/\mathcal{O}_K^{\times 2}$.

Let θ be a root of a_5 (which is irreducible) and set $K = \mathbb{Q}(\theta)$. For every field extension L/\mathbb{Q} , there is an injective homomorphism

$$\delta_{\mathsf{L}}: J(\mathsf{L})/2J(\mathsf{L}) \to (\mathsf{L} \otimes_{\mathbb{Q}} \mathsf{K})^{\times}/(\mathsf{L} \otimes_{\mathbb{Q}} \mathsf{K})^{\times 2};$$

The 2-Selmer group can be identified with the subgroup of $K^{\times}/K^{\times 2}$ whose elements have image in $im \delta_{\mathbb{Q}_{v}}$ under the obvious map, for all v. The discriminant of a_{5} ,

 $disc(a_5) = 13 \cdot 24554691821639909$

is odd and squarefree and the class group of K is trivial, which implies that

 $\operatorname{Sel}_2(J) \subset \mathcal{O}_K^{\times}/\mathcal{O}_K^{\times 2}.$

The injectivity of σ follows from that of

 $\mathcal{O}_K^\times/\mathcal{O}_K^{\times 2} \to \mathbb{Z}_2[\theta]^\times/\mathbb{Z}_2[\theta]^{\times 2}\,.$

Any point $Q \in J(L)$ is represented by a divisor of the form $D - d \cdot \infty$ with D effective and not containing a Weierstrass point in its support.

Any point $Q \in J(L)$ is represented by a divisor of the form $D - d \cdot \infty$ with D effective and not containing a Weierstrass point in its support. Let $a \in L[x]$ be the monic polynomial of degree d whose roots are the x-coordinates of the points in D (with multiplicity). Then

 $\delta_L(Q) = (-1)^d \mathfrak{a}(\theta) \in L[\theta]^{\times}/L[\theta]^{\times 2}.$

Any point $Q \in J(L)$ is represented by a divisor of the form $D - d \cdot \infty$ with D effective and not containing a Weierstrass point in its support. Let $a \in L[x]$ be the monic polynomial of degree d whose roots are the x-coordinates of the points in D (with multiplicity). Then

$$\delta_{\mathrm{L}}(\mathrm{Q}) = (-1)^{\mathrm{d}} \mathfrak{a}(\theta) \in \mathrm{L}[\theta]^{\times}/\mathrm{L}[\theta]^{\times 2}.$$

Proposition.

There are points in $J(\mathbb{Q}_2)$ with a-polynomials

$$x^{d}-2$$
, $d \in \{1, 2, ..., 7\}$, $x^{d}-4$, $d \in \{3, 5\}$

that represent a basis of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

Any point $Q \in J(L)$ is represented by a divisor of the form $D - d \cdot \infty$ with D effective and not containing a Weierstrass point in its support. Let $a \in L[x]$ be the monic polynomial of degree d whose roots are the x-coordinates of the points in D (with multiplicity). Then

$$\delta_{\mathrm{L}}(\mathrm{Q}) = (-1)^{\mathrm{d}} \mathfrak{a}(\theta) \in \mathrm{L}[\theta]^{\times}/\mathrm{L}[\theta]^{\times 2}.$$

Proposition.

There are points in $J(\mathbb{Q}_2)$ with a-polynomials

$$x^{d}-2$$
, $d \in \{1, 2, ..., 7\}$, $x^{d}-4$, $d \in \{3, 5\}$

that represent a basis of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

 \rightsquigarrow We can determine $\operatorname{im} \delta_{\mathbb{Q}_2}$ and $\operatorname{Sel}_2(J)$.

$$\underline{\omega} = \left(\frac{\mathrm{d}x}{\mathrm{y}}, \frac{\mathrm{x}\,\mathrm{d}x}{\mathrm{y}}, \dots, \frac{\mathrm{x}^{\mathrm{g}-1}\,\mathrm{d}x}{\mathrm{y}}\right)$$

is a basis of the space of regular differentials on C.

$$\underline{\omega} = \left(\frac{\mathrm{d}x}{\mathrm{y}}, \frac{\mathrm{x}\,\mathrm{d}x}{\mathrm{y}}, \dots, \frac{\mathrm{x}^{\mathrm{g}-1}\,\mathrm{d}x}{\mathrm{y}}\right)$$

is a basis of the space of regular differentials on C. We define the logarithm on the image of $C(\overline{\mathbb{Q}}_2)$ by

$$\log \mathfrak{i}(\mathsf{P}) = \int_{\infty}^{\mathsf{P}} \underline{\omega} \in \bar{\mathbb{Q}}_2^g$$

and extend to $J(\overline{\mathbb{Q}}_2)$ by linearity.

