

How to Obtain Global Information From Computations Over Finite Fields

Michael Stoll Jacobs University Bremen

Göttingen, July 5, 2007

The Goal

```
Let A be an abelian variety over \mathbb{Q},
and let V \subset A be a subvariety
that does not contain a translate of a nontrivial subabelian variety of A.
```
Goal.

```
Obtain information on V(\mathbb{Q}), the rational points on V!
For example, prove that V(\mathbb{Q}) = \emptyset!
```
Example.

Let C be a curve of higher genus over $\mathbb Q$, and assume we know a rational divisor class of degree 1 on C . Then $C \hookrightarrow J$, where J is the Jacobian variety of C.

The Idea

We know that $A(\mathbb{Q})$ is a finitely generated abelian group.

Assumption.

We know explicit generators of $A(\mathbb{Q})$.

If p is a prime of good reduction for A and V, we can then compute (the images of) the following maps:

 $\alpha_p : V(\mathbb{F}_p) \hookrightarrow A(\mathbb{F}_p)$ and $\beta_p : A(\mathbb{Q}) \to A(\mathbb{F}_p)$

If $P\in A({\mathbb Q})$ is in $V({\mathbb Q})$, then $\beta_p(P)\in \alpha_p\big(V({\mathbb F}_p)\big)$.

Thus we obtain congruence conditions on the coefficients of P with respect to our generators of $A(\mathbb{Q})$.

Using Several Primes

We can extend this to more than one prime.

Let S be a finite set of primes of good reduction. Consider the following commutative diagram.

As before, if $P \in A(\mathbb{Q})$ is in $V(\mathbb{Q})$, then $\beta(P) \in \text{im}(\alpha)$.

In particular, if $im(\alpha) \cap im(\beta) = \emptyset$, then $V(\mathbb{Q}) = \emptyset$.

This technique is called the Mordell-Weil Sieve.

Poonen Heuristic (1)

Assuming that indeed $V(\mathbb{Q}) = \emptyset$, what are our chances to prove this fact in the way just described?

The following considerations are due to Bjorn Poonen.

Let B be some large integer. We will consider all primes $p < B^2$.

For $r > 0$, there is a number $\delta_r > 0$ such that there are at least $\delta_r B^r$ B-smooth integers $\leq B^r$, for B large. ("B-smooth" means that all prime divisors are $\leq B$.)

We assume that a similar statement is true for the set $\{\#A(\mathbb{F}_p): p < B^2\}$.

Poonen Heuristic (2)

More precisely, we make the following

Assumption 1.

Let $S_B = \{p < B^2 : p \text{ good and } \#A(\mathbb{F}_p) \text{ is } B\text{-smooth}\}.$ Then lim inf $B\rightarrow\infty$ $\#S_B$ $\pi(B^2)$ > 0 .

Remarks.

- (1) $\#A(\mathbb{F}_p) \le (\sqrt{p}+1)^{2 \dim A} \le B^{2 \dim A}(1+o(1)).$
- (2) For a fixed prime q, $\#A(\mathbb{F}_p)$ is more likely to be divisible by q than a random integer.

The exponent of $A(\mathbb{F}_p)$ for $p \in S_B$ divides

$$
\prod_{q\leq B} q^{\lfloor \log_q \#A(\mathbb{F}_p)\rfloor} \leq B^{\pi(B) \dim A} (1+o(1)) \approx e^{B \dim A}.
$$

Poonen Heuristic (3)

Let r be the rank of $A(\mathbb{Q})$. Then the image of $A(\mathbb{Q})$ in $\prod A(\mathbb{F}_p)$ has size at most $c e^{rB \dim A}$. $p \in S_B$

On the other hand, for B large, we have

$$
\# \prod_{p \in S_B} A(\mathbb{F}_p) \approx e^{\delta_B B^2 \dim A},
$$

where $\delta_B=$ $\#S_B$ $\pi(B^2)$ $\geq \delta > 0$, by Assumption 1.

We now make the following

Assumption 2.

 $V({\mathbb F}_p)$ behaves like a random subset of $A({\mathbb F}_p)$ of size $\approx p^{\dim V}.$

Then
$$
\prod_{p \in S_B} V(\mathbb{F}_p)
$$
 is a random subset of $\prod_{p \in S_B} A(\mathbb{F}_p)$ of size $\approx e^{\delta_B B^2 \dim V}$.

Poonen Heuristic (4)

$$
\#\prod_{p\in S_B} A(\mathbb{F}_p) \approx e^{\delta_B B^2 \dim A}, \quad \# \mathrm{im}(\alpha_B) \approx e^{\delta_B B^2 \dim V}, \quad \# \mathrm{im}(\beta_B) < c \, e^{rB \dim A}
$$

So the probability that $\text{im}(\alpha) \cap \text{im}(\beta) \neq \emptyset$ is (roughly)

$$
\frac{\#\textsf{im}(\alpha_B)\cdot\#\textsf{im}(\beta_B)}{\#\prod\limits_{p\in S_B}A(\mathbb{F}_p)}< c\,e^{rB\dim A-\delta_B B^2(\dim A-\dim V)}
$$

.

Since $\delta_B \ge \delta > 0$, this tends to zero when $B \to \infty$.

Conclusion.

With probability 1, the Mordell-Weil Sieve will be successful.

