

An Application of "Selmer Group Chabauty" to Arithmetic Dynamics

Michael Stoll Universität Bayreuth

MIT November 19, 2019

Iterates of quadratic polynomials

Let $c \in \mathbb{Q}$ and define

$$
f_{\mathbf{c}}(x) = x^2 + \mathbf{c} \in \mathbb{Q}[x].
$$

The iterates of f_c are

$$
f_c^{\circ 0}(x) = x, \t f_c^{\circ 1}(x) = f_c(x) = x^2 + c, \t f_c^{\circ 2}(x) = f_c(f_c(x)) = (x^2 + c)^2 + c, \t ... ,
$$

$$
f_c^{\circ (n+1)}(x) = f_c(f_c^{\circ n}(x)) = f_c^{\circ n}(f_c(x)), \t
$$

Question.

For which c and n is $f_c^{\circ n}$ $_{\rm c}^{\rm on}$ irreducible in $\mathbb{Q}[{\rm x}]$?

Conjecture.

For all $c \in \mathbb{Q}$, if $f_c^{\circ 2}$ $_{\rm c}^{\rm o2}$ is irreducible, then ${\rm f}_{\rm c}^{\rm on}$ $_{c}^{\circ n}$ is irreducible for all n.

Remark.

 $f_c^{\circ 2}$ c^2 reducible $\iff c = -t^2$ or $1/c = 4t^2(t^2 - 1)$ with $t \in \mathbb{Q}$.

A criterion

Lemma.

Assume that $n \geq 1$, $f_c^{\circ n}$ $c^{\circ n}$ is irreducible and $f_c^{\circ(n+1)}$ \int_{c}° is reducible. Then the constant term of $f_c^{\circ(n+1)}$ must be a square.

Proof.

f \circ (n+1) $c^{(n+1)}(x) = f_c^{\circ n}$ $c^{\circ n}$ (x^2+c) is an even polynomial. So $x \mapsto -x$ induces an involution on the set of irreducible factors of $f_c^{\circ(n+1)}$ $\frac{c}{c}$. Fixed points of this involution correspond to factors of f_c^{on} on
c So when $f_c^{\circ(n+1)}$ $\mathbf{c}^{(n+1)}$ is reducible, it factors as $\mathbf{f}_{\mathbf{c}}^{\circ(n+1)}$ $c^{O(H+1)}(x) = h(x)h(-x),$ and $f_c^{\circ(n+1)}$ $c^{(n+1)}(0) = h(0)^2$. (Note that deg h is even, since $n \ge 1$.) $\qquad \qquad \Box$

Remark.

f $\frac{\delta(n+1)}{c}$ can be irreducible even though its constant term is a square; e.g., $f_{1/3}^{\circ 2}(x) = x^4 + \frac{2}{3}$ $\frac{2}{3}x^2 + \frac{4}{9}$ $\frac{4}{9}$ is irreducible.

What is known

We define $A_n(c)$ to be the constant term of f_c^{on} on.
c

 $A_0(c) = 0$, $A_1(c) = c$, $A_2(c) = c^2 + c$, ..., $A_{n+1}(c) = A_n(c)^2 + c$, ...

Proposition.

Let $c \in \mathbb{Q}$. Then

- \bigcirc A₃(c) is a square \iff c = 0.
- \bullet A₄(c) is a square \iff c \in {0, -1}.

Proof (sketch; [Jones, Hindes et al.]). $y^2 = A_3(x)$ is a rank-zero elliptic curve, $y^2 = A_4(x)$ is a hyperelliptic genus-3 curve with rank-zero Jacobian. $\qquad \Box$

Conclusion.

If $c\in\mathbb{Q}$ is such that $\mathsf{f}^{\circ 2}_c$ $_\mathrm{c}^\mathrm{o2}$ is irreducible, then $\rm f_c^{\circ4}$ $\frac{10}{c}$ is irreducible.

The goal

We want to show that $A_5(c)$ is a square only for $c = 0$. Equivalently, $a_5(x)$ is a square only for $x = 0$, where $a_5(x) = x^{16}A_5(1/x)$. Write

$$
C\colon y^2 = a_5(x) = x^{15} + (x^7 + (x^3 + (x+1)^2)^2)^2;
$$

this is an odd degree hyperelliptic curve of genus $g = 7$.

Its Jacobian variety J has 2-Selmer rank 2, but we are unable to find points of infinite order in $J(Q)$. So standard Chabauty techniques cannot be applied.

