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Local Obstruction

Let C'/Q be a smooth projective curve of genus g > 2.

Goal:
Determine C'(Q)!

Sub-Goal 1:
Decide if C(Q) = 0!

Sub-Goal 2:
If C(Q) =0, find all the points (and prove that these are all)!

Easy Case for Sub-Goal 1:
C(R) =0 or C(Qp) =0 for some prime p.
This is equivalent to C(Ag) = 0.



Coverings

Let 7 : D — C be a finite étale, geometrically Galois covering
(more precisely: a C-torsor under a finite Q-group scheme G).

This covering has twists m; : D — C for £ € HY(Q,G).

More concretely, a twist g ! Dg — C of w: D — C is another covering of C
that over Q is isomorphic to = : D — C.



Coverings

Let 7 : D — C be a finite étale, geometrically Galois covering
(more precisely: a C-torsor under a finite Q-group scheme G).

This covering has twists m; : D — C for £ € HY(Q,G).

More concretely, a twist g ! Dg — C of w: D — C is another covering of C
that over Q is isomorphic to = : D — C.

Example. Consider C :y2 = g(z)h(z) with degg, degh even.
Then D :u? = g(z), v2 = h(z) isa C-torsor under Z/27Z,
and the twists are D, :u? =dg(x), v2 =dh(z), deQ*/(Q*)2.

Every rational point on C' lifts to one of the twists,
and there are only finitely many twists such that D;(Q.,) # 0 for all v.



Descent

More generally, we have the following result.

T heorem.

e C(Q) =Ugepr(g.g) me(De(Q)).

o Sel™(C) :={¢ € HY(Q,G) : D¢(Ag) # 0} is finite (and computable).
(Fermat, Chevalley-Weil, ...)

If we find Sel™(C) = 0, then C(Q) = 0.



Example

Consider the genus 2 curve

C:y°2=—(°4+z-D@E*+234+224+24+2) = f(2).
C' has points everywhere |locally

(f(0) =2, f(1) = -6, f(-2) = -3-27, f(18) € (Q3)? f(4) € (Q3)?).
The relevant twists of the obvious Z/2Z-covering are

du2=—a:2—zc—|—1, dv2=a:4—|—:c3—|-a:2—|-:c—|-2

where d is one of 1,—1,19,—109.
If d < 0, the second equation has no solution in R;
if d =1 or 19, the pair of equations has no solution over [F3.

So the Selmer set is empty, and C(Q) = 0.



First Conjectures

This should always work. More precisely:

Conjecture 1
If C(Q) =0, then there is a covering m of C such that Sel™(C) = 0.

Conjecture 2
If C(Q) =0, then there is an abelian covering m of C
such that Sel™(C) = 0.

(A covering is abelian if its Galois group is abelian.)
Conjecture 2 is stronger than Conjecture 1.

The Section Conjecture implies Conjecture 1.
Poonen has a heuristic argument that supports Conjecture 2.



Abelian Coverings

By Geometric Class Field Theory, all (connected) abelian coverings
“come from the Jacobian”.

More precisely, let V = Picé be the principal homogeneous space for
J = Picg, that has a natural embedding C' — V.

Then every abelian covering D — C' is covered
by an n-covering for some n > 1.

An n-covering is obtained by pull-back from an n-covering of V;
geometrically, this is just multiplication by n: J — J.

Let Sel(™ () c HY(Q, J[n]) denote the corresponding Selmer set.

Conjecture 2: C(Q) = 0 implies Sel(”)(C) = () for some n.



Refinement

Consider local conditions on C,
given by a closed and open subset X C C(A@).
(Concretely: congruence conditions, connected components of C(R).)

Then we can consider Sel™(C; X),
the subset of Sel™(C) consisting of twists
that have adelic points whose image on C'is in X.

Conjecture 1°.
For all X as above, if C(Q)NX =0,
then there is a covering © of C such that Sel™(C; X) = 0.

Conjecture 2’.
For all X as above, if C(Q) N X =0,
then there is some n > 1 such that Sel(”)((]; X) =10.



Comments

The Section Conjecture implies Conjecture 1',
which is equivalent to Conjecture 1.

Conjecture 2’ implies Conjecture 1’ and Conjecture 2.
Evidence for Conjecture 2 in many examples (see my other talk).
Conjecture 2' is true for Xg(V), X1(N), X(IN), if genus is positive.

“Abelian descent information’” is equivalent

to “Brauer group information’ .

Conjecture 2 implies that the Brauer-Manin obstruction
Is the only one against rational points.

See my paper Finite descent obstructions . ..



Mordell-Weil Sieve 1

Now assume that we know generators of J(Q)
and that we fix a basepoint O € C(Q)
(or a a rational divisor class of degree 1 on C).

Then we have the usual embedding C — J.
We only need to consider n-coverings of C
that are pull-backs of n-coverings of J that have rational points;

they are of the form J — J, P— Q + nP for Q € J(Q).

We are then interested in the rational points on C
that map into a given coset Q + nJ(Q).



Mordell-Weil Sieve 2

Let S be a finite set of primes of good reduction.
Consider the following diagram.

c(Q) +J(Q) +J(Q)/nJ(Q)

C(Ag) - J(Ag) J(Ag)/nd (Ag) 4

[ CFp)—— [[ J(Fp)—— [ J(Fp)/nJ (Fp)
pES \pEL_M///ApES

We can compute the maps o and S.
If their images do not intersect, then C(Q) = 0.

Poonen Heuristic:
If C(Q) =0, then this will be the case when n and S are sufficiently large.



Mordell-Weil Sieve 3

We can also bring in a local condition.
This is equivalent with requiring P € C(Q) to be mapped
to certain cosets in J(Q)/NJ(Q), for some N.

We can then use the procedure above with n a multiple of N and
restricting to these cosets.

Conjecture 2.

Let Q € J(Q). If no P € C(Q) maps into Q + NJ(Q),
then the procedure will prove that (for S and n € NZ large enough).

Conjecture 2" is slightly stronger than Conjecture 2’.

Consequence:
If C satisfies Conjecture 2" and N > 1,
then we can decide whether Q + NJ(Q) contains a point from C.



Effective Mordell?

Given O € C(Q) and generators of J(Q), here is a tentative procedure.

1. Find N > 1 such that C(Q) — J(Q)/NJ(Q) is injective (Minhyong).

2. For each coset, decide if it is in the image (Mordell-Weil sieve).

We can attempt the second step,
and if Conjecture 2" is satisfied, we will be successful.
(Otherwise, the procedure will not terminate.)

Question.
Is there an NN for step 1 that only depends on the genus?



Chabauty

In the Chabauty situation, the first step can be done as follows.

Let w e Q0 (Qp) be a differential killing J(Q).
If the reduction w does not vanish on C(F,) and p > 2,
then each residue class contains at most one rational point.

This implies that C(Q) — J(Q)/NJ(Q) is injective, where N = #J(F,).

Heuristically, the set of primes p satisfying this condition
should have positive density (at least when J is simple).

In practice, this works very well for ¢ =2 and » = 1.