$$\underline{\omega} = \left(\frac{\mathrm{d}x}{\mathrm{y}}, \frac{\mathrm{x}\,\mathrm{d}x}{\mathrm{y}}, \dots, \frac{\mathrm{x}^{\mathrm{g}-1}\,\mathrm{d}x}{\mathrm{y}}\right)$$

is a basis of the space of regular differentials on C. We define the logarithm on the image of $C(\overline{\mathbb{Q}}_2)$ by

$$\log \mathfrak{i}(\mathsf{P}) = \int_{\infty}^{\mathsf{P}} \underline{\omega} \in \bar{\mathbb{Q}}_2^g$$

and extend to $J(\overline{\mathbb{Q}}_2)$ by linearity.

Let $P_0 = (0, 1) \in C(\mathbb{Q})_{odd}$. Since $i(P_0)$ is torsion, $\log i(P_0) = 0$. Near P_0 , we can expand \log as a g-tuple of formal power series in t = x.

$$\underline{\omega} = \left(\frac{\mathrm{d}x}{\mathrm{y}}, \frac{\mathrm{x}\,\mathrm{d}x}{\mathrm{y}}, \dots, \frac{\mathrm{x}^{\mathrm{g}-1}\,\mathrm{d}x}{\mathrm{y}}\right)$$

is a basis of the space of regular differentials on C. We define the logarithm on the image of $C(\overline{\mathbb{Q}}_2)$ by

$$\log \mathfrak{i}(\mathsf{P}) = \int_{\infty}^{\mathsf{P}} \underline{\omega} \in \bar{\mathbb{Q}}_2^g$$

and extend to $J(\overline{\mathbb{Q}}_2)$ by linearity.

Let $P_0 = (0, 1) \in C(\mathbb{Q})_{odd}$. Since $i(P_0)$ is torsion, $\log i(P_0) = 0$. Near P_0 , we can expand \log as a g-tuple of formal power series in t = x.

Proposition.

These power series converge in $\overline{\mathbb{Q}}_2$ on points (ξ, η) with $\nu_2(\xi) > \frac{2}{2q+1}$.

$$\underline{\omega} = \left(\frac{\mathrm{d}x}{\mathrm{y}}, \frac{\mathrm{x}\,\mathrm{d}x}{\mathrm{y}}, \dots, \frac{\mathrm{x}^{\mathrm{g}-1}\,\mathrm{d}x}{\mathrm{y}}\right)$$

is a basis of the space of regular differentials on C. We define the logarithm on the image of $C(\overline{\mathbb{Q}}_2)$ by

$$\log \mathfrak{i}(\mathsf{P}) = \int_{\infty}^{\mathsf{P}} \underline{\omega} \in \bar{\mathbb{Q}}_2^g$$

and extend to $J(\overline{\mathbb{Q}}_2)$ by linearity.

Let $P_0 = (0, 1) \in C(\mathbb{Q})_{odd}$. Since $i(P_0)$ is torsion, $\log i(P_0) = 0$. Near P_0 , we can expand \log as a g-tuple of formal power series in t = x.

Proposition.

These power series converge in $\overline{\mathbb{Q}}_2$ on points (ξ, η) with $v_2(\xi) > \frac{2}{2q+1}$.

 \rightsquigarrow We can determine a basis of the \mathbb{Z}_2 -lattice $\mathbb{Z}_2^g \simeq \log J(\mathbb{Q}_2) \subset \mathbb{Q}_2^g$.

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain $\textup{log}'\colon J(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g\,.$

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain

$$\mathsf{log}': \mathsf{J}(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g.$$

With respect to our $\mathbb{Z}_2\text{-basis,}$ we have

 $\overline{\text{log'}\sigma(\text{Sel}_2(J))} = \left\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \right\rangle \subset \mathbb{F}_2^g.$

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain

 $\mathsf{log}': \mathsf{J}(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g.$

With respect to our $\mathbb{Z}_2\text{-basis},$ we have

 $\log' \sigma(\text{Sel}_2(J)) = \left\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \right\rangle \subset \mathbb{F}_2^g.$

We can compute the power series $\underline{\ell}(t)$ expressing log' near P₀ giving

 $\mathsf{log'i}\big((2t,*)\big) = \big(t + O(2^2), t^2 + O(2^2), O(2^2), 2t^4 + O(2^2), O(2^2), 2t^3 + O(2^2), O(2^2)\big)\,.$

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain

 $\mathsf{log}': \mathsf{J}(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g.$

With respect to our \mathbb{Z}_2 -basis, we have

 $\mathsf{log'}\sigma(\mathsf{Sel}_2(J)) = \left\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \right\rangle \subset \mathbb{F}_2^g \,.$

