

Uniform bounds on the number of rational points on curves of low Mordell-Weil rank

Michael Stoll Universität Bayreuth

p-adic Methods in Number Theory

Berkeley May 27, 2015

Motivation (1)

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over a number field K. Then $C(K)$ is finite.

Motivation (1)

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over a number field K. Then $C(K)$ is finite.

Question.

Is there a uniform bound $N(d, g)$ for $\#C(K)$ depending only on g and $d = [K : \mathbb{Q}]$?

Motivation (1)

Theorem. ('Mordell's Conjecture', Faltings 1983) Let C be a ('nice') curve of genus $g \ge 2$ over a number field K. Then C(K) is finite.

Question.

```
Is there a uniform bound N(d, g) for \#C(K)depending only on g and d = [K : \mathbb{Q}]?
```
Theorem. (Caporaso-Harris-Mazur, Pacelli 1997) The weak Lang Conjecture (rational points on varieties of general type are not Zariski dense) implies a positive answer.

Motivation (2)

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \ge 2$ over \mathbb{C} , with an embedding $i: C \rightarrow J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

Motivation (2)

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \geq 2$ over \mathbb{C} , with an embedding $i: C \rightarrow J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

Question.

Is there a uniform bound $\bm{\mathsf{N}}'(\bm{{\mathsf{g}}},\bm{{\mathsf{r}}})$ (depending only on $\bm{{\mathsf{g}}}$ and $\bm{{\mathsf{r}}})$ for $\#\bm{\mathfrak{i}}^{-1}(\bm{\mathsf{\Gamma}})$?

Motivation (2)

A geometric variant:

Theorem. ('Mordell-Lang Conjecture', Faltings 1994) Let C be a curve of genus $g \geq 2$ over C, with an embedding $i: C \rightarrow J$ into its Jacobian. Let $\Gamma \subset J(\mathbb{C})$ be a subgroup of finite rank r. Then $i^{-1}(\Gamma)$ is finite.

Question.

Is there a uniform bound $\bm{\mathsf{N}}'(\bm{{\mathsf{g}}},\bm{{\mathsf{r}}})$ (depending only on $\bm{{\mathsf{g}}}$ and $\bm{{\mathsf{r}}})$ for $\#\bm{\mathfrak{i}}^{-1}(\bm{\mathsf{\Gamma}})$?

Theorem.

The Zilber-Pink Conjecture for families of abelian varieties implies a positive answer.

Theorem.

Let K be a p-adic field.

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$.

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{>0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that for every curve C of genus g over K,

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{>0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that for every curve C of genus g over K, any embedding i: $C \rightarrow J$ given by a base-point $P_0 \in C(K)$

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{>0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that for every curve C of genus g over K, any embedding i: $C \rightarrow J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r,

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that for every curve C of genus g over K, any embedding i: $C \rightarrow J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r, we have

 $\#i^{-1}(\Gamma) \leq B(K,g,r)$.

Theorem.

Let K be a p-adic field. Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$. There is a number $B(K, g, r)$ such that for every curve C of genus g over K, any embedding $i: C \rightarrow J$ given by a base-point $P_0 \in C(K)$ and any subgroup $\Gamma \subset J(K)$ of rank r, we have

 $\#i^{-1}(\Gamma) \leq B(K,g,r)$.

Originally for hyperelliptic curves and p odd; generalized by Katz, Rabinoff & Zureick-Brown (preprint, 2015). See the next talk, by David Zureick-Brown.

Bound for the Number of Rational Points

Taking $K = \mathbb{Q}_3$, C defined over \mathbb{Q} and $\Gamma = J(\mathbb{Q})$, we obtain:

Theorem.

Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$. Then for every hyperelliptic curve C of genus g over Q with $J(Q)$ of rank r, we have

 $\#C(\mathbb{Q}) \leq 8(r+4)(g-1) + \max\{1,4r\} \cdot g = O(rg+g).$

Bound for the Number of Rational Points

Taking $K = \mathbb{Q}_3$, C defined over \mathbb{Q} and $\Gamma = J(\mathbb{Q})$, we obtain:

Theorem.

Fix $r, g \in \mathbb{Z}_{\geq 0}$ with $r \leq g-3$. Then for every hyperelliptic curve C of genus g over $\mathbb Q$ with $J(Q)$ of rank r, we have

 $\#C(\mathbb{Q}) \leq 8(r+4)(q-1) + \max\{1, 4r\} \cdot q = O(rq+q).$

More generally, there is a bound $N(d, g, r)$ (for $r \le g - 3$) such that for all number fields K with $[K: \mathbb{Q}] \le d$ and all curves of genus g over K with $J(K)$ of rank r, we have

 $\#C(K) \le N(d, g, r) = O_d(g^2)$.

