UNIVERSITAT
BAYREUTH

V4

Uniform bounds
on the number of rational points
on curves of low Mordell-Weil rank

Michael Stoll
Universitat Bayreuth

p-adic Methods in Number Theory

Berkeley
May 27, 2015



Motivation (1)

Theorem. (‘Mordell’'s Conjecture’, Faltings 1983)

Let C be a (‘nice’) curve of genus g > 2 over a number field K.
Then C(K) is finite.



Motivation (1)

Theorem. (‘Mordell’'s Conjecture’, Faltings 1983)

Let C be a (‘nice’) curve of genus g > 2 over a number field K.
Then C(K) is finite.

Question.

Is there a uniform bound N(d, g) for #C(K)
depending only on g and d =[K: Q]?



Motivation (1)

Theorem. (‘Mordell’'s Conjecture’, Faltings 1983)

Let C be a (‘nice’) curve of genus g > 2 over a number field K.
Then C(K) is finite.

Question.

Is there a uniform bound N(d, g) for #C(K)
depending only on g and d =[K: Q]?

Theorem. (Caporaso-Harris-Mazur, Pacelli 1997)
The weak Lang Conjecture

(rational points on varieties of general type are not Zariski dense)
implies a positive answer.
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A geometric variant:

Theorem. (‘Mordell-Lang Conjecture’, Faltings 1994)

Let C be a curve of genus g > 2 over C,

with an embedding 1: C — ] into its Jacobian.
Let I' C J(C) be a subgroup of finite rank r.
Then i~ 1(I") is finite.

Question.
Is there a uniform bound N’(g,r) (depending only on g and r) for #i~ ("7

T heorem.

The Zilber-Pink Conjecture for families of abelian varieties
implies a positive answer.
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T heorem.

Let K be a p-adic field.

Fix r,g € Z~o with r < g — 3.

There is a number B(K, g,r) such that

for every curve C of genus g over K,

any embedding i: C — | given by a base-point Py € C(K)
and any subgroup I' C J(K) of rank r, we have

#i71(I) <B(K,g,7).

Originally for hyperelliptic curves and p odd,
generalized by Katz, Rabinoff & Zureick-Brown (preprint, 2015).
See the next talk, by David Zureick-Brown.
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Bound for the Number of Rational Points

Taking K=Q3, C defined over Q and ' =](Q), we obtain:

T heorem.

Fix r,g € Z~o with r < g — 3.

Then for every hyperelliptic curve C of genus g over Q
with J(Q) of rank r, we have

#C(Q) <8(r+4)(g—1) +max{l,4r}-g=0(rg+g).

More generally, there is a bound N(d, g,r) (for r < g—3) such that
for all number fields K with [K: Q] < d and
all curves of genus g over K with J(K) of rank r, we have

#C(K) < N(d,g,7) = Oq4(g?).
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Chabauty-Coleman

We'll stick to K =@, for simplicity.
A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013)

Let C be a curve of genus g over Qy with p > 2,
with (minimal) proper regular model C over Z, (with special fiber Cs).
Let i: C — ] be an embedding given by a base-point Py € C(Qp)

and let I' C J(Qp) be a subgroup of rank r < g—1. Then

#1—1(” < #Cgmooth([ﬁ‘p) + 2r + LDZIZJ .

Problem: #C$MC°tN(F,) cannot be bounded in terms of g and p!
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We have canonical isomorphisms Q]C/Qp > Q}/Qp = ToJ(Qp)*
and the p-adic abelian logarithm logy: J(Qp) — ToJ(Qp).

We obtain a pairing Q]C/@p xJ(Qp) = Qp, (w,P) = (w,P)
by evaluating w, considered as a cotangent vector, on Iog]P.

This pairing is the abelian integral (compare Dick Gross's lecture):
For Py, P € C(Qp), we have

P
(w, [P — Pol) = (w,i(P)) =: Abj w.

Po

Let Vi C Qé/@ be the annihilator of I'; then dimVy > g—1 > 0.
P
Note that i () ¢ {P € C(Qp) : Yw € Vp: (w,i(P)) = 0}.
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Let p: C(Qp) — CEMOOtN(F,)  be the reduction map.
Fix a residue disk D = p—1(P).
There is an analytic isomorphism @: &€ Qp:l&lp <1} = D.

