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Introduction

Consider, for λ ∈ C \ {0, 1}, the Legendre elliptic curve

Eλ : y
2 = x(x− 1)(x− λ) .

For α ∈ C \ {0, 1}, let Pλ(α) ∈ Eλ be a point with x-coordinate α and define

T(α) = {λ ∈ C \ {0, 1} : Pλ(α) ∈ Eλ(C) is torsion} .

Then T(α) is a countably infinite set
consisting of elements algebraic over Q(α).

Now consider α,β ∈ C \ {0, 1} with α 6= β and set T(α,β) = T(α) ∩ T(β).

Question.
What can we say about T(α,β)?
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Known Results

There are three cases:

• α and β are algebraic.
• trdegQ

(
Q(α,β)

)
= 1.

• α and β are algebraically independent. Then T(α,β) = ∅.

Masser and Zannier showed that T(2, 3) is finite
and then proved the following more general result.

Theorem (Masser and Zannier).
T(α,β) is always finite; when trdegQ

(
Q(α,β)

)
= 1, this is effective.

Goals of this talk:
(1) Get effectivity for some algebraic α,β.
(2) Get optimal result for transcendence degree 1.
(3) Use this to get more information on the algebraic case.
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Structure of T(α)

In C, T(α) is all over the place,
reflecting the fact that Etors is dense in E(C):

This shows T40(2), where Tn(α) = {λ ∈ T(α) : Pλ(α) ∈ Eλ has order ≤ n}.



Aside

DeMarco, Wang and Ye show
that there is actually a limiting distribution µα
and that µα 6= µβ when α 6= β.

So when T(α,β) is infinite,
we can approximate both µα and µβ with the same sequence of points,
implying µα = µβ and therefore α = β.

This gives an alternative proof of the Masser-Zannier result.



Aside

DeMarco, Wang and Ye show
that there is actually a limiting distribution µα
and that µα 6= µβ when α 6= β.

So when T(α,β) is infinite,
we can approximate both µα and µβ with the same sequence of points,
implying µα = µβ and therefore α = β.

This gives an alternative proof of the Masser-Zannier result.



Aside

DeMarco, Wang and Ye show
that there is actually a limiting distribution µα
and that µα 6= µβ when α 6= β.

So when T(α,β) is infinite,
we can approximate both µα and µβ with the same sequence of points,
implying µα = µβ and therefore α = β.

This gives an alternative proof of the Masser-Zannier result.



Structure of T(α), p-adically

Fix a prime p.
In contrast to the situation over C, Etors is discrete in E(Cp).
This translates into T(α) being discrete in Cp \ {0, 1}.

Since T(α) moves continuously with α,
we can show that T(α,β) is empty if α and β are p-adically close:

Proposition.
Let α,β ∈ Cp with 0 < |α(α− 1)|p ≤ 1 and 0 < |β− α|p < |α(α− 1)|p |p|

2/(p−1)
p .

Then T(α,β) = ∅.

We also get that T(α,β) = ∅ when |α|p < |p|
2/(p−1)
p and |β− 1|p < |p|

2/(p−1)
p .
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Idea for (1)

If we can show that T(α) ⊂ Cp is sufficiently localized,
then we get a handle on T(α,β) when α and β are not p-adically close.

Easy Lemma.
For α, λ ∈ Cp \ {0, 1} the following are equivalent:

• λ ∈ T(α).
• λ = α, or ψn(λ, α) = 0 for some n ≥ 3,
where ψn(λ, x) is the nth division polynomial of Eλ.

• α is preperiodic for the Lattès map fλ : x 7−→ (x2 − λ)2

4x(x− 1)(x− λ)
on P1.

(This point of view was used by Mavraki.)
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2-adic Localization

We look specifically at p = 2. |·| denotes the 2-adic absolute value.

It is easy to see that T(1/α) = {1/λ : λ ∈ T(α)}, so we can assume that |α| ≤ 1.
Then for all λ ∈ T(α), we have |λ| ≤ 1 as well
(as can be seen from the division polynomials or from the Lattès map).

If |λ| ≤ 1 and x ∈ C2 has |x| > 1, then |fλ(x)| = 4|x|,
and x cannot be preperiodic.

So if λ ∈ T(α), we must have that λ = α (⇐⇒ fλ(α) =∞) or |fλ(α)| ≤ 1.
The latter means |λ− α2|2 ≤ |4α(α− 1)(α− λ)| ≤ |4|, which says that

λ ≡ α2 mod 2 .

Corollary. T(2, 3) = ∅.
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A Slightly More Precise Result

Note that we have

λ ∈ T(α) ⇐⇒ fλ(α) ∈ {0, 1, λ,∞} or λ ∈ T(fλ(α)) .

The first condition is

λ ∈ S(α) :=
{
α,α2, α(2− α), α2

2α−1

}
.

