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Preliminary Remarks

• This is an ongoing project
and still somewhat rough around the edges.

• This talk is light on theorems and heavy on computational results.

• Everything is based on ideas of Noam Elkies from ca. 2000.



The Setting

Let C be a curve of genus 2, with (non-Weierstrass) points P1, . . . , Pr
in distinct orbits under the hyperelliptic involution ι.
We set P−j = ι(Pj).

Then we can ask for all the points P−r, . . . , P−1, P1, . . . , Pr
to be contained in an “arithmetic progression”,
in the sense that all differences [Pj − Pk] are contained
in a cyclic subgroup 〈G〉 of the Jacobian J of C.

There are then integers nj, for j ∈ R = {−nr, . . . ,−n1, n1, . . . , nr}, with
n−j = −nj, such that

∀j, k ∈ R : nj−nk
γ · G = [Pj − Pk] ,

where γ is the gcd of all nj − nk (and we choose 〈G〉 minimally).

We can normalize the nj to be positive and coprime; then γ = 1 or γ = 2.



Some Observations

• The generator G is uniquely determined
and can be represented by a divisor supported in the marked points.

• If γ = 1, then P0 = [Pj] − nj · G ∈ Pic1C does not depend on j;
P0 is a theta characteristic and can be odd or even.

• In the odd case, P0 is a Weierstrass point on C;
in the even case, it corresponds to a {3, 3}-partition of the W. points.

This leads to three types of moduli spaces:

• M(0, n1, . . . , nr) (with γ = 1, P0 ∈ C; we include 0 in R)

• M(∗, n1, . . . , nr) (with γ = 1, P0 /∈ C)

• M(n1, . . . , nr) (with γ = 2 ⇐⇒ all nj odd)

We also write M(R) to denote any of these.



Why Interesting?

• Obviously interesting if you like genus 2 curves!

• Noam Elkies has looked at it (Oberwolfach 2001):
*32. N. ELKIES (15.15-16.00): Progress report on genus 2
[...]

A novel class of moduli problems.
[...]

This talk got me started on the project.

• Can hope to find interesting (families of) genus 2 curves.

• Can hope to find interesting varieties among the moduli spaces.
(But not in this talk!)



Admissibility

There is a necessary condition that R has to satisfy
for M(R) to be non-empty.

A point 0 6= Q ∈ J has a unique representation Q = [P + P ′] − K,
where K is the canonical class and P, P ′ ∈ C.

This implies that all non-zero sums n + n ′ for n, n ′ ∈ R have to be distinct.

Example. M(∗, 1, 2, 4) = ∅, since 4 − 2 = 1 + 1.

We say that R is admissible if it satisfies this condition.



Expected Dimension

The moduli space M2,r of genus 2 curves with r marked points
has dimension 3 + r.

Adding G to the data, we have dimension r + 5.

The points have to satisfy r relations in the Jacobian, so we expect

dimM(R) = r + 5 − 2r = 5 − r .

In any case, this consideration shows that
either M(R) is empty, or else dimM(R) ≥ 5 − r.



Computations

• NDE did some computations ca. 2000 (see his Oberwolfach talk).

• I did similar computations after learning about his.

• My student Andreas Kühn computed many M(R)’s in the early 2010s.

• Recently, I picked this up again and computed even more M(R)’s
(using a compute cluster in Bayreuth).

Main Methods:

• Deduce low-weight relations supported on the Pj,
set up a system of algebraic equations and solve using Gröbner bases.

• Use forgetful maps M(R) →M(R ′) (where R ′ ( R),
when M(R ′) has already been computed.



Example 1

For M(∗, 1, 2, 7), we have relations

3P1 + 2P2 + P−3 ∼ 4P1 + 2P−2 ∼ 3K

where K is the canonical divisor ∞+ +∞−.

We set C : y2 = x6 + f5x
5 + . . . + f0 with P1 = ∞+, P2 = (0, y2) and P3 = (1, y3).

The relations imply the existence of cubics h1(x), h2(x) such that

div(y − h1(x)) = 3P1 + 2P2 + P−3 − 3K and div(y − h2(x)) = 4P1 + 2P−2 − 3K .

This translates into equations that are linear in the coefficients of hi.
Elimination leaves us with equations in f0, . . . , f5, y2, y3.
Setting u = y2 and v = −y3 − y2 − 1, this gives M(∗, 1, 2, 7)
as a subset of the affine plane, with universal curve

C∗,1,2,7 : y
2 = x6 + 2vx5 + v2x4 − 2ux3 + 2u(v + 2)x2 + u2

and points P1 = ∞+, P2 = (0, u), P3 = (1,−u − v − 1).



Example 2

To compute M(∗, 1, 2, 7, 14), we use that M(∗, 1, 2, 7, 14) ↪→M(∗, 1, 2, 7).

We have that G = [P2 − P1] in the Jacobian of C∗,1,2,7; we compute

7G =
(
x2 + (v + 1)x + u, (u + v + 1)x

)
.

We want 7G = [P4 − P3] for some P4 = (x4, y4) ∈ C. This means that

x2 + (v + 1)x + u = (x − 1)(x − x4) and y4 = (u + v + 1)x4 ,

leading to u + v + 2 = 0 with x4 = u and y4 = −u.

So M(∗, 1, 2, 7, 14) is an open subset of the affine line,

C∗,1,2,7,14 : y
2 = x6 − 2(u + 2)x5 + (u + 2)2x4 − 2ux3 − 2u2x2 + u2 ,

and P1 = ∞+, P2 = (0, u), P3 = (1, 1), P4 = (u,−u).



r = 3

We computed > 30 r = 3 moduli spaces with their universal curves.
They are all rational surfaces.

