

How to Find the Rational Points on a Rank 1 Genus 2 Curve

Michael Stoll Jacobs University Bremen

Lorentz Center, Leiden, May 14, 2007

The Goal

Let C/\mathbb{Q} be a smooth projective curve of genus 2, given by

$$
y^2 = f(x) = f_6 x^6 + f_5 x^5 + f_4 x^4 + f_3 x^3 + f_2 x^2 + f_1 x + f_0.
$$

Goal: Determine $C(\mathbb{Q})$!

Assumptions: Let J be the Jacobian of C .

- rank $J(\mathbb{Q}) = 1$, and a generator G of $J(\mathbb{Q})$ (mod torsion) is known;
- We know a point $P_0 \in C(\mathbb{Q})$.

For simplicity, we will assume that $J(\mathbb{Q}) = \mathbb{Z} \cdot G$.

Remark.

If $C(\mathbb{Q})$ is non-empty, then P_0 is usally easy to find. If $C(\mathbb{Q})$ is empty, there are ways to prove this fact.

The Idea

Let
$$
\iota: C \longrightarrow J
$$
, $P \longmapsto [P - P_0]$

be the embedding determined by the basepoint P_0 .

We have to determine the set

$$
R = \{ n \in \mathbb{Z} : nG \in \iota(C) \} = \phi \big(C(\mathbb{Q}) \big) \subset \mathbb{Z} \, ,
$$

where $\phi: C({\mathbb Q}) \stackrel{\iota}{\longrightarrow} J({\mathbb Q})$ =∼ $\stackrel{\cong}{\longrightarrow} \mathbb{Z}.$

Outline of Procedure:

- 1. Find N such that $R \longrightarrow \mathbb{Z} \longrightarrow \mathbb{Z}/N\mathbb{Z}$ is injective;
- 2. For each coset $k + N\mathbb{Z}$, either exhibit a point $P \in C(\mathbb{Q})$ with $\phi(P) \in k + N\mathbb{Z}$, or show that $R \cap (k + N\mathbb{Z})$ is empty.

Step 1

We don't know how to do Step 1 in general.

However, we can hope to find a suitable N in our case, or more generally, when rank $J(Q) < g(C)$.

The idea here is to use Chabauty's Method:

Let p be a prime. There is a pairing

$$
\Omega_J^1(\mathbb{Q}_p)\times J(\mathbb{Q}_p)\longrightarrow \mathbb{Q}_p\,,\qquad (\omega,R)\longmapsto \int_0^R\omega\,.
$$

Since rank $J({\mathbb Q})=1$ and $\dim_{{\mathbb Q}_p}\Omega^1_J({\mathbb Q}_p)=2$, there is a differential

$$
0\neq \omega_p\in \Omega_C(\mathbb{Q}_p)\cong \Omega^1_J(\mathbb{Q}_p)
$$

that kills $J(\mathbb{Q}) \subset J(\mathbb{Q}_p)$.

How to Find N

Theorem.

If the reduction $\bar{\omega}_p$ does not vanish on $C(\mathbb{F}_p)$ and $p > 2$, then each residue class contains at most one rational point.

This implies that $C(\mathbb{Q}) \to J(\mathbb{Q})/NJ(\mathbb{Q})$ is injective, where $N=\left(J(\mathbb{Q}):J(\mathbb{Q})\cap J(\mathbb{Q}_p)^{\mathsf{1}}\right)$.

Heuristically, the set of primes p satisfying this condition should have positive density (at least when J is simple):

Note that for a random $\bar{\omega} =$ $(a + bx) dx$ \hat{y} , there is a \approx 50% chance.

Heuristic/Conjecture 1.

If J is simple, then there are primes $p > 2$ such that $\bar{\omega}_p \neq 0$ on $C(\mathbb{F}_p)$.

In practice, this works very well.

How to Compute $\bar{\omega}_p$

Given a prime p of good reduction, we find $\bar{\omega}_p$ as follows.

Let $K \subset \mathbb{P}^3$ be the Kummer Surface of $J: J \stackrel{\pi}{\longrightarrow} K = J/\{\pm 1\}.$

Compute the image of NG on K ; it will have the form $\pi(NG) = (p^2a : p^2b : p^2c : d)$ with $p \nmid d$.

We have
$$
ax^2 - bx + c \equiv \lambda(\alpha x + \beta)^2 \mod p
$$
; and
\n
$$
\bar{\omega}_p = \frac{(\bar{\alpha}x + \bar{\beta}) dx}{y}.
$$

Remarks.

- 1. We can compute $\pi(NG)$ from $\pi(G)$.
- 2. We can do the computation mod p^3 (i.e., efficiently even for large N).

Step 2

Given a coset $k + N\mathbb{Z}$, we let k_0 be the absolutely smallest representative and check whether $k_0G \in \iota(C)$.

(Before embarking on a potentially costly exact computation of k_0G , we check for several primes p whether its image mod p is in $\iota\big(C(\mathbb{F}_p)\big).$)

If so, we have found $P_k=\iota^{-1}(k_0 G)\in C({\mathbb Q}),$

this is then the only rational point in this residue class.

Otherwise, we try to prove that $R \cap (k + N\mathbb{Z}) = \emptyset$ by a Mordell-Weil Sieve computation.

Mordell-Weil Sieve

Let S be a finite set of primes of good reduction. Let B be a multiple of N . Consider the following diagram.

If the images of $\beta \circ \rho$ and of α do not intersect, then $R \cap (k + N\mathbb{Z}) = \emptyset$.

Heuristic/Conjecture 2:

If $R \cap (k + N\mathbb{Z}) = \emptyset$, then this will be the case when B and S are sufficiently large.

Practical Remarks

- To avoid combinatorial explosion, we compute $\beta^{-1}\big(\textsf{im}(\alpha)\big)$ successively for a sequence $1 = B_0, B_1, \ldots, B_n = B$, where $B_m = q_m B_{m-1}$ with q_m a prime.
- When B_m is a multiple of N, we check the smallest point in the class if it comes from C ; if so, we can discard everything in the same coset mod N .
- We can work with several values of N at the same time.

Conclusion

- Given a curve C of genus 2, a point in $C(\mathbb{Q})$ and a generator of $J(\mathbb{Q})$, there is an algorithm that computes $C(\mathbb{Q})$.
- Termination of the algorithm is conditional on two conjectures; these conjectures are supported by heuristics and experimental evidence.
- In practice, the procedure works and is quite efficient. For example, for the "Flynn-Poonen-Schaefer Curve"

 $C: y^2 = x^6 + 8x^5 + 22x^4 + 22x^3 + 6x^2 + 5x + 1$,

it takes about 1.5 seconds to find $\#C(\mathbb{Q}) = 6$.

• Step 2 does not require the "Chabauty Condition" $r < g$. So if we can do Step 1 for a given curve C , we are in good shape to find $C(\mathbb{Q})$.