We'll stick to $K = \mathbb{Q}_p$ for simplicity.

We'll stick to $K = \mathbb{Q}_p$ for simplicity.

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985) Let C be a curve of genus g over \mathbb{Q}_p of good reduction with $p > 2g$, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let i: $C \rightarrow J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g-1$. Then

 $\#i^{-1}(\Gamma) \leq \# \mathcal{C}_{\mathsf{S}}(\mathbb{F}_p) + 2\mathsf{g} - 2$.

We'll stick to $K = \mathbb{Q}_p$ for simplicity.

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006) Let C be a curve of genus g over \mathbb{Q}_p of good reduction with $p > 2$, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let i: $C \to J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g-1$. Then

$$
\#i^{-1}(\Gamma) \leq \#C_{S}(\mathbb{F}_{p}) + 2r + \left\lfloor \frac{2r}{p-2} \right\rfloor
$$

.

We'll stick to $K = \mathbb{Q}_p$ for simplicity.

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013) Let C be a curve of genus g over \mathbb{Q}_p with $p > 2$, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let i: $C \rightarrow J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g-1$. Then

$$
\#i^{-1}(\Gamma) \leq \# \mathcal{C}_{S}^{smooth}(\mathbb{F}_{p}) + 2r + \left\lfloor \frac{2r}{p-2} \right\rfloor
$$

.

We'll stick to $K = \mathbb{Q}_p$ for simplicity.

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013) Let C be a curve of genus g over \mathbb{Q}_p with $p > 2$, with (minimal) proper regular model C over \mathbb{Z}_p (with special fiber C_s). Let i: $C \rightarrow J$ be an embedding given by a base-point $P_0 \in C(\mathbb{Q}_p)$ and let $\Gamma \subset J(\mathbb{Q}_p)$ be a subgroup of rank $r \leq g-1$. Then

$$
\#i^{-1}(\Gamma) \leq \# \mathcal{C}_{S}^{\mathsf{smooth}}(\mathbb{F}_{p}) + 2r + \left\lfloor \frac{2r}{p-2} \right\rfloor
$$

.

Problem: $\#C_S^{\text{smooth}}$ $\mathsf{s}^{\mathsf{smooth}}(\mathbb{F}_p)$ cannot be bounded in terms of g and $p!$

We have canonical isomorphisms and the p-adic abelian logarithm

.
C/Q_p $\cong \Omega^1$ $J/\mathbb{Q}_p \cong T_0 J(\mathbb{Q}_p)^*$: $J(\mathbb{Q}_p) \rightarrow T_0 J(\mathbb{Q}_p)$.

We have canonical isomorphisms and the p-adic abelian logarithm .
C/Q_p $\cong \Omega^1$ $J/\mathbb{Q}_p \cong T_0 J(\mathbb{Q}_p)^*$: $J(\mathbb{Q}_p) \rightarrow T_0 J(\mathbb{Q}_p)$.

We obtain a pairing Ω $\frac{1}{C}\left(\mathbb{Q}_p\right) \to \mathbb{Q}_p, \quad (\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on log_JP.

We have canonical isomorphisms and the p-adic abelian logarithm

.
C/Q_p $\cong \Omega^1$ $J/\mathbb{Q}_p \cong T_0 J(\mathbb{Q}_p)^*$: $J(\mathbb{Q}_p) \to T_0 J(\mathbb{Q}_p)$.

We obtain a pairing Ω $\frac{1}{C}\left(\mathbb{Q}_p\right) \to \mathbb{Q}_p, \quad (\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on log_JP.

This pairing is the abelian integral (compare Dick Gross's lecture): For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$
\langle \omega, [P-P_0] \rangle = \langle \omega, i(P) \rangle =: \bigcap_{P_0}^{P} \omega.
$$

We have canonical isomorphisms and the p-adic abelian logarithm

.
C/Q_p $\cong \Omega^1$ $J/\mathbb{Q}_p \cong T_0 J(\mathbb{Q}_p)^*$: $J(\mathbb{Q}_p) \to T_0 J(\mathbb{Q}_p)$.

We obtain a pairing Ω $\frac{1}{C}\left(\mathbb{Q}_p\right) \to \mathbb{Q}_p, \quad (\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on log_JP.