Still, we formulate the following expectation (#R = 6 or 7):

• If R is admissible, then dimM(R) = 2

and M(R) is geometrically irreducible.

• M(R) is rational (or Fano) for finitely many R.

• M(R) is of general type for all but finitely many R.



r = 4

We computed many (> 1500) r = 4 moduli spaces
(and their universal curves in most cases when M(R) ⊂ P1).
Some unexpected phenomena occur.

• We found four empty M(R) with R admissible:
M(0, 4, 6, 7, 26), M(0, 4, 6, 9, 26), M(∗, 1, 5, 8, 13), M(∗, 2, 4, 5, 16).

• We found nine M(R) that have actually r = 5:
M(0, 1, 9, 12, 16, 39), M(0, 7, 9, 12, 13, 48), M(0, 3, 11, 12, 16, 45),
M(0, 7, 8, 13, 17, 48), M(0, 3, 12, 16, 17, 39), M(∗, 2, 5, 10, 11, 37),
M(7, 11, 17, 19, 61), M(1, 13, 17, 23, 55), M(1, 13, 19, 23, 71).

• If non-empty, the smooth projective model of M(R) is either
P1, several (2–4) P1’s permuted transitively by Galois,
an elliptic curve, or a nice curve of genus ≥ 2.



Conjectures for r = 4

Based on the data, we conjecture the following for admissible R
(#R = 8 or 9).

• The smooth projective model of M(R) is one of the following:
(1) empty, (2) P1, (3) several conjugate P1’s, (4) an elliptic curve,
or (5) a nice curve with g ≥ 2.

• Each of the first four possibilities occurs finitely many times.

• For each g ≥ 2, there are finitely many R such that M(R) has genus g.



Some Evidence
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s = (n1 + . . . + n4)/γ, g = genus(M(R)), 33 families with fixed (n1, n2, n3).



More Evidence

empty genus 0 genus 1 genus 2 genus 3 genus 4 genus 5 genus 6 unknown genus

Projections of genus data for
M(0, n1, . . . , n4) (left), M(∗, n1, . . . , n4) (middle), M(n1, . . . , n4) (odd) (right).



r = 5

We computed lots (> 100 000) of r = 5 moduli spaces
(and their associated curves).

Conjecture for #R = 10 or 11.

• With finitely many exceptions, M(R) is empty or of dimension 0.

• For fixed degree d, among the non-exceptional M(R),
there are only finitely many irreducible components of degree d.

• Among the non-exceptional M(R),
there are only finitely many components that extend to larger R
(plus a similar statement for the exceptional ones).

This would imply an upper bound for #R such that M(R) 6= ∅.
Over Q, the maximum we found is 15 (twice);
the overall maximum is 17 for R = {0,±4,±5,±16,±23,±29,±59,±76,±90}.



Evidence
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Relative distribution of component degrees d when n1 + . . . + n5 = s,
for M(∗, n1, n2, n3, n4, n5).



Small Canonical Height

Heuristic.
If G ∈ J has small (positive) canonical height ĥ(G),
then for many multiples nG = (anx2 + bnx + cn, . . . ),
the coefficients an, bn, cn will be small,
and so the quadratic is likely to split;
then nG = [P − P ′], and we get points with difference in 〈G〉.

So we expect the associated curves to show up in M(R)

with (reasonably) large R.

In this way, we (hope to) find examples of curves over Q and over Q(t)

with points on J of particularly small canonical height.



Small Height Examples

Over Q, the record small height is obtained from

C∗,3,19,20,29,31,44,49 : y2 = 25x6 + 20x5 − 76x4 − 134x3 + 124x2 + 96x + 9

with ĥ(G) = 0.000298247083045606370747322191288.

Over a number field, the best so far is over K = Q(ζ12):
C0,4,5,16,23,29,59,76,90 gives ĥ(G) ≈ 0.0001913.

Over Q(t), our record example is

C∗,1,6,9,15 : y2 = 9(4t + 1)2x6 − 24(4t + 1)(t + 2)x4 − 48(4t + 1)(t − 1)x3

+ 16(t − 2)2x2 + 64(t + 1)(t − 2)x + 64(t + 1)2

with ĥ(G) = 1
840.



Torsion

A similar argument applies when G is torsion (i.e., ĥ(G) = 0).
We can add the condition nG = 0; this reduces the dimension by 2.

We indeed find examples for all known torsion orders > 20 over Q
except 45, 60 and 63,
but (unfortunately) no examples with new torsion orders.

We do find orders 31, 37, 47 over quadratic fields
and 41 over cubic fields.



Torsion Examples

M(∗, 3, 14, 18, 26, 27): The curve

y2 = 4x6 + 12x5 + 13x4 + 6x3 + 7x2 + 6x + 9

has J(Q) = 〈G〉 = Z/30Z.
Over Q(

√
5), G is divisible by 4, and J(Q(

√
5)) = Z/120Z.

M(∗, 2, 4, 5, 19, 32, 58) gives a pair of curves over K = Q(
√
3)

with a point of order 168 in J(K).

M(∗, 12, 14, 15, 28, 49, 66): The curve

y2 = 4x6 − 12x5 − 3x4 + 46x3 − 15x2 − 24x + 40

has J(Q) = Z/27Z.
Over Q(ζ9)

+, it acquires a point of order 7, so that J(Q(ζ9)
+) = Z/189Z.



Thank You!