We will instead use "Selmer Group Chabauty".

We have three rational points on C whose image in J has odd order:

$$
C(\mathbb{Q})_{\text{odd}} = \{\infty, (0,1), (0,-1)\}.
$$

The idea

We check that σ is injective.

Let $P \in C(\mathbb{Q}) \setminus C(\mathbb{Q})_{odd}$ and write $i(P) = 2^n \cdot Q$ with $Q \in J(\mathbb{Q})$ and n maximal. Then $\overline{2^{-n} \log i(P)} = \overline{\log Q} = \overline{\log} \sigma \delta(Q) \in \overline{\log} \sigma(Sel_2(J)).$ We show $\forall P \in C(\mathbb{Q}_2) \setminus C(\mathbb{Q})_{\text{odd}} \colon \overline{2^{-n} \log i(P)} \notin \overline{\log} \sigma(\textsf{Sel}_2(J)).$ This implies that $C(\mathbb{Q}) = C(\mathbb{Q})_{\text{odd}}$.

The Selmer group

Let θ be a root of a_5 (which is irreducible) and set $K = \mathbb{Q}(\theta)$. For every field extension L/\mathbb{Q} , there is an injective homomorphism

$$
\delta_L\colon J(L)/2J(L)\to (L\otimes_{\mathbb{Q}} K)^\times/(L\otimes_{\mathbb{Q}} K)^{\times 2}\,;
$$

The 2-Selmer group can be identified with the subgroup of $K^{\times}/K^{\times}2$ whose elements have image in im $\delta_{\mathbb{Q}_\mathcal{V}}$ under the obvious map, for all $\mathcal{v}.$ The discriminant of a_5 ,

disc $(a_5) = 13 \cdot 24554691821639909$

is odd and squarefree and the class group of K is trivial, which implies that

> $\mathsf{Sel}_2(\mathrm{J}) \subset \mathcal{O}_\mathsf{K}^\times / \mathcal{O}_\mathsf{K}^{\times 2}$ $\overset{\times Z}{\text{K}}$.

The injectivity of σ follows from that of

 $\mathcal{O}_{\mathbf{K}}^{\times}$ $K^{\times}/\mathcal{O}_K^{\times 2} \to \mathbb{Z}_2[\theta]^{\times}/\mathbb{Z}_2[\theta]^{\times 2}.$

The local image at 2

Any point $Q \in J(L)$ is represented by a divisor of the form $D - d \cdot \infty$ with D effective and not containing a Weierstrass point in its support. Let $a \in L[x]$ be the monic polynomial of degree d whose roots are the x-coordinates of the points in D (with multiplicity). Then

$$
\delta_L(Q) = (-1)^d \mathfrak{a}(\theta) \in L[\theta]^{\times}/L[\theta]^{\times 2}.
$$

Proposition.

There are points in $J(Q_2)$ with a-polynomials

$$
x^d - 2
$$
, $d \in \{1, 2, ..., 7\}$, $x^d - 4$, $d \in \{3, 5\}$

that represent a basis of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

 \rightsquigarrow We can determine im $\delta_{\mathbb{Q}_2}$ and Sel₂(J).

The 2-adic abelian logarithm

$$
\underline{\omega} = \left(\frac{dx}{y}, \frac{x \, dx}{y}, \dots, \frac{x^{g-1} \, dx}{y}\right)
$$

is a basis of the space of regular differentials on C. We define the logarithm on the image of $\mathcal{C}(\bar{\mathbb{Q}}_2)$ by

$$
\text{log}\,i(P)=\int_{\infty}^{P}\underline{\omega}\in\bar{\mathbb{Q}}_{2}^{g}
$$

and extend to $J(\bar{\mathbb{Q}}_2)$ by linearity.

Let $P_0 = (0, 1) \in C(\mathbb{Q})_{\text{odd}}$. Since $i(P_0)$ is torsion, $\log i(P_0) = 0$. Near P_0 , we can expand log as a g-tuple of formal power series in $t = x$.

Proposition.

These power series converge in $\bar{\mathbb{Q}}_2$ on points (ξ,η) with $v_2(\xi) > \frac{2}{2g}$ $rac{2}{2g+1}$.

 \rightsquigarrow We can determine a basis of the \mathbb{Z}_2 -lattice \mathbb{Z}_2^9 $\frac{3}{2}$ \approx $log J(Q_2) \subset \mathbb{Q}_2^9$ 2 .