This pairing is the abelian integral (compare Dick Gross's lecture): For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$
\langle \omega, [P-P_0] \rangle = \langle \omega, i(P) \rangle =: \stackrel{P}{\longrightarrow} _{P_0} ^P \omega\,.
$$

Let $V_{\Gamma}\subset \Omega^1_{\mathbb{C}/\mathbb{Q}_p}$ be the annihilator of Γ ; then dim $V_{\Gamma}\geq g-r>0.$

We have canonical isomorphisms and the p-adic abelian logarithm

.
C/Q_p $\cong \Omega^1$ $J/\mathbb{Q}_p \cong T_0 J(\mathbb{Q}_p)^*$: $J(\mathbb{Q}_p) \to T_0 J(\mathbb{Q}_p)$.

We obtain a pairing Ω $\frac{1}{C}\left(\mathbb{Q}_p\right) \to \mathbb{Q}_p, \quad (\omega, P) \mapsto \langle \omega, P \rangle$ by evaluating ω , considered as a cotangent vector, on log_JP.

This pairing is the abelian integral (compare Dick Gross's lecture): For $P_0, P \in C(\mathbb{Q}_p)$, we have

$$
\langle \omega, [P-P_0] \rangle = \langle \omega, i(P) \rangle =: \stackrel{P}{\longrightarrow} _{P_0} ^P \omega \, .
$$

Let $V_{\Gamma}\subset \Omega^1_{\mathbb{C}/\mathbb{Q}_p}$ be the annihilator of Γ ; then dim $V_{\Gamma}\geq g-r>0.$ Note that $i^{-1}(\Gamma) \subset \{ P \in C(\mathbb{Q}_p) : \forall \omega \in V_{\Gamma} : \langle \omega, i(P) \rangle = 0 \}.$

A Picture

generic fiber of $C = C$

special fiber of C

A Picture

A Picture

residue disks in $C(\mathbb{Q}_p)$

special fiber of C

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}_S^{\text{smooth}}$ $\mathsf{s}^{\mathsf{smooth}}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$. There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D$.

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}_S^{\text{smooth}}$ $\mathsf{s}^{\mathsf{smooth}}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$. There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D$.

We can write $\varphi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[[t]]$. Then

$$
\langle \omega, \mathfrak{i}(\phi(\tau)) \rangle = \frac{\phi(\tau)}{\rho_0} \omega = \frac{\phi(0)}{\rho_0} \omega + \int_0^\tau w(t) \, dt = c + \ell(\tau) \, .
$$

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}_S^{\text{smooth}}$ $\mathsf{s}^{\mathsf{smooth}}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$. There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D$.

We can write $\varphi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[[t]]$. Then

$$
\langle \omega, \dot{\iota}(\phi(\tau)) \rangle = \frac{\left. \begin{array}{cc} \phi(\tau) & \phi(0) \\ \text{Ab} \end{array} \right|}{P_0} \omega = \frac{\left. \begin{array}{cc} \text{Ab} \end{array} \right|}{P_0} \omega + \int_0^\tau w(t) \, dt = c + \ell(\tau) \, .
$$

Considering the Newton Polygons of w and ℓ , one shows that

$$
\#\big\{P\in D: \langle \omega,i(P)\rangle=0\big\}\leq 1+\nu(\omega,D)+\left\lfloor\frac{\nu(\omega,D)}{p-2}\right\rfloor,
$$

where $v(\omega, D)$ is the number of zeros of ω on $D(\mathbb{Q}_p)$.

Let $\rho: C(\mathbb{Q}_p) \to \mathcal{C}_S^{\text{smooth}}$ $\mathsf{s}^{\mathsf{smooth}}(\mathbb{F}_p)$ be the reduction map. Fix a residue disk $D = \rho^{-1}(\overline{P})$. There is an analytic isomorphism $\varphi: \{\xi \in \mathbb{Q}_p : |\xi|_p < 1\} \to D$.

We can write $\varphi^* \omega = w(t) dt = d\ell(t)$ with power series $w, \ell \in \mathbb{Q}_p[[t]]$. Then

$$
\langle \omega, \mathfrak{i}(\phi(\tau)) \rangle = \frac{\Phi(\tau)}{\Phi(\tau)} \omega = \frac{\Phi(\theta)}{\Phi(\tau)} \omega + \int_0^\tau w(t) \, dt = c + \ell(\tau) \, .
$$

Considering the Newton Polygons of w and ℓ , one shows that

$$
\#\big\{P\in D: \langle \omega,i(P)\rangle=0\big\}\leq 1+\nu(\omega,D)+\left\lfloor\frac{\nu(\omega,D)}{p-2}\right\rfloor,
$$

where $v(\omega, D)$ is the number of zeros of ω on $D(\mathbb{Q}_p)$.

