

Simultaneous Torsion in the Legendre Family of Elliptic Curves

Michael Stoll Universität Bayreuth

Workshop on Heights and Applications to Unlikely Intersections Fields Institute, Toronto February 17, 2017

Introduction

Consider, for $\lambda \in \mathbb{C} \setminus \{0,1\},$ the Legendre elliptic curve

$$\mathbf{E}_{\boldsymbol{\lambda}}: y^2 = x(x-1)(x-\lambda).$$

Introduction

Consider, for $\lambda \in \mathbb{C} \setminus \{0, 1\}$, the Legendre elliptic curve

$$\mathbf{E}_{\boldsymbol{\lambda}}: y^2 = x(x-1)(x-\lambda) \,.$$

For $\alpha \in \mathbb{C} \setminus \{0, 1\}$, let $P_{\lambda}(\alpha) \in E_{\lambda}$ be a point with x-coordinate α and define

 $\mathsf{T}(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0, 1\} : \mathsf{P}_{\lambda}(\alpha) \in \mathsf{E}_{\lambda}(\mathbb{C}) \text{ is torsion} \}.$

Then $T(\alpha)$ is a countably infinite set consisting of elements algebraic over $\mathbb{Q}(\alpha)$.

Introduction

Consider, for $\lambda \in \mathbb{C} \setminus \{0, 1\}$, the Legendre elliptic curve

$$\mathbf{E}_{\boldsymbol{\lambda}}: y^2 = x(x-1)(x-\lambda) \,.$$

For $\alpha \in \mathbb{C} \setminus \{0, 1\}$, let $P_{\lambda}(\alpha) \in E_{\lambda}$ be a point with x-coordinate α and define

 $\mathsf{T}(\alpha) = \{\lambda \in \mathbb{C} \setminus \{0, 1\} : \mathsf{P}_{\lambda}(\alpha) \in \mathsf{E}_{\lambda}(\mathbb{C}) \text{ is torsion}\}.$

Then $T(\alpha)$ is a countably infinite set consisting of elements algebraic over $\mathbb{Q}(\alpha)$.

Now consider $\alpha, \beta \in \mathbb{C} \setminus \{0, 1\}$ with $\alpha \neq \beta$ and set $T(\alpha, \beta) = T(\alpha) \cap T(\beta)$.

Question.

What can we say about $T(\alpha, \beta)$?

Known Results

There are three cases:

- α and β are algebraic.
- trdeg_Q($\mathbb{Q}(\alpha,\beta)$) = 1.
- α and β are algebraically independent. Then $T(\alpha, \beta) = \emptyset$.

Known Results

There are three cases:

- α and β are algebraic.
- trdeg_Q($\mathbb{Q}(\alpha,\beta)$) = 1.
- α and β are algebraically independent. Then $T(\alpha, \beta) = \emptyset$.

Masser and Zannier showed that T(2,3) is finite and then proved the following more general result.

Theorem (Masser and Zannier).

 $T(\alpha, \beta)$ is always finite; when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$, this is effective.

Known Results

There are three cases:

- α and β are algebraic.
- trdeg_Q($\mathbb{Q}(\alpha,\beta)$) = 1.
- α and β are algebraically independent. Then $T(\alpha, \beta) = \emptyset$.

Masser and Zannier showed that T(2,3) is finite and then proved the following more general result.

Theorem (Masser and Zannier).

 $T(\alpha, \beta)$ is always finite; when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$, this is effective.

Goals of this talk:

- (1) Get effectivity for some algebraic α , β .
- (2) Get optimal result for transcendence degree 1.
- (3) Use this to get more information on the algebraic case.

Structure of $T(\alpha)$

In \mathbb{C} , $T(\alpha)$ is all over the place, reflecting the fact that E_{tors} is dense in $E(\mathbb{C})$:

This shows $T_{40}(2)$, where $T_n(\alpha) = \{\lambda \in T(\alpha) : P_\lambda(\alpha) \in E_\lambda \text{ has order } \leq n\}$.

Aside

DeMarco, Wang and Ye show that there is actually a limiting distribution μ_{α} and that $\mu_{\alpha} \neq \mu_{\beta}$ when $\alpha \neq \beta$.