Points near P_0

Compose log with the isomorphism to \mathbb{Z}_2^9 2 to obtain

$$
\text{log}'\colon J(\mathbb{Q}_2)\longrightarrow \mathbb{Z}_2^g\,.
$$

With respect to our \mathbb{Z}_2 -basis, we have

 $\overline{\mathsf{log}^{\prime}}\sigma(\mathsf{Sel}_2(\mathrm J)) = \big\langle (0, 1, 0, 0, 0, 1, 0), (0, 0, 1, 1, 1, 1, 0) \big\rangle \subset \mathbb{F}_2^9$ $\frac{9}{2}$.

We can compute the power series $\ell(t)$ expressing log' near P₀ giving

 $\log' i((2t,*)) = (t + O(2^2), t^2 + O(2^2), O(2^2), 2t^4 + O(2^2), O(2^2), 2t^3 + O(2^2), O(2^2))$.

For t odd, we find $\overline{log' i((2t, *))} = (1, 1, 0, 0, 0, 0, 0) \notin \overline{log' \sigma(Sel_2(J))}$. For $t \neq 0$ even, we get $\overline{2^{-n} \log' i((2t,*))} = (1,0,0,0,0,0,0) \notin \overline{\log' \sigma}(\textsf{Sel}_2(J)).$

Conclusion.

 $(0, \pm 1)$ are the only points $P \in C(\mathbb{Q})$ with $v_2(x(P)) > 0$.

Other points

To deal with points P near ∞ , i.e., such that $v_2(x(P)) < 0$, we expand log' in terms of $t = y/x^{g+1}$; this gives

$$
\text{log}'\, \mathfrak{i}(\text{P}_{2t}) = \left(O(2^2), O(2^2), O(2^2), O(2^2), O(2^2), O(2^2), -t + 2t^2 + O(2^2) \right).
$$

We find that $\overline{2^{-n} \log' i(P_{2t})} = (0,0,0,0,0,0,1) \notin \overline{\log' \sigma(Sel_2(I))}$ for all $t \in \mathbb{Z}_2$.

Conclusion.

 ∞ is the only point $P \in C(\mathbb{Q})$ with $v_2(x(P)) < 0$.

The (possibly) remaining rational points P have $x(P) \equiv -3 \mod 8$. We check that $\delta_{\mathbb{Q}_2} \mathfrak{i}(\mathsf{P}) \notin \sigma(\mathsf{Sel}_2(\mathsf{J})).$

Conclusion.

There are no points $P \in C(\mathbb{Q})$ with $v_2(x(P)) = 0$. So $C(\mathbb{Q}) = \{\infty, (0, 1), (0, -1)\}.$

Further results

We have shown that

 $\bigotimes A_5(c)$ is a square $\iff c = 0$.

Lemma.

If $1 < m \mid n$ and $c \in \mathbb{Q}$ such that $A_n(c)$ is a square, then $\pm A_m(c)$ is a square. If $m \equiv n \mod 2$, then $A_m(c)$ is a square.

4 A₆(c) is a square \Leftrightarrow c \in {0, -1}. [\rightsquigarrow genus 2 curve of rank 1] **Θ** $A_7(c)$ is a square \iff c = 0. [under GRH; Sel₂ [under GRH; $Sel₂(I) = 0$] **O** A₁₀(c) is a square \iff c \in {0, -1}. [work with $y^2 = -a_5(x)$]

Theorem.

Let $c \in \mathbb{Q}$ such that $f_c^{\circ 2}$ $_{\rm c}^{\rm o2}$ is irreducible $[\rightsquigarrow$ c \notin $\{0,-1\}]$. Then f_c^{06} $_{\rm c}^{\rm o6}$ is irreducible. Assuming GRH, ${\rm f_{c}^{\rm o10}}$ $_c^{010}$ is also irreducible.

Proof.

By the above, $A_n(c) \neq \Box$ for $n = 3, 4, 5, 6, 8, 9, 10$ and for $n = 7$ under GRH. \Box

Generalization

The method applies in a similar way to curves of the form

 $C: y^2 = x^{2g+1} + h(x)^2$ with $h \in \mathbb{Z}[x]$, deg $h \le g$ and $h(0)$ odd to show that $C(\mathbb{Q}) = \{\infty, (0, h(0)), (0, -h(0))\}.$

The key step is the explicit description of $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2)$.

We have implemented the method for the case that $h(1)$ is even and have run it for $g = 5$ on all the 16808 suitable h with coefficients in $\{-3, \ldots, 3\}$ and positive leading coefficient:

Thank You!