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he Problem

Definition.

S(d):={p prime | 3dQ C K,[K: Q] =d JE/K ell. curve 3P € E(K): ord(P) = p}

Problems.
O Determine S(d) for small d!
S(1) =1{2,3,5,7} (Mazur)
S(2) =1{2,3,5,7,11,13} (Kamienny)
S(3) =1{2,3,5,7,11,13} (Parent)
S(4) ={2,3,5,7,11,13,17} (DKSS)
S(5) =1{2,3,5,7,11,13,17,19} (DKSS)
S(6) =1{2,3,5,7,11,13,17,19, 37} (DKSS)
S(7) =12,3,5,7,11,13,17,19, 23} (DKSS)
S(8) =1{2,3,5,7,11,13,17,19, 23} (DS, Khawaja)
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he Problem

O Determine S(d) for small d!

® Bound the elements of S(d) for large d!

We will focus on @ in this talk.

The best general result in this direction is due to Oesterlé:

maxS(d) < (392 +1)2.
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Relation With Rational Points

If p € S(d), then there is a number field K of degree d,
an elliptic curve E over K and a point P € E(K) of order p.

The pair (E,P) gives rise to a point x € X;(p)(K) that is not a cusp.

Then TrK/@(x) is a Q-rational effective divisor of degree d on X;(p).
Such divisors correspond to points on the dth symmetric power X;(p)(4).

So we obtain a rational point on X;(p)&
whose support does not contain a cusp.

Conclusion.

If all rational points on X;(p)'4) have cusps in their support,
then p ¢ S(d).
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Definition.

Let X be a (nice) curve over K.

The K-gonality of X, gong(X), is the minimal degree
of a non-constant function f € K(X).

Fact.
If Dy and Dj are linearly equivalent effective K-rational divisors on X

with deg D = deg D, < gong(X), then Dy = D,.

Fact (Abramovich; Kim-Sarnak).

325

F(p —1) for prime p.

gong(Xi(p)) >
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Gonality (2)

Fact.
When g(X;(p)) > 2,

2_
gong (Xq(p)) < g(Xq(p)) < P 5 !

Better (by a constant) asymptotic upper bounds are known.

This implies that

{p:p prime and p < v24d+ 1} C S(d)

and these prime orders occur in infinite families.

Since gong(Xy(p)) < p*—1,
this gives the asymptotics for non-sporadic points
up to a constant factor.
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Fix a prime p and let { 4 p be another prime.

Let Xjo(p,{) denote the modular curve

whose points classify triples (E, P, C)

with P € E a point of order p and C C E a subgroup of order (.

There are two degeneracy maps «, 3: Xy o(p, {) — X;(p)
given by o: (E,P,C) — (E,P) and 3: (E,P,C) — (E/C,P + C).

They induce the correspondence Ty = 3.0 &™ on Xj(p),
which gives an endomorphism T, of the divisor group Div X;(p),

which in turn induces T, € End J;(p).
On (non-cuspidal) points, it is given by

T(E,P)= Y  (E/C,P+CQ).
C<E,#C=l{
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Properties of the Hecke Correspondence

For each a € (Z/pZ)*, we have the diamond operator (a) of X;(p)
given by (a): (E,P) — (E,aP); it is an automorphism of X;(p) — Xp(p).

Theorem. (D-S)

Let F be a monic polynomial whose coefficients are
integral linear combinations of diamond operators.
Then the kernel of F(T;) on DivX;(p) ({ #p primes)
consists of divisors supported in cusps.

Proposition (Eichler-Shimura).
Let { 4 p be an odd prime.
Then Ty — () — 1 € EndJ;(p) Kills J1(p)(Q)ors.
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Let p >5 be a prime, d > 1, and x € X;(p) ¥ (Q).

Let a € (Z/pZ)* and assume that ((a) —1)(J;(p)(Q)) is torsion (f).
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(In some cases, one can replace 8 by a smaller number.)
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A Global Criterion

Corollary.
In the Theorem, assume x has no cusps in its support.

If we can take a to generate (Z/pZ)*,
then x is @ sum of (set-theoretic) pull-backs of points on X;(p).

p=1mode6 and j=0: pull-backs have degree (p —1)/6.
p=1mod4 and j=1728: pull-backs have degree (p —1)/4.
Else: pull-backs have degree (p —1)/2.

Points on Xy(p) with j =0 or j = 1728 have degree > 2.
~p=3d+1forj=0,p=2d+1 for j=1728 (d even)

8d < gon@(X1 (p)) holds when p > /yd+ 1 for some vy > 0.
If d is large, then p € S(d) implies (under the assumption on a)

that p<2d+1, or else d is even and p =3d+ 1.
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Strange Primes

We say that a prime p is strange

if ((a)—1)(J1(p)(Q)) has positive rank for a generator a of (Z/pZ)*
(i.e., the assumption on a does not hold.)

We can split J1(p) ~ Jo(p) x A7 x --- x Ap up to isogeny
with simple abelian varieties Aq,..., A over Q.
If a generates (Z/pZ)*, then ((a)—1)(J1(p)) ~ A7 X -+ X Ap.

So p is strange iff rk A;(Q) >0 for some 1 <j <n.
By results of Kolyvagin-Logachév and Kato, this implies that

there is a newform f of weight 2 for I'1(p) with nontrivial character x
such that L(f,1) = 0.

This can be checked by a computation with modular symbols.

Define strdim(p) to be the number of such “strange newforms™ of level p.



Strange Primes Below
P 61 97 101 181 193 409 421 733 853 1021
ord(x) 6 12 10 6 12 12 6 6 6 30
strdim(p) 2 4 4 2 4 4 2 2 2 8
p| 1777 1801 1861 2377 2917 3229 3793 4201 4733 5441
ord(x) 3 5 6 12 6 3 12 3 7 10
strdim(p) 2 4 6 4 2 2 4 2 6 4
p | 5821 5953 6133 6781 7477 8681 8713 | 10093 | 11497 | 12941
ord(x) 6 3 6 6 14 10 4,12 6 3 10
strdim(p) 2 2 2 2 6 4 4+4 2 2 4
p | 14533 | 15061 | 15289 | 17041 | 17053 | 17257 | 18199 | 20341 | 22093 | 23017
ord(x) 6 6 12 3 6 12 3 6 6 12
strdim(p) 2 4 4 2 2 4 4 2 2 4
p | 23593 | 26161 | 26177 | 28201 | 29569 | 31033 | 31657 | 32497 | 35521 | 35537
ord(x) | 12 3 4 3 2 3 3 3 3 4
strdim(p) 4 2 4 2 2 2 2 2 2 4
p | 36373 | 39313 | 41081 | 41131 | 41593 | 42793 | 48733 | 52561 | 52691 | 53113
ord(x) 6 12 5 3 12 3 6 3 5 12
strdim(p) 2 4 4 2 4 2 2 2 4 4
p | 53857 | 63313 | 63901 | 65171 | 65449 | 66973 | 68737 | 69061 | 69401 | 69457
ord(x) | 12 12 6 5 12 6 12 6 5 4
strdim(p) | 4 4 2 4 4 2 4 2 4 4
p | 73009 | 86113 | 86161 | 96289
ord(x) | 12 12 4 12
strdim(p) 4 4 4 4
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1
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In particular,

, max S(2n) : maxS(2n + 1)
lim sup =3 and limsup
n—oo n n—oo 2TL+]

=0.
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