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Motivation (1)

Theorem. (‘Mordell’s Conjecture’, Faltings 1983)

Let C be a (‘nice’) curve of genus g ≥ 2 over a number field K.

Then C(K) is finite.

Question.

Is there a uniform bound N(d, g) for #C(K)

depending only on g and d = [K : Q]?

Theorem. (Caporaso-Harris-Mazur, Pacelli 1997)

The weak Lang Conjecture

(rational points on varieties of general type are not Zariski dense)

implies a positive answer.
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Motivation (2)

A geometric variant:

Theorem. (‘Mordell-Lang Conjecture’, Faltings 1994)

Let C be a curve of genus g ≥ 2 over C,

with an embedding i : C→ J into its Jacobian.

Let Γ ⊂ J(C) be a subgroup of finite rank r.

Then i−1(Γ) is finite.

Question.

Is there a uniform bound N ′(g, r) (depending only on g and r) for #i−1(Γ)?

Theorem.

The Zilber-Pink Conjecture for families of abelian varieties

implies a positive answer.
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Main Theorem

Theorem.

Let K be a p-adic field.

Fix r, g ∈ Z≥0 with r ≤ g− 3.
There is a number B(K, g, r) such that

for every curve C of genus g over K,

any embedding i : C→ J given by a base-point P0 ∈ C(K)
and any subgroup Γ ⊂ J(K) of rank r, we have

#i−1(Γ) ≤ B(K, g, r) .

Originally for hyperelliptic curves and p odd;

generalized by Katz, Rabinoff & Zureick-Brown (preprint, 2015). See the

next talk, by David Zureick-Brown.
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Bound for the Number of Rational Points

Taking K = Q3, C defined over Q and Γ = J(Q), we obtain:

Theorem.

Fix r, g ∈ Z≥0 with r ≤ g− 3.
Then for every hyperelliptic curve C of genus g over Q
with J(Q) of rank r, we have

#C(Q) ≤ 8(r+ 4)(g− 1) + max{1, 4r} · g = O(rg+ g) .

More generally, there is a bound N(d, g, r) (for r ≤ g− 3) such that

for all number fields K with [K : Q] ≤ d and

all curves of genus g over K with J(K) of rank r, we have

#C(K) ≤ N(d, g, r) = Od(g
2) .
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Chabauty-Coleman

We’ll stick to K = Qp for simplicity.

A method pioneered by Chabauty and developed further by Coleman gives:

Theorem. (Coleman 1985, Stoll 2006, Katz & Zureick-Brown 2013)

Let C be a curve of genus g over Qp with p > 2,

with (minimal) proper regular model C over Zp (with special fiber Cs).

Let i : C→ J be an embedding given by a base-point P0 ∈ C(Qp)
and let Γ ⊂ J(Qp) be a subgroup of rank r ≤ g− 1. Then

#i−1(Γ) ≤#Csmooth
s (Fp) + 2r+

⌊
2r

p− 2

⌋
.

Problem: #Csmooth
s (Fp) cannot be bounded in terms of g and p!
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Sketch of Proof (1)

We have canonical isomorphisms Ω1
C/Qp

∼= Ω1
J/Qp

∼= T0J(Qp)∗

and the p-adic abelian logarithm logJ : J(Qp)→ T0J(Qp).

We obtain a pairing Ω1
C/Qp × J(Qp)→ Qp, (ω,P) 7→ 〈ω,P〉

by evaluating ω, considered as a cotangent vector, on logJ P.

This pairing is the abelian integral (compare Dick Gross’s lecture):

For P0, P ∈ C(Qp), we have

〈ω, [P − P0]〉 = 〈ω, i(P)〉 =:

P
Ab
∫
P0

ω.

Let VΓ ⊂ Ω1C/Qp be the annihilator of Γ ; then dimVΓ ≥ g− r > 0.

Note that i−1(Γ) ⊂
{
P ∈ C(Qp) : ∀ω ∈ VΓ : 〈ω, i(P)〉 = 0

}
.
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Sketch of Proof (2)

Let ρ : C(Qp)→ Csmooth
s (Fp) be the reduction map.

Fix a residue disk D = ρ−1(P̄).

There is an analytic isomorphism ϕ : {ξ ∈ Qp : |ξ|p < 1}→ D.

We can write ϕ∗ω = w(t)dt = d`(t) with power series w, ` ∈ Qp[[t]]. Then

〈ω, i(ϕ(τ))〉 =
ϕ(τ)

Ab
∫
P0

ω =

ϕ(0)
Ab
∫
P0

ω+

∫τ
0
w(t)dt = c+ `(τ) .