Aside

DeMarco, Wang and Ye show that there is actually a limiting distribution μ_{α} and that $\mu_{\alpha} \neq \mu_{\beta}$ when $\alpha \neq \beta$.

So when $T(\alpha, \beta)$ is infinite, we can approximate both μ_{α} and μ_{β} with the same sequence of points, implying $\mu_{\alpha} = \mu_{\beta}$ and therefore $\alpha = \beta$.

Aside

```
DeMarco, Wang and Ye show
that there is actually a limiting distribution \mu_{\alpha}
and that \mu_{\alpha} \neq \mu_{\beta} when \alpha \neq \beta.
```

```
So when T(\alpha, \beta) is infinite,
we can approximate both \mu_{\alpha} and \mu_{\beta} with the same sequence of points,
implying \mu_{\alpha} = \mu_{\beta} and therefore \alpha = \beta.
```

This gives an alternative proof of the Masser-Zannier result.

Fix a prime p.

In contrast to the situation over \mathbb{C} , E_{tors} is discrete in $E(\mathbb{C}_p)$.

This translates into $T(\alpha)$ being discrete in $\mathbb{C}_p \setminus \{0, 1\}$.

Fix a prime p.

In contrast to the situation over \mathbb{C} , E_{tors} is discrete in $E(\mathbb{C}_p)$. This translates into $T(\alpha)$ being discrete in $\mathbb{C}_p \setminus \{0, 1\}$.

Since $T(\alpha)$ moves continuously with α , we can show that $T(\alpha, \beta)$ is empty if α and β are p-adically close:

Fix a prime p.

In contrast to the situation over \mathbb{C} , E_{tors} is discrete in $E(\mathbb{C}_p)$. This translates into $T(\alpha)$ being discrete in $\mathbb{C}_p \setminus \{0, 1\}$.

Since $T(\alpha)$ moves continuously with α , we can show that $T(\alpha, \beta)$ is empty if α and β are p-adically close:

Proposition.

Let $\alpha, \beta \in \mathbb{C}_p$ with $0 < |\alpha(\alpha - 1)|_p \le 1$ and $0 < |\beta - \alpha|_p < |\alpha(\alpha - 1)|_p |p|_p^{2/(p-1)}$. Then $T(\alpha, \beta) = \emptyset$.

Fix a prime p.

In contrast to the situation over \mathbb{C} , E_{tors} is discrete in $E(\mathbb{C}_p)$. This translates into $T(\alpha)$ being discrete in $\mathbb{C}_p \setminus \{0, 1\}$.

Since $T(\alpha)$ moves continuously with α , we can show that $T(\alpha, \beta)$ is empty if α and β are p-adically close:

Proposition.

Let $\alpha, \beta \in \mathbb{C}_p$ with $0 < |\alpha(\alpha - 1)|_p \le 1$ and $0 < |\beta - \alpha|_p < |\alpha(\alpha - 1)|_p |p|_p^{2/(p-1)}$. Then $T(\alpha, \beta) = \emptyset$.

We also get that $T(\alpha, \beta) = \emptyset$ when $|\alpha|_p < |p|_p^{2/(p-1)}$ and $|\beta - 1|_p < |p|_p^{2/(p-1)}$.

Idea for (1)

If we can show that $T(\alpha) \subset \mathbb{C}_p$ is sufficiently localized, then we get a handle on $T(\alpha, \beta)$ when α and β are not p-adically close.

Idea for (1)

If we can show that $T(\alpha) \subset \mathbb{C}_p$ is sufficiently localized, then we get a handle on $T(\alpha, \beta)$ when α and β are not p-adically close.

Easy Lemma.

For $\alpha, \lambda \in \mathbb{C}_p \setminus \{0, 1\}$ the following are equivalent:

- $\lambda \in T(\alpha)$.
- $\lambda = \alpha$, or $\psi_n(\lambda, \alpha) = 0$ for some $n \ge 3$, where $\psi_n(\lambda, x)$ is the nth division polynomial of E_{λ} .
- α is preperiodic for the Lattès map $f_{\lambda}: x \mapsto \frac{(x^2 \lambda)^2}{4x(x 1)(x \lambda)}$ on \mathbb{P}^1 . (This point of view was used by Mavraki.)

We look specifically at p = 2. $|\cdot|$ denotes the 2-adic absolute value.

