
Most odd degree hyperelliptic curves
have only one rational point

Michael Stoll
Universität Bayreuth

Jahrestagung SPP 1489
Bad Boll

March 4, 2014



Odd Degree Hyperelliptic Curves

We consider hyperelliptic curves of genus g of the form

C : y2 = f(x) = x2g+1 + c1x
2g + c2x

2g−1 + . . .+ c2gx+ c2g+1

with c = (c1, c2, . . . , c2g+1) ∈ Z2g+1 and disc(f) 6= 0, ordered by height

H(c) = max
{
|c1|, |c2|

1/2, |c3|
1/3, . . . , |c2g+1|

1/(2g+1)} .
Let Fg = {c ∈ Z2g+1 : disc(f) 6= 0} and Fg,X = {c ∈ Fg : H(c) < X}.

For a subset S ⊂ Fg, we define its lower and upper density by

δ(S) = lim inf
X→∞ #(S ∩ Fg,X)

#Fg,X
, δ(S) = lim sup

X→∞
#(S ∩ Fg,X)

#Fg,X
.

If δ(S) = δ(S), then the common value is the density δ(S) of S.
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The Meaning of the Title

C : y2 = f(x) = x2g+1 + c1x
2g + c2x

2g−1 + . . .+ c2gx+ c2g+1

Each curve C as above has a rational point at infinity, denoted ∞.

Now the precise version of the statement in the title is as follows.

Theorem.

Let Cg be the subset of Fg consisting of curves C with C(Q) = {∞}.

Then δ(Cg) > 0 for all g ≥ 3 and

lim
g→∞ δ(Cg) = 1 .

More precisely, δ(Cg) = 1−O
(
g2−g

)
.

This is joint work with Bjorn Poonen.
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The Selmer Group

Let J denote the Jacobian variety of C.

This is a g-dimensional abelian variety defined over Q.

We take ∞ as base-point to embed C into J: C ↪→ J sends ∞ to 0.

Fix a prime p.

Then there is the p-Selmer group Selp J of J.

It is a computable finite abelian group of exponent p

that comes with homomorphisms

J(Q)

pJ(Q)
� � δ // Selp J

s //

J(Qp)
pJ(Qp)

such that sδ is the homomorphsim induced by J(Q) ↪→ J(Qp).
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The Logarithm

J(Qp) is a compact p-adic Lie group.

It has a logarithm

log : J(Qp) −→ T0J(Qp) ∼= Qgp .