Considering the Newton Polygons of w and `, one shows that

#
{
P ∈ D : 〈ω, i(P)〉 = 0

}
≤ 1+ ν(ω,D) +

⌊
ν(ω,D)

p− 2

⌋
,

where ν(ω,D) is the number of zeros of ω on D(Q̄p).

Picking an ‘optimal’ ω for each D and summing gives the result.
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How to Fix the Problem

The only source for the unboundedness of #Csmooth
s (Fp)

is arbitrarily long chains of P1’s in Cs (Artin & Winters 1971).

Proposition.

The number of components of Csmooth
s outside of chains is O(g).

The number of chains in Csmooth
s is O(g).

The preimage in C(Qp) of a chain is analytically isomorphic

to an annulus {ξ ∈ Qp : r1 < |ξ|p < r2}.

So we can cover C(Qp) by O(pg) disks D

coming from points in Csmooth
s (Fp) outside chains

and by O(g) annuli A coming from the chains.
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The Key Result

Proposition.

For each annulus A there is a subspace VA ⊂ Ω1C(Qp) with codimVA ≤ 2
such that for 0 6= ω ∈ VA satisfying a technical condition,

#
{
P ∈ A : 〈ω, i(P)〉 = 0

}
≤ ν(ω,A) +

⌊
ν(ω,A)

p− 2

⌋
.

Idea of proof: Let ϕ : {ξ ∈ Qp : r1 < |ξ|p < r2}→ A parametrize A.

The pull-back of ω is ϕ∗ω = w(t)dt = d`(t) + c(ω)
dt

t
with Laurent series w and `. There is a(ω) ∈ Qp such that

ϕ(τ2)
Ab
∫

ϕ(τ1)

ω = `(τ2) − `(τ1) + c(ω) log
τ2
τ1

+ a(ω)
(
vp(τ2) − vp(τ1)

)
.

Set VA = {ω ∈ Ω1C(Qp) : a(ω) = c(ω) = 0}.
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End of Proof of Main Result

Since r ≤ g− 3, we have VΓ ∩ VA 6= {0} for all annuli A.

For C hyperelliptic (and p odd), an explicit computation shows

that we can always pick a suitable ω 6= 0 to get a bound

#
(
i−1(Γ) ∩A

)
≤ ν(ω,A) +

⌊
ν(ω,A)

p− 2

⌋
.

Taking the ‘optimal’ ω for each annulus and for each disk and summing,

we obtain the desired bound, which is of type

O(rg+ pg) .

For a general p-adic field with ramification index e < p− 1

and residue field of size q, the bound takes the shape

O
(
e(r+ 1)g+ qg

)
.
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Some Comments

• ‘C hyperelliptic’ and ‘p odd’ are used to describe ω|A explicitly,

allowing for bounding #(i−1(Γ) ∩A) in terms of ν(ω,A).

• Katz, Rabinoff & Zureick-Brown

use the Berkovich analytic space associated to C

to get a general result, but with a weaker bound.

See the next talk!

• Heuristically, one would expect a bound of type O(r+ g).

• Taking r = 0, we obtain #i−1(J(K)tors) = OK(g).
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Improving the Poonen-Stoll ‘One Point’ Result

Theorem (Poonen-Stoll 2014).

The ‘probability’ that an odd degree hyperelliptic curve of genus g over Q
has the point at infinity as its only rational point is ≥ 1−O(g2−g).

Manjul Bhargava asked us whether there might be congruence families

of such curves for which our approach would not work.

Theorem.

The ‘probability’ that an odd degree hyperelliptic curve of genus g over Q
varying in any family defined by finitely many congruence conditions

has the point at infinity as its only rational point is ≥ 1−O(g22−g).
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Sketch of Proof

The key ingredient in the proof

(besides the work of Bhargava-Gross on 2-Selmer groups!)

was an estimate on the average size of the image of the ‘ρ log map’

ρ log : C(Q2)
i
↪→ J(Q2)

logω−→ Qg2 99K Pg−1(Q2) −→ Pg−1(F2)

where logω is logJ with respect to some basis ω of Ω1
J/Q2

∼= T0J(Q2)∗.

Poonen-Stoll: The average size of the image is O(g).

Our approach shows:

There is a uniform bound of type O(g2) on the size of the image.
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Thank You!