We can compute the power series $\underline{\ell}(t)$ expressing log' near P₀ giving $\log' i((2t, *)) = (t + O(2^2), t^2 + O(2^2), O(2^2), 2t^4 + O(2^2), O(2^2), 2t^3 + O(2^2), O(2^2)).$ For t odd, we find $\overline{\log' i((2t, *))} = (1, 1, 0, 0, 0, 0, 0) \notin \overline{\log' \sigma}(\operatorname{Sel}_2(J)).$

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain

 $\mathsf{log}': \mathsf{J}(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g.$

With respect to our \mathbb{Z}_2 -basis, we have

 $\log' \sigma(\text{Sel}_2(J)) = \left\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \right\rangle \subset \mathbb{F}_2^g.$

We can compute the power series $\underline{\ell}(t)$ expressing log' near P₀ giving log'i((2t,*)) = (t + O(2²), t² + O(2²), O(2²), 2t⁴ + O(2²), O(2²), 2t³ + O(2²), O(2²)). For t odd, we find $\boxed{\log'i((2t,*))} = (1,1,0,0,0,0,0) \notin \overline{\log'\sigma}(\operatorname{Sel}_2(J)).$

For $t \neq 0$ even, we get $2^{-n} \log' i((2t, *)) = (1, 0, 0, 0, 0, 0, 0) \notin \log' \sigma(Sel_2(J)).$

Points near P_0

Compose log with the isomorphism to \mathbb{Z}_2^g to obtain

 $\mathsf{log}': \mathsf{J}(\mathbb{Q}_2) \longrightarrow \mathbb{Z}_2^g.$

With respect to our \mathbb{Z}_2 -basis, we have

 $\log' \sigma(\text{Sel}_2(J)) = \left\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \right\rangle \subset \mathbb{F}_2^g.$

We can compute the power series $\underline{\ell}(t)$ expressing log' near P₀ giving

 $\mathsf{log'i}\big((2t,*)\big) = \big(t + O(2^2), t^2 + O(2^2), O(2^2), 2t^4 + O(2^2), O(2^2), 2t^3 + O(2^2), O(2^2)\big) \,.$

For t odd, we find For t $\neq 0$ even, we get $\boxed{\log' i((2t,*))} = (1, 1, 0, 0, 0, 0, 0) \notin \overline{\log' \sigma(Sel_2(J))}.$ $2^{-n} \log' i((2t,*)) = (1, 0, 0, 0, 0, 0, 0) \notin \overline{\log' \sigma(Sel_2(J))}.$

Conclusion.

 $(0,\pm 1)$ are the only points $P \in C(\mathbb{Q})$ with $v_2(x(P)) > 0$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

 $\log' \mathfrak{i}(\mathsf{P}_{2t}) = \left(O(2^2), O(2^2), O(2^2), O(2^2), O(2^2), O(2^2), -t + 2t^2 + O(2^2) \right).$

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

 $\mathsf{log'}\mathfrak{i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -\mathbf{t} + 2t^2 + \mathsf{O}(2^2)\right).$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$\mathsf{log'}\mathfrak{i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -\mathbf{t} + 2t^2 + \mathsf{O}(2^2)\right).$$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

Conclusion.

 ∞ is the only point $P \in C(\mathbb{Q})$ with $\nu_2(x(P)) < 0$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$\mathsf{log'}\mathfrak{i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -\mathbf{t} + 2t^2 + \mathsf{O}(2^2)\right).$$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

Conclusion.

 ∞ is the only point $P \in C(\mathbb{Q})$ with $\nu_2(x(P)) < 0$.

The (possibly) remaining rational points P have $x(P) \equiv -3 \mod 8$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$\mathsf{log'}\mathfrak{i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -\mathbf{t} + 2t^2 + \mathsf{O}(2^2)\right).$$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

Conclusion.

∞ is the only point $P \in C(\mathbb{Q})$ with $\nu_2(x(P)) < 0$.

The (possibly) remaining rational points P have $x(P) \equiv -3 \mod 8$. We check that $\delta_{\mathbb{Q}_2} \mathfrak{i}(P) \notin \sigma(\operatorname{Sel}_2(J))$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$\mathsf{log'i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -t + 2t^2 + \mathsf{O}(2^2)\right).$$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

Conclusion.

 ∞ is the only point $P \in C(\mathbb{Q})$ with $v_2(x(P)) < 0$.

The (possibly) remaining rational points P have $x(P) \equiv -3 \mod 8$. We check that $\delta_{\mathbb{Q}_2} \mathfrak{i}(P) \notin \sigma(\operatorname{Sel}_2(J))$.

Conclusion.

There are no points $P \in C(\mathbb{Q})$ with $v_2(x(P)) = 0$.