Picking an 'optimal' ω for each D and summing gives the result.

The Problem

The only source for the unboundedness of $\# \mathcal{C}_\mathrm{S}^\mathrm{smooth}$ smooth (\mathbb{F}_p) is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_S (Artin & Winters 1971).

The only source for the unboundedness of $\# \mathcal{C}_\mathrm{S}^\mathrm{smooth}$ smooth (\mathbb{F}_p) is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_S (Artin & Winters 1971).

Proposition.

The number of components of C_S^{smooth} outside of chains is $O(g)$. The number of chains in $C_{\rm S}^{\rm smooth}$ $\frac{1}{s}$ Smooth is $O(g)$.

The only source for the unboundedness of $\# \mathcal{C}_\mathrm{S}^\mathrm{smooth}$ smooth (\mathbb{F}_p) is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_S (Artin & Winters 1971).

Proposition.

The number of components of C_S^{smooth} outside of chains is $O(g)$. The number of chains in $C_{\rm S}^{\rm smooth}$ $\frac{1}{s}$ Smooth is $O(g)$.

The preimage in $C(\mathbb{Q}_p)$ of a chain is analytically isomorphic to an annulus $\{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\}.$

The only source for the unboundedness of $\# \mathcal{C}_\mathrm{S}^\mathrm{smooth}$ smooth (\mathbb{F}_p) is arbitrarily long chains of \mathbb{P}^1 's in \mathcal{C}_S (Artin & Winters 1971).

Proposition.

The number of components of C_S^{smooth} outside of chains is $O(g)$. The number of chains in $C_{\rm S}^{\rm smooth}$ $\frac{1}{s}$ Smooth is $O(g)$.

The preimage in $C(\mathbb{Q}_p)$ of a chain is analytically isomorphic to an annulus $\{\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2\}.$

So we can cover $C(\mathbb{Q}_p)$ by $O(pg)$ disks D coming from points in $\mathcal{C}_{\mathbf{S}}^{\mathsf{smooth}}$ smooth_(Fp) outside chains and by $O(g)$ annuli A coming from the chains.

Proposition.

For each annulus A there is a subspace $V_A\subset \Omega^1_C(\mathbb{Q}_\mathfrak{p})$ with codim $V_A\leq 2$ such that for $0 \neq \omega \in V_A$ satisfying a technical condition,

$$
\#\{P \in A : \langle \omega, i(P) \rangle = 0\} \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p - 2} \right\rfloor
$$

.

Proposition.

For each annulus A there is a subspace $V_A\subset \Omega^1_C(\mathbb{Q}_\mathfrak{p})$ with codim $V_A\leq 2$ such that for $0 \neq \omega \in V_A$ satisfying a technical condition,

$$
\#\{P \in A : \langle \omega, i(P) \rangle = 0\} \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p - 2} \right\rfloor
$$

.

Idea of proof: Let φ : { $\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2$ } \rightarrow A parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{dt}$ t with Laurent series w and ℓ .

Proposition.

For each annulus A there is a subspace $V_A\subset \Omega^1_C(\mathbb{Q}_\mathfrak{p})$ with codim $V_A\leq 2$ such that for $0 \neq \omega \in V_A$ satisfying a technical condition,

$$
\#\{P \in A : \langle \omega, i(P) \rangle = 0\} \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p - 2} \right\rfloor
$$

.

Idea of proof: Let φ : { $\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2$ } \rightarrow A parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{dt}$ t with Laurent series w and ℓ . Then

$$
\begin{aligned} \n\varphi(\tau_2) \\ \nBC \int_{\varphi(\tau_1)} \omega &= \ell(\tau_2) - \ell(\tau_1) + c(\omega) \log \frac{\tau_2}{\tau_1} \n\end{aligned}
$$

Proposition.

For each annulus A there is a subspace $V_A\subset \Omega^1_C(\mathbb{Q}_\mathfrak{p})$ with codim $V_A\leq 2$ such that for $0 \neq \omega \in V_A$ satisfying a technical condition,

$$
\#\big\{P\in A:\langle\omega,i(P)\rangle=0\big\}\leq\nu(\omega,A)+\left\lfloor\frac{\nu(\omega,A)}{p-2}\right\rfloor
$$

.