We can write ¢*w = w(t) dt = d{(t) with power series w,{ € Qp[t]. Then

¢(T) ¢(0) .
(w,i(@(T))) = AbJ w = AbJ w+J wit)dt = ¢ + (7).
Po Po °
Considering the Newton Polygons of w and {, one shows that
V(w,D)J
p—2 |’

#{P c D:{(w,i(P)) :O} <1+v(w,D)+ L
where v(w, D) is the number of zeros of w on D(Qyp).

Picking an ‘optimal’ w for each D and summing gives the result.
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The only source for the unboundedness of #CngOth(IFp)
is arbitrarily long chains of P!'s in Cs (Artin & Winters 1971).

Proposition.

The number of components of CEMOOth gutside of chains is O(g).
The number of chains in CEM°th is O(qg).

The preimage in C(Qp) of a chain is analytically isomorphic
to an annulus {£ € Qp : 1y < [E]p < 12}

So we can cover C(Qp) by O(pg) disks D
coming from points in CngOth(IFp) outside chains
and by O(g) annuli A coming from the chains.
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he Key Result

Proposition.
For each annulus A there is a subspace V, C Q1C(Qp) with codimV, <2

such that for 0 # w € V5 satisfying a technical condition,

v(w, A)
p—2 J |

#{P e A:{(w,i(P)) =0} < v(w,A)+ {

Idea of proof: Let ¢:{§ € Qp: 11 <[lp <12} = A parametrize A.

t
The pull-back of wis @ w =w(t)dt = d{(t) +c(w)dT

with Laurent series w and {. There is a(w) € Qp such that

¢(12)
Abj w = £(17) — &(17) + c(w) log :—f +alw)(vp(2) —vp(m1)) -
@(t)

Set Va ={w € QL(Qp) : a(w) = c(w) = 0}.
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End of Proof of Main Result

Since r < g—3, we have VrnNV, # {0} for all annuli A.
For C hyperelliptic (and p odd), an explicit computation shows
that we can always pick a suitable w # 0 to get a bound

v(w,A)
p—2 J '

#E (M NA) <v(w,A)+ L

Taking the ‘optimal’ w for each annulus and for each disk and summing,
we obtain the desired bound, which is of type

O(rg+pg).

For a general p-adic field with ramification index e <p — 1
and residue field of size q, the bound takes the shape

O(e(r+1)g+qg).
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Some Comments
‘C hyperelliptic’ and ‘p odd’ are used to describe w|p explicitly,
allowing for bounding #({1i~ (N NA) in terms of v(w,A).

Katz, Rabinoff & Zureick-Brown

use the Berkovich analytic space associated to C
to get a general result, but with a weaker bound.
See the next talk!

Heuristically, one would expect a bound of type O(r+ g).

Taking v =0, we obtain #i '(J(K)tors) = Ox(g).
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Improving the Poonen-Stoll ‘One Point’ Result

Theorem (Poonen-Stoll 2014).
The ‘probability’ that an odd degree hyperelliptic curve of genus g over QQ
has the point at infinity as its only rational point is > 1—0(g279).

Manjul Bhargava asked us whether there might be congruence families
of such curves for which our approach would not work.

T heorem.

The ‘probability’ that an odd degree hyperelliptic curve of genus g over Q
varying in any family defined by finitely many congruence conditions

has the point at infinity as its only rational point is > 1— O(g%279).
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Sketch of Proof

The key ingredient in the proof
(besides the work of Bhargava-Gross on 2-Selmer groups!)
was an estimate on the average size of the image of the ‘plog map’

plog: C(Qy) <5 J(@2) 22 QY -+ P91 (Qy) — P~ (Fy)

where logy, is logy with respect to some basis w of Q}/Qz = ToJ (Q)F.

Poonen-Stoll: The average size of the image is O(qg).

Our approach shows:
There is a uniform bound of type O(gz) on the size of the image.
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