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$\mathsf{log'i}(\mathsf{P}_{2t}) = \left(\mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), \mathsf{O}(2^2), -t + 2t^2 + \mathsf{O}(2^2)\right).$$

We find that $\overline{2^{-n}\log' i(P_{2t})} = (0, 0, 0, 0, 0, 0, 1) \notin \overline{\log'}\sigma(\operatorname{Sel}_2(J))$ for all $t \in \mathbb{Z}_2$.

Conclusion.

 ∞ is the only point $P \in C(\mathbb{Q})$ with $v_2(x(P)) < 0$.

The (possibly) remaining rational points P have $x(P) \equiv -3 \mod 8$. We check that $\delta_{\mathbb{Q}_2} \mathfrak{i}(P) \notin \sigma(\operatorname{Sel}_2(J))$.

Conclusion.

There are no points $P \in C(\mathbb{Q})$ with $v_2(x(P)) = 0$. So $C(\mathbb{Q}) = \{\infty, (0, 1), (0, -1)\}.$

We have shown that

3 $A_5(c)$ is a square $\iff c = 0$.

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

- **6** $A_7(c)$ is a square $\iff c = 0$. [under GRH; $Sel_2(J) = 0$]
- [under GRH: Sel₂(I) 0]

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

- **6** $A_{10}(c)$ is a square $\iff c \in \{0, -1\}$. [work with $y^2 = -a_5(x)$]
- [\rightsquigarrow genus 2 curve of rank 1] [under GRH; Sel₂(J) = 0] [work with $w^2 = -\pi (w)$]

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

Theorem.

Let $c \in \mathbb{Q}$ such that $f_c^{\circ 2}$ is irreducible $[\rightsquigarrow c \notin \{0, -1\}]$. Then $f_c^{\circ 6}$ is irreducible. Assuming GRH, $f_c^{\circ 10}$ is also irreducible.

We have shown that

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

Theorem.

Let $c \in \mathbb{Q}$ such that $f_c^{\circ 2}$ is irreducible $[\rightsquigarrow c \notin \{0, -1\}]$. Then $f_c^{\circ 6}$ is irreducible. Assuming GRH, $f_c^{\circ 10}$ is also irreducible.

Proof.

By the above, $A_n(c) \neq \Box$ for n = 3, 4, 5, 6, 8, 9, 10 and for n = 7 under GRH. \Box

The method applies in a similar way to curves of the form

$$\begin{split} C\colon y^2 &= x^{2g+1} + h(x)^2 \qquad \text{with } h \in \mathbb{Z}[x], \text{ deg } h \leq g \text{ and } h(0) \text{ odd} \\ \text{to show that } C(\mathbb{Q}) &= \big\{\infty, (0, h(0)), (0, -h(0))\big\}. \end{split}$$

The method applies in a similar way to curves of the form

 $C: y^2 = x^{2g+1} + h(x)^2 \quad \text{with } h \in \mathbb{Z}[x], \text{ deg } h \leq g \text{ and } h(0) \text{ odd}$ to show that $C(\mathbb{Q}) = \{\infty, (0, h(0)), (0, -h(0))\}.$

The key step is the explicit description of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

The method applies in a similar way to curves of the form

 $C: y^2 = x^{2g+1} + h(x)^2 \quad \text{with } h \in \mathbb{Z}[x], \text{ deg } h \leq g \text{ and } h(0) \text{ odd}$ to show that $C(\mathbb{Q}) = \{\infty, (0, h(0)), (0, -h(0))\}.$

The key step is the explicit description of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

We have implemented the method for the case that h(1) is even and have run it for g = 5 on all the 16808 suitable h with coefficients in $\{-3, \ldots, 3\}$ and positive leading coefficient:

The method applies in a similar way to curves of the form

 $C: y^2 = x^{2g+1} + h(x)^2 \quad \text{with } h \in \mathbb{Z}[x], \text{ deg } h \leq g \text{ and } h(0) \text{ odd}$ to show that $C(\mathbb{Q}) = \{\infty, (0, h(0)), (0, -h(0))\}.$

The key step is the explicit description of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

We have implemented the method for the case that h(1) is even and have run it for g = 5 on all the 16808 suitable h with coefficients in $\{-3, ..., 3\}$ and positive leading coefficient:

dim Sel	0	1	2	3	4	5	avg. #Sel	total	perc.
success	3307	5786	2553	309	7	0	2.314	11962	71.2%
more pts.	0	693	1204	644	133	6	5.102	2680	15.9%
failure	0	668	1004	436	57	1	4.517	2166	12.9%
total	3307	7147	4761	1389	197	7	3.042	16808	100.0%

Thank You!