Idea of proof: Let φ : { $\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2$ } \rightarrow A parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{dt}$ t with Laurent series w and ℓ . There is $a(\omega) \in \mathbb{Q}_p$ such that

$$
\varphi(\tau_2)
$$
\n
$$
\bigcap_{\phi(\tau_1)}^{\phi(\tau_2)} \omega = \ell(\tau_2) - \ell(\tau_1) + c(\omega) \log \frac{\tau_2}{\tau_1} + a(\omega) \big(\nu_p(\tau_2) - \nu_p(\tau_1) \big) .
$$

Proposition.

For each annulus A there is a subspace $V_A\subset \Omega^1_C(\mathbb{Q}_\mathfrak{p})$ with codim $V_A\leq 2$ such that for $0 \neq \omega \in V_A$ satisfying a technical condition,

$$
\#\big\{P\in A:\langle\omega,i(P)\rangle=0\big\}\leq\nu(\omega,A)+\left\lfloor\frac{\nu(\omega,A)}{p-2}\right\rfloor
$$

.

Idea of proof: Let φ : { $\xi \in \mathbb{Q}_p : r_1 < |\xi|_p < r_2$ } \rightarrow A parametrize A. The pull-back of ω is $\varphi^* \omega = w(t) dt = d\ell(t) + c(\omega) \frac{dt}{dt}$ t with Laurent series w and ℓ . There is $a(\omega) \in \mathbb{Q}_p$ such that

$$
\varphi(\tau_2)
$$
\n
$$
\bigcap_{\varphi(\tau_1)}^{\text{Ab}} \omega = \ell(\tau_2) - \ell(\tau_1) + c(\omega) \log \frac{\tau_2}{\tau_1} + a(\omega) \big(\nu_p(\tau_2) - \nu_p(\tau_1) \big) .
$$

Set $V_A = \{ \omega \in \Omega^1_C(\mathbb{Q}_p) : a(\omega) = c(\omega) = 0 \}.$

End of Proof of Main Result

Since $r \le g - 3$, we have $V_{\Gamma} \cap V_A \ne \{0\}$ for all annuli A. For C hyperelliptic (and p odd), an explicit computation shows that we can always pick a suitable $\omega \neq 0$ to get a bound

$$
\#(i^{-1}(\Gamma) \cap A) \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p-2} \right\rfloor.
$$

End of Proof of Main Result

Since $r \le g - 3$, we have $V_{\Gamma} \cap V_A \ne \{0\}$ for all annuli A. For C hyperelliptic (and p odd), an explicit computation shows that we can always pick a suitable $\omega \neq 0$ to get a bound

$$
\#(i^{-1}(\Gamma) \cap A) \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p-2} \right\rfloor.
$$

Taking the 'optimal' ω for each annulus and for each disk and summing, we obtain the desired bound, which is of type

 $O($ rg + pg).

End of Proof of Main Result

Since $r \leq g-3$, we have $V_{\Gamma} \cap V_A \neq \{0\}$ for all annuli A. For C hyperelliptic (and p odd), an explicit computation shows that we can always pick a suitable $\omega \neq 0$ to get a bound

$$
\#(i^{-1}(\Gamma) \cap A) \leq \nu(\omega, A) + \left\lfloor \frac{\nu(\omega, A)}{p-2} \right\rfloor.
$$

Taking the 'optimal' ω for each annulus and for each disk and summing, we obtain the desired bound, which is of type

 $O(rq + pq)$.

For a general p-adic field with ramification index $e < p - 1$ and residue field of size q , the bound takes the shape

 $O(e(r+1)g+qg)$.

• 'C hyperelliptic' and 'p odd' are used to describe $\omega|_A$ explicitly, allowing for bounding $\#(i^{-1}(\Gamma) \cap A)$ in terms of $v(\omega, A)$.

- 'C hyperelliptic' and 'p odd' are used to describe $\omega|_A$ explicitly, allowing for bounding $\#(i^{-1}(\Gamma) \cap A)$ in terms of $v(\omega, A)$.
- Katz, Rabinoff & Zureick-Brown use the Berkovich analytic space associated to C to get a general result, but with a weaker bound. See the next talk!

- 'C hyperelliptic' and 'p odd' are used to describe $\omega|_A$ explicitly, allowing for bounding $\#(i^{-1}(\Gamma) \cap A)$ in terms of $v(\omega, A)$.
- Katz, Rabinoff & Zureick-Brown use the Berkovich analytic space associated to C to get a general result, but with a weaker bound. See the next talk!
- Heuristically, one would expect a bound of type $O(r + g)$.