It is easy to see that $T(1/\alpha) = \{1/\lambda : \lambda \in T(\alpha)\}$, so we can assume that $|\alpha| \leq 1$. Then for all $\lambda \in T(\alpha)$, we have $|\lambda| \leq 1$ as well (as can be seen from the division polynomials or from the Lattès map).

We look specifically at p = 2. $|\cdot|$ denotes the 2-adic absolute value.

It is easy to see that $T(1/\alpha) = \{1/\lambda : \lambda \in T(\alpha)\}$, so we can assume that $|\alpha| \le 1$. Then for all $\lambda \in T(\alpha)$, we have $|\lambda| \le 1$ as well (as can be seen from the division polynomials or from the Lattès map).

If $|\lambda| \le 1$ and $x \in \mathbb{C}_2$ has |x| > 1, then $|f_{\lambda}(x)| = 4|x|$, and x cannot be preperiodic.

We look specifically at p = 2. $|\cdot|$ denotes the 2-adic absolute value.

It is easy to see that $T(1/\alpha) = \{1/\lambda : \lambda \in T(\alpha)\}$, so we can assume that $|\alpha| \le 1$. Then for all $\lambda \in T(\alpha)$, we have $|\lambda| \le 1$ as well (as can be seen from the division polynomials or from the Lattès map).

If $|\lambda| \le 1$ and $x \in \mathbb{C}_2$ has |x| > 1, then $|f_{\lambda}(x)| = 4|x|$, and x cannot be preperiodic.

So if $\lambda \in T(\alpha)$, we must have that $\lambda = \alpha$ ($\iff f_{\lambda}(\alpha) = \infty$) or $|f_{\lambda}(\alpha)| \le 1$. The latter means $|\lambda - \alpha^2|^2 \le |4\alpha(\alpha - 1)(\alpha - \lambda)| \le |4|$, which says that

 $\lambda \equiv \alpha^2 \mod 2$.

We look specifically at p = 2. $|\cdot|$ denotes the 2-adic absolute value.

It is easy to see that $T(1/\alpha) = \{1/\lambda : \lambda \in T(\alpha)\}$, so we can assume that $|\alpha| \le 1$. Then for all $\lambda \in T(\alpha)$, we have $|\lambda| \le 1$ as well (as can be seen from the division polynomials or from the Lattès map).

If $|\lambda| \le 1$ and $x \in \mathbb{C}_2$ has |x| > 1, then $|f_{\lambda}(x)| = 4|x|$, and x cannot be preperiodic.

So if $\lambda \in T(\alpha)$, we must have that $\lambda = \alpha$ ($\iff f_{\lambda}(\alpha) = \infty$) or $|f_{\lambda}(\alpha)| \le 1$. The latter means $|\lambda - \alpha^2|^2 \le |4\alpha(\alpha - 1)(\alpha - \lambda)| \le |4|$, which says that

$$\lambda \equiv \alpha^2 \mod 2$$
.

Corollary. $T(2,3) = \emptyset$.

A Slightly More Precise Result

Note that we have

 $\lambda \in \mathsf{T}(\alpha) \iff \mathsf{f}_{\lambda}(\alpha) \in \{0, 1, \lambda, \infty\} \text{ or } \lambda \in \mathsf{T}(\mathsf{f}_{\lambda}(\alpha)).$

A Slightly More Precise Result

Note that we have

 $\lambda \in \mathsf{T}(\alpha) \iff \mathsf{f}_{\lambda}(\alpha) \in \{0, 1, \lambda, \infty\} \text{ or } \lambda \in \mathsf{T}(\mathsf{f}_{\lambda}(\alpha)).$

The first condition is

$$\lambda \in S(\alpha) := \left\{ \alpha, \alpha^2, \alpha(2-\alpha), \frac{\alpha^2}{2\alpha-1} \right\}.$$

We can easily show that for $|\alpha| \leq 1$ (similarly for $|\alpha| > 1$),

$$\mathsf{T}(\mathsf{f}_{\lambda}(\alpha)) \subset \mathsf{R}(\alpha) := \{ \alpha^2 + 2\mathfrak{u}\alpha(1-\alpha) : \mathfrak{u} \in \mathbb{C}_2, |\mathfrak{u}^2 - \alpha| < 1 \}.$$

