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Local Obstruction

Let C/Q be a smooth projective curve of genus g ≥ 2.

Goal:

Determine C(Q)!

Sub-Goal 1:

Decide if C(Q) = ∅!

Sub-Goal 2:

If C(Q) 6= ∅, find all the points (and prove that these are all)!

Easy Case for Sub-Goal 1:

C(R) = ∅ or C(Qp) = ∅ for some prime p.

This is equivalent to C(AQ) = ∅.



Coverings

Let π : D → C be a finite étale, geometrically Galois covering

(more precisely: a C-torsor under a finite Q-group scheme G).

This covering has twists πξ : Dξ → C for ξ ∈ H1(Q, G).

More concretely, a twist πξ : Dξ → C of π : D → C is another covering of C

that over Q̄ is isomorphic to π : D → C.

Example. Consider C : y2 = g(x)h(x) with deg g, degh even.

Then D : u2 = g(x), v2 = h(x) is a C-torsor under Z/2Z,

and the twists are Dd : u2 = d g(x), v2 = d h(x), d ∈ Q×/(Q×)2.

Every rational point on C lifts to one of the twists,

and there are only finitely many twists such that Dd(Qv) 6= ∅ for all v.
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Descent

More generally, we have the following result.

Theorem.

• C(Q) =
⋃

ξ∈H1(Q,G) πξ(Dξ(Q)).

• Selπ(C) := {ξ ∈ H1(Q, G) : Dξ(AQ) 6= ∅} is finite (and computable).

(Fermat, Chevalley-Weil, . . . )

If we find Selπ(C) = ∅, then C(Q) = ∅.



Example

Consider the genus 2 curve

C : y2 = −(x2 + x− 1)(x4 + x3 + x2 + x + 2) = f(x) .

C has points everywhere locally

(f(0) = 2, f(1) = −6, f(−2) = −3 · 22, f(18) ∈ (Q×
2 )2, f(4) ∈ (Q×

3 )2).

The relevant twists of the obvious Z/2Z-covering are

d u2 = −x2 − x + 1 , d v2 = x4 + x3 + x2 + x + 2

where d is one of 1,−1,19,−19.

If d < 0, the second equation has no solution in R;

if d = 1 or 19, the pair of equations has no solution over F3.

So the Selmer set is empty, and C(Q) = ∅.



First Conjectures

This should always work. More precisely:

Conjecture 1

If C(Q) = ∅, then there is a covering π of C such that Selπ(C) = ∅.

Conjecture 2

If C(Q) = ∅, then there is an abelian covering π of C

such that Selπ(C) = ∅.

(A covering is abelian if its Galois group is abelian.)

Conjecture 2 is stronger than Conjecture 1.

The Section Conjecture implies Conjecture 1.

Poonen has a heuristic argument that supports Conjecture 2.



Abelian Coverings

By Geometric Class Field Theory, all (connected) abelian coverings

“come from the Jacobian”.

More precisely, let V = Pic1
C be the principal homogeneous space for

J = Pic0
C that has a natural embedding C → V .

Then every abelian covering D → C is covered

by an n-covering for some n ≥ 1.

An n-covering is obtained by pull-back from an n-covering of V ;

geometrically, this is just multiplication by n: J → J.

Let Sel(n)(C) ⊂ H1(Q, J[n]) denote the corresponding Selmer set.

Conjecture 2: C(Q) = ∅ implies Sel(n)(C) = ∅ for some n.



Refinement

Consider local conditions on C,

given by a closed and open subset X ⊂ C(AQ).

(Concretely: congruence conditions, connected components of C(R).)

Then we can consider Selπ(C;X),

the subset of Selπ(C) consisting of twists

that have adelic points whose image on C is in X.

Conjecture 1’.

For all X as above, if C(Q) ∩X = ∅,
then there is a covering π of C such that Selπ(C;X) = ∅.

Conjecture 2’.

For all X as above, if C(Q) ∩X = ∅,
then there is some n ≥ 1 such that Sel(n)(C;X) = ∅.



Comments

• The Section Conjecture implies Conjecture 1’,

which is equivalent to Conjecture 1.

• Conjecture 2’ implies Conjecture 1’ and Conjecture 2.

• Evidence for Conjecture 2 in many examples (see my other talk).

• Conjecture 2’ is true for X0(N), X1(N), X(N), if genus is positive.

• “Abelian descent information” is equivalent

to “Brauer group information”.

Conjecture 2 implies that the Brauer-Manin obstruction

is the only one against rational points.

• See my paper Finite descent obstructions . . .



Mordell-Weil Sieve 1

Now assume that we know generators of J(Q)

and that we fix a basepoint O ∈ C(Q)

(or a a rational divisor class of degree 1 on C).

Then we have the usual embedding C → J.

We only need to consider n-coverings of C

that are pull-backs of n-coverings of J that have rational points;

they are of the form J → J, P 7→ Q + nP for Q ∈ J(Q).

We are then interested in the rational points on C

that map into a given coset Q + nJ(Q).



Mordell-Weil Sieve 2

Let S be a finite set of primes of good reduction.

Consider the following diagram.

C(Q)

��

// J(Q)

��

// J(Q)/nJ(Q)

��

β

yy

C(AQ)

��

// J(AQ)

��

// J(AQ)/nJ(AQ)

��∏
p∈S

C(Fp) //

α
22

∏
p∈S

J(Fp) //

∏
p∈S

J(Fp)/nJ(Fp)

We can compute the maps α and β.

If their images do not intersect, then C(Q) = ∅.

Poonen Heuristic:

If C(Q) = ∅, then this will be the case when n and S are sufficiently large.



Mordell-Weil Sieve 3

We can also bring in a local condition.

This is equivalent with requiring P ∈ C(Q) to be mapped

to certain cosets in J(Q)/NJ(Q), for some N .

We can then use the procedure above with n a multiple of N and

restricting to these cosets.

Conjecture 2”.

Let Q ∈ J(Q). If no P ∈ C(Q) maps into Q + NJ(Q),

then the procedure will prove that (for S and n ∈ NZ large enough).

Conjecture 2” is slightly stronger than Conjecture 2’.

Consequence:

If C satisfies Conjecture 2” and N ≥ 1,

then we can decide whether Q + NJ(Q) contains a point from C.



Effective Mordell?

Given O ∈ C(Q) and generators of J(Q), here is a tentative procedure.

1. Find N ≥ 1 such that C(Q) → J(Q)/NJ(Q) is injective (Minhyong).

2. For each coset, decide if it is in the image (Mordell-Weil sieve).

We can attempt the second step,

and if Conjecture 2” is satisfied, we will be successful.

(Otherwise, the procedure will not terminate.)

Question.

Is there an N for step 1 that only depends on the genus?



Chabauty

In the Chabauty situation, the first step can be done as follows.

Let ω ∈ ΩC(Qp) be a differential killing J(Q).

If the reduction ω̄ does not vanish on C(Fp) and p > 2,

then each residue class contains at most one rational point.

This implies that C(Q) → J(Q)/NJ(Q) is injective, where N = #J(Fp).

Heuristically, the set of primes p satisfying this condition

should have positive density (at least when J is simple).

In practice, this works very well for g = 2 and r = 1.