We can easily show that for |α| ≤ 1 (similarly for |α| > 1),

T(fλ(α)) ⊂ R(α) := {α2 + 2uα(1− α) : u ∈ C2, |u2 − α| < 1} .

So if R(α) ∩ R(β) = ∅, then we can determine T(α,β):

T(α,β) ⊂ S(α) ∪ S(β) .

This will be the case when α and β are 2-adically sufficiently distinct.
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Examples

The result applies to show the following.

(1) T(2, 3) = ∅.
(2) T(2, 4) = {4}.
(3) T(3,−3) = {−3, 9}.
(4) T(ω,ω2) = {ω,ω2}, where ω is a cube root of unity.

Let µ be the set of all roots of unity.
Then #(T(α) ∩ µ) ≤ 3 for all α, and

#(T(α) ∩ µ) = 3 ⇐⇒ α ∈ µ and ord(α) ∈ {3, 6, 12} .
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Transcendence Degree 1

Assume that trdegQ
(
Q(α,β)

)
= 1

and let F ∈ Z[a, b] be irreducible such that F(α,β) = 0.
Assume that λ ∈ T(α,β). Then(

λ = α or ∃n ≥ 3 : ψn(λ, α) = 0
)

and
(
λ = β or ∃n ≥ 3 : ψn(λ, β) = 0

)
.

Eliminating λ, we see that F divides
ψn(a, b) or ψn(b, a) or Rn(a, b) := Rest(ψn(t, a), ψn(t, b))/(a− b)degtψn(t,x),
for some n ≥ 3.

Proposition 1.
For all n ≥ 3, the polynomial ψn(a, b)ψn(b, a)Rn(a, b) is squarefree in Q[a, b].

Sketch of proof. Write the possible b near a = 0 as Puiseux series in a
(using Tate parameterization) and check that they are distinct.
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Result

Let, for n ≥ 3, Cn be the curve in P1a × P1b given by

ψn(a, b)ψn(b, a)Rn(a, b) = 0

and let C =
⋃
nCn be the filtered union (by divisibility) of the Cn.

By Proposition 1, C is reduced.
This implies that each component of C corresponds
to a family of triples (α,β, λ) with λ ∈ T(α,β), where λ is unique.
This gives

Proposition 2.
Let α,β ∈ C \ {0, 1} with α 6= β. Then
#T(α,β) ≤ the number of branches of C passing through (α,β).
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Consequences

• If (α,β) /∈ C, then T(α,β) = ∅.
This applies when α and β are algebraically independent.

• If (α,β) is a smooth point on C, then #T(α,β) ≤ 1.
This applies when trdegQ

(
Q(α,β)

)
= 1.

• If #T(α,β) ≥ 2, then (α,β) is a singular point on a component of C
or an intersection point of two or more components of C.

If F = 0 describes a component of C, we can bound n in terms of deg F.
This gives effectivity in the trdeg = 1 case.
Note that we have to know F: we can’t say whether T(e, π) is empty or not!

(Masser and Zannier show #T(α,β) ≤ 6(12deg F)32 when trdeg = 1.)
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Computations

We have computed all F ∈ Q[a, b] giving irreducible components of C
satisfying degab F := dega F+ degb F ≤ 192.

Based on this,
we computed all singularities on components with (degab F)

2 ≤ 384
and all intersections of components with (degab F1)(degab F2) ≤ 384.
We then computed T50(α,β) = T50(α) ∩ T50(β) for these points (α,β),
leading to > 2 · 106 pairs with #T50(α,β) ≥ 2.

558 of these have #T50(α,β) ≥ 3 (with all torsion orders ≤ 18),
15 of these have #T50(α,β) ≥ 4,
and 3 of these have #T50(α,β) = 5; a representative is (i,−i) with

T100(i,−i) = {−1, 3± 2
√
2, 13 ±

2
3

√
−2} .
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Conjectures

Conjecture 1.
T(i,−i) = {−1, 3± 2

√
2, 13 ±

2
3

√
−2}.

Conjecture 2 (Uniform boundedness).
#T(α,β) is uniformly bounded (perhaps by 5).

Conjecture 3 (Finiteness).
There are only finitely many (α,β) with #T(α,β) ≥ 3.

Conjecture 4 (Bounded height).
The height of (α,β) such that #T(α,β) ≥ 2 is uniformly bounded.

Conjecture 5 (Bounded degree).
There is a uniform bound for

[
Q(α,β, λ) : Q(α,β)

]
when λ ∈ T(α,β).

The bound might even by 2.

Conjecture 5 would imply effectivity of T(α,β).
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Heights

This shows the (symmetrized) heights h of pairs (α,β) with #T(α,β) ≥ 2,
ordered according to the degree d of Q(α,β).
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Thank You!