A Slightly More Precise Result

Note that we have

 $\lambda \in \mathsf{T}(\alpha) \iff \mathsf{f}_{\lambda}(\alpha) \in \{0, 1, \lambda, \infty\} \text{ or } \lambda \in \mathsf{T}(\mathsf{f}_{\lambda}(\alpha)).$

The first condition is

$$\lambda \in S(\alpha) := \left\{ \alpha, \alpha^2, \alpha(2-\alpha), \frac{\alpha^2}{2\alpha-1} \right\}.$$

We can easily show that for $|\alpha| \leq 1$ (similarly for $|\alpha| > 1$),

$$\mathsf{T}(\mathsf{f}_{\lambda}(\alpha)) \subset \mathsf{R}(\alpha) := \{ \alpha^2 + 2\mathfrak{u}\alpha(1-\alpha) : \mathfrak{u} \in \mathbb{C}_2, |\mathfrak{u}^2 - \alpha| < 1 \}.$$

So if $R(\alpha) \cap R(\beta) = \emptyset$, then we can determine $T(\alpha, \beta)$:

$$\mathsf{T}(\alpha,\beta)\subset\mathsf{S}(\alpha)\cup\mathsf{S}(\beta)$$
.

This will be the case when α and β are 2-adically sufficiently distinct.

The result applies to show the following.

The result applies to show the following. (1) $T(2,3) = \emptyset$.

The result applies to show the following.

(1) $T(2,3) = \emptyset$. (2) $T(2,4) = \{4\}$.

The result applies to show the following.

(1) $T(2,3) = \emptyset$. (2) $T(2,4) = \{4\}$. (3) $T(3,-3) = \{-3,9\}$.

The result applies to show the following.

(1) $T(2,3) = \emptyset$. (2) $T(2,4) = \{4\}$. (3) $T(3,-3) = \{-3,9\}$. (4) $T(\omega, \omega^2) = \{\omega, \omega^2\}$, where ω is a cube root of unity.

The result applies to show the following.

(1) $T(2,3) = \emptyset$. (2) $T(2,4) = \{4\}$. (3) $T(3,-3) = \{-3,9\}$. (4) $T(\omega, \omega^2) = \{\omega, \omega^2\}$, where ω is a cube root of unity.

Let μ be the set of all roots of unity. Then $\#(T(\alpha) \cap \mu) \leq 3$ for all α , and

 $\#(T(\alpha) \cap \mu) = 3 \iff \alpha \in \mu \text{ and } ord(\alpha) \in \{3, 6, 12\}.$

Transcendence Degree 1

Assume that $\operatorname{trdeg}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta)) = 1$ and let $F \in \mathbb{Z}[\alpha,b]$ be irreducible such that $F(\alpha,\beta) = 0$.

Transcendence Degree 1

Assume that $\operatorname{trdeg}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta)) = 1$ and let $F \in \mathbb{Z}[\alpha,b]$ be irreducible such that $F(\alpha,\beta) = 0$. Assume that $\lambda \in T(\alpha,\beta)$. Then

$$(\lambda = \alpha \text{ or } \exists n \ge 3 \colon \psi_n(\lambda, \alpha) = 0)$$
 and $(\lambda = \beta \text{ or } \exists n \ge 3 \colon \psi_n(\lambda, \beta) = 0)$

Eliminating λ , we see that F divides $\psi_n(a,b)$ or $\psi_n(b,a)$ or $R_n(a,b) := \text{Res}_t(\psi_n(t,a),\psi_n(t,b))/(a-b)^{\deg_t\psi_n(t,x)}$, for some $n \ge 3$.

Transcendence Degree 1

Assume that $\operatorname{trdeg}_{\mathbb{Q}}(\mathbb{Q}(\alpha,\beta)) = 1$ and let $F \in \mathbb{Z}[\alpha,b]$ be irreducible such that $F(\alpha,\beta) = 0$. Assume that $\lambda \in T(\alpha,\beta)$. Then

 $\left(\lambda=\alpha \text{ or } \exists n\geq 3 \colon \psi_n(\lambda,\alpha)=0\right) \quad \text{and} \quad \left(\lambda=\beta \text{ or } \exists n\geq 3 \colon \psi_n(\lambda,\beta)=0\right).$

Eliminating λ , we see that F divides $\psi_n(a,b)$ or $\psi_n(b,a)$ or $R_n(a,b) := \text{Res}_t(\psi_n(t,a),\psi_n(t,b))/(a-b)^{\deg_t\psi_n(t,x)}$, for some $n \ge 3$.