- 'C hyperelliptic' and 'p odd' are used to describe $\omega|_A$ explicitly, allowing for bounding $\#(i^{-1}(\Gamma) \cap A)$ in terms of $v(\omega, A)$.
- Katz, Rabinoff & Zureick-Brown use the Berkovich analytic space associated to C to get a general result, but with a weaker bound. See the next talk!
- Heuristically, one would expect a bound of type $O(r + g)$.
- Taking $r = 0$, we obtain $\#i^{-1}(J(K)_{tors}) = O_K(g)$.

Improving the Poonen-Stoll 'One Point' Result

Theorem (Poonen-Stoll 2014).

The 'probability' that an odd degree hyperelliptic curve of genus g over $\mathbb Q$ has the point at infinity as its only rational point is $\geq 1 - O(g2^{-g})$.

Improving the Poonen-Stoll 'One Point' Result

Theorem (Poonen-Stoll 2014).

The 'probability' that an odd degree hyperelliptic curve of genus g over Q has the point at infinity as its only rational point is $\geq 1 - O(g2^{-g})$.

Manjul Bhargava asked us whether there might be congruence families of such curves for which our approach would not work.

Improving the Poonen-Stoll 'One Point' Result

Theorem (Poonen-Stoll 2014).

The 'probability' that an odd degree hyperelliptic curve of genus g over $\mathbb Q$ has the point at infinity as its only rational point is $\geq 1 - O(g2^{-g})$.

Manjul Bhargava asked us whether there might be congruence families of such curves for which our approach would not work.

Theorem.

The 'probability' that an odd degree hyperelliptic curve of genus g over Q varying in any family defined by finitely many congruence conditions has the point at infinity as its only rational point is $\geq 1 - O(g^2 2^{-g}).$

Sketch of Proof

The key ingredient in the proof

(besides the work of Bhargava-Gross on 2-Selmer groups!)

was an estimate on the average size of the image of the 'ρlog map'

$$
\rho \, log \colon C(\mathbb{Q}_2) \xrightarrow{i} J(\mathbb{Q}_2) \xrightarrow{log_{\mathbb{Q}}} \mathbb{Q}_2^g \dashrightarrow \mathbb{P}^{g-1}(\mathbb{Q}_2) \longrightarrow \mathbb{P}^{g-1}(\mathbb{F}_2)
$$

where log $_{\underline{\omega}}$ is log_J with respect to some basis $\underline{\omega}$ of $\Omega^1_{J/\mathbb Q_2}\cong \mathsf{T}_0\mathsf{J}(\mathbb Q_2)^*.$

Sketch of Proof

The key ingredient in the proof (besides the work of Bhargava-Gross on 2-Selmer groups!) was an estimate on the average size of the image of the 'ρlog map'

$$
\rho \, log \colon C(\mathbb{Q}_2) \stackrel{i}{\hookrightarrow} J(\mathbb{Q}_2) \stackrel{log_{\mathcal{Q}}}{\longrightarrow} \mathbb{Q}_2^g \dashrightarrow \mathbb{P}^{g-1}(\mathbb{Q}_2) \longrightarrow \mathbb{P}^{g-1}(\mathbb{F}_2)
$$

where log $_{\underline{\omega}}$ is log_J with respect to some basis $\underline{\omega}$ of $\Omega^1_{J/\mathbb Q_2}\cong \mathsf{T}_0\mathsf{J}(\mathbb Q_2)^*.$

Poonen-Stoll: The average size of the image is $O(g)$.

Sketch of Proof

The key ingredient in the proof (besides the work of Bhargava-Gross on 2-Selmer groups!) was an estimate on the average size of the image of the 'ρlog map'

$$
\rho \, log \colon C(\mathbb{Q}_2) \xrightarrow{i} J(\mathbb{Q}_2) \xrightarrow{log_{\mathbb{Q}}} \mathbb{Q}_2^g \dashrightarrow \mathbb{P}^{g-1}(\mathbb{Q}_2) \longrightarrow \mathbb{P}^{g-1}(\mathbb{F}_2)
$$

where log $_{\underline{\omega}}$ is log_J with respect to some basis $\underline{\omega}$ of $\Omega^1_{J/\mathbb Q_2}\cong \mathsf{T}_0\mathsf{J}(\mathbb Q_2)^*.$

Poonen-Stoll: The average size of the image is $O(g)$.

Our approach shows:

There is a uniform bound of type $O(g^2)$ on the size of the image.

Thank You!