Example

In a joint project with Nils Bruin, we considered all 'small' curves of genus 2:

$$
C: y^2 = f_6x^6 + f_5x^5 + f_4x^4 + f_3x^3 + f_2x^2 + f_1x + f_0
$$

with $f_0, f_1, \dots, f_6 \in \{-3, -2, \dots, 3\}.$

Our goal was to decide whether C has rational points, for all such curves C.

Among the ≈ 200000 isomorphism classes, there were ≈ 1500 , for which more straight-forward approaches were unsuccessful.

We applied the Mordell-Weil Sieve to these curves and their Jacobians; for all of them, we could prove that $C(\mathbb{Q}) = \emptyset$.

(See my talk at the Summer School 2006 for more information.)

Practice

In practice, the computation suggested by the heuristic is infeasible.

Instead, we pick a smooth number N and work with

where S is a set of primes such that $A(\mathbb{F}_p)/NA(\mathbb{F}_p)$ is large.

We build N successively as a product of prime factors, keeping track of $\beta^{-1}(\textsf{im}(\alpha))$ at each step.

It is an interesting problem to find a good strategy for this procedure.

Improvements

Instead of just looking at primes of good reduction, we can work more generally with finite quotients of $A(\mathbb{Q}_p)$.

In this way, we can include information at bad primes and 'deep' information modulo higher powers of p .

For example, the component group of the Néron model of A at p can provide useful information.

These improvements make the Mordell-Weil Sieve practical for a curve sitting in an abelian surface when $r \leq 3$ or 4.

Refinement

Even when V has rational points, we can use the Mordell-Weil Sieve to rule out rational points on V with certain additional properties.

For example, we can show that there is no $P \in V(\mathbb{Q})$ such that

- P is in a certain residue class mod n , or
- P is in a certain coset mod $nA(\mathbb{Q})$.

(Both kinds of condition are equivalent.)

In the first case, we restrict to the relevant subset of $V(\mathbb{Q}_p)$ for the primes p dividing n .

In the second case, we use values of N that are multiples of n and restrict to the relevant cosets in $A(\mathbb{Q})/NA(\mathbb{Q})$.

Example (1)

Consider the smooth plane quartic curve

 $C: -2x^3y - 2x^3z + 6x^2yz + 3xy^3 - 9xy^2z + 3xyz^2 - xz^3 + 3y^3z - yz^3 = 0$. It has the known rational points

 $(1:0:0), (0:1:0), (0:0:1).$

Any point $P \in C(\mathbb{Q})$ such that

 $P \equiv (0:1:0) \mod 3$ and $P \equiv (1:0:0)$ or $(1:1:1) \mod 2$ would lead to a primitive integral solution of $x^2 + y^3 = z^7$. Note that the known points do not satisfy this condition.

We want to prove that no rational point on C satisfies the condition.

(This was the last step in the complete solution of $x^2 + y^3 = z^7$, see Poonen, Schaefer, Stoll, Duke Math. J. 2007.)

Example (2)

Let J be the Jacobian of C . We can prove that the rank of $J(Q)$ is 3, and we find generators of a subgroup of $J(Q)$ of finite index prime to 14.

We need to use information at the bad primes 2 and 3; we will use the component groups.

We find

$$
J(\mathbb{Q}_2) \longrightarrow \Phi_2 \cong \frac{\mathbb{Z}}{4\mathbb{Z}} \times \frac{\mathbb{Z}}{4\mathbb{Z}}
$$

$$
J(\mathbb{Q}_3) \longrightarrow \Phi_3 \cong \frac{\mathbb{Z}}{7\mathbb{Z}}
$$

The conditions correspond to subsets of size 3 and 1, respectively.

Example (3)

With the additional information coming from

$$
J(\mathbb{F}_{23}) \cong \frac{\mathbb{Z}}{2\mathbb{Z}} \times \frac{\mathbb{Z}}{16\mathbb{Z}} \times \frac{\mathbb{Z}}{16\mathbb{Z}} \times \frac{\mathbb{Z}}{32\mathbb{Z}}
$$

$$
J(\mathbb{F}_{97}) \cong \frac{\mathbb{Z}}{98\mathbb{Z}} \times \frac{\mathbb{Z}}{98\mathbb{Z}} \times \frac{\mathbb{Z}}{98\mathbb{Z}}
$$

$$
J(\mathbb{F}_{13}) \longrightarrow \frac{\mathbb{Z}}{14\mathbb{Z}}
$$

we get a contradiction.

Since we are working in $J({\mathbb Q})/NJ({\mathbb Q})$ with $N=2^a\cdot 7^b$, it suffices to know that the known points in $J(Q)$ generate a subgroup of index prime to 14.

Another Application

We can use the Mordell-Weil Sieve to show that for every $P \in V(\mathbb{Q})$ there is a known point $Q \in V(\mathbb{Q})$ such that $P - Q$ is in a subgroup of very large index in $A(\mathbb{Q})$.

This implies in particular that any unknown point in $V(\mathbb{Q})$ must be extremely large.

In some cases, we can get a (quite large) bound on the height of integral points on V .

We can combine this with the MW Sieve information to show that we know all integral points.

(This is ongoing work of Bugeaud, Siksek, Stoll, Tengely.)

Summary

- The Mordell-Weil Sieve is a method that gives information on the rational points of a subvariety of an abelian variety.
- It combines global information on the Mordell-Weil group with information over the finite fields \mathbb{F}_p .
- The Poonen heuristic predicts that we can always verify that there are no rational points on the subvariety.
- With a suitable compuational strategy and some improvements, the method is practical when the MW rank is not too large.
- It has been successfully applied in various contexts and is likely to have more applications in the future.