Proposition 1.

For all $n \ge 3$, the polynomial $\psi_n(a, b)\psi_n(b, a)R_n(a, b)$ is squarefree in $\mathbb{Q}[a, b]$.

Sketch of proof. Write the possible b near a = 0 as Puiseux series in a (using Tate parameterization) and check that they are distinct.

Result

Let, for $n \ge 3$, C_n be the curve in $\mathbb{P}^1_a \times \mathbb{P}^1_b$ given by

 $\psi_n(a,b)\psi_n(b,a)R_n(a,b)=0$

and let $C = \bigcup_n C_n$ be the filtered union (by divisibility) of the C_n .

Result

Let, for $n \ge 3$, C_n be the curve in $\mathbb{P}^1_a \times \mathbb{P}^1_b$ given by

 $\psi_n(a,b)\psi_n(b,a)R_n(a,b) = 0$

and let $C = \bigcup_n C_n$ be the filtered union (by divisibility) of the C_n .

By Proposition 1, C is reduced. This implies that each component of C corresponds to a family of triples (α, β, λ) with $\lambda \in T(\alpha, \beta)$, where λ is unique.

Result

```
Let, for n \ge 3, C_n be the curve in \mathbb{P}^1_a \times \mathbb{P}^1_b given by
```

```
\psi_n(a,b)\psi_n(b,a)R_n(a,b) = 0
```

and let $C = \bigcup_n C_n$ be the filtered union (by divisibility) of the C_n .

By Proposition 1, C is reduced. This implies that each component of C corresponds to a family of triples (α, β, λ) with $\lambda \in T(\alpha, \beta)$, where λ is unique. This gives

Proposition 2.

Let $\alpha, \beta \in \mathbb{C} \setminus \{0, 1\}$ with $\alpha \neq \beta$. Then #T(α, β) \leq the number of branches of C passing through (α, β).

• If $(\alpha, \beta) \notin C$, then $T(\alpha, \beta) = \emptyset$.

This applies when α and β are algebraically independent.

• If $(\alpha, \beta) \notin C$, then $T(\alpha, \beta) = \emptyset$.

This applies when α and β are algebraically independent.

• If (α, β) is a smooth point on C, then $\#T(\alpha, \beta) \leq 1$. This applies when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$.

• If $(\alpha, \beta) \notin C$, then $T(\alpha, \beta) = \emptyset$.

This applies when α and β are algebraically independent.

- If (α, β) is a smooth point on C, then $\#T(\alpha, \beta) \le 1$. This applies when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$.
- If $\#T(\alpha, \beta) \ge 2$, then (α, β) is a singular point on a component of C or an intersection point of two or more components of C.

• If $(\alpha, \beta) \notin C$, then $T(\alpha, \beta) = \emptyset$.

This applies when α and β are algebraically independent.

- If (α, β) is a smooth point on C, then $\#T(\alpha, \beta) \leq 1$. This applies when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$.
- If $\#T(\alpha, \beta) \ge 2$, then (α, β) is a singular point on a component of C or an intersection point of two or more components of C.

If F = 0 describes a component of C, we can bound n in terms of deg F. This gives effectivity in the trdeg = 1 case. Note that we have to know F: we can't say whether $T(e, \pi)$ is empty or not!

• If $(\alpha, \beta) \notin C$, then $T(\alpha, \beta) = \emptyset$.

This applies when α and β are algebraically independent.

- If (α, β) is a smooth point on C, then $\#T(\alpha, \beta) \leq 1$. This applies when $trdeg_{\mathbb{Q}}(\mathbb{Q}(\alpha, \beta)) = 1$.
- If $\#T(\alpha, \beta) \ge 2$, then (α, β) is a singular point on a component of C or an intersection point of two or more components of C.

If F = 0 describes a component of C, we can bound n in terms of deg F. This gives effectivity in the trdeg = 1 case. Note that we have to know F: we can't say whether $T(e, \pi)$ is empty or not!

(Masser and Zannier show $\#T(\alpha,\beta) \le 6(12 \deg F)^{32}$ when trdeg = 1.)

Computations

We have computed all $F \in \mathbb{Q}[a, b]$ giving irreducible components of C satisfying $\deg_{ab} F := \deg_a F + \deg_b F \le 192$.

Computations

We have computed all $F \in \mathbb{Q}[a, b]$ giving irreducible components of C satisfying $\deg_{ab} F := \deg_a F + \deg_b F \le 192$.

Based on this,

we computed all singularities on components with $(\deg_{ab} F)^2 \leq 384$ and all intersections of components with $(\deg_{ab} F_1)(\deg_{ab} F_2) \leq 384$. We then computed $T_{50}(\alpha, \beta) = T_{50}(\alpha) \cap T_{50}(\beta)$ for these points (α, β) , leading to $> 2 \cdot 10^6$ pairs with $\#T_{50}(\alpha, \beta) \geq 2$.

Computations

We have computed all $F \in \mathbb{Q}[a, b]$ giving irreducible components of C satisfying $\deg_{ab} F := \deg_a F + \deg_b F \le 192$.

Based on this,

we computed all singularities on components with $(\deg_{ab} F)^2 \leq 384$ and all intersections of components with $(\deg_{ab} F_1)(\deg_{ab} F_2) \leq 384$. We then computed $T_{50}(\alpha, \beta) = T_{50}(\alpha) \cap T_{50}(\beta)$ for these points (α, β) , leading to $> 2 \cdot 10^6$ pairs with $\#T_{50}(\alpha, \beta) \geq 2$.

558 of these have $\#T_{50}(\alpha,\beta) \ge 3$ (with all torsion orders ≤ 18), 15 of these have $\#T_{50}(\alpha,\beta) \ge 4$, and 3 of these have $\#T_{50}(\alpha,\beta) = 5$; a representative is (i,-i) with

$$\mathsf{T}_{100}(\mathfrak{i},-\mathfrak{i}) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$$

Conjecture 1.

 $T(i,-i) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$

Conjecture 1.

 $T(i,-i) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$

Conjecture 2 (Uniform boundedness).

 $\#T(\alpha,\beta)$ is uniformly bounded (perhaps by 5).

Conjecture 1.

 $\mathsf{T}(\mathfrak{i},-\mathfrak{i}) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$

Conjecture 2 (Uniform boundedness).

 $\#T(\alpha,\beta)$ is uniformly bounded (perhaps by 5).

Conjecture 3 (Finiteness).

There are only finitely many (α, β) with $\#T(\alpha, \beta) \ge 3$.

Conjecture 1.

 $\mathsf{T}(\mathfrak{i},-\mathfrak{i}) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$

Conjecture 2 (Uniform boundedness).

 $\#T(\alpha,\beta)$ is uniformly bounded (perhaps by 5).

Conjecture 3 (Finiteness).

There are only finitely many (α, β) with $\#T(\alpha, \beta) \ge 3$.

Conjecture 4 (Bounded height).

The height of (α, β) such that $\#T(\alpha, \beta) \ge 2$ is uniformly bounded.

Conjecture 1.

 $\mathsf{T}(\mathfrak{i},-\mathfrak{i}) = \{-1, 3 \pm 2\sqrt{2}, \frac{1}{3} \pm \frac{2}{3}\sqrt{-2}\}.$

Conjecture 2 (Uniform boundedness).

 $\#T(\alpha,\beta)$ is uniformly bounded (perhaps by 5).

Conjecture 3 (Finiteness).

There are only finitely many (α, β) with $\#T(\alpha, \beta) \ge 3$.

Conjecture 4 (Bounded height).

The height of (α, β) such that $\#T(\alpha, \beta) \ge 2$ is uniformly bounded.

Conjecture 5 (Bounded degree).

There is a uniform bound for $[\mathbb{Q}(\alpha, \beta, \lambda) : \mathbb{Q}(\alpha, \beta)]$ when $\lambda \in T(\alpha, \beta)$. The bound might even by 2.

Conjecture 5 would imply effectivity of $T(\alpha, \beta)$.

Heights

This shows the (symmetrized) heights h of pairs (α, β) with $\#T(\alpha, \beta) \ge 2$, ordered according to the degree d of $\mathbb{Q}(\alpha, \beta)$.

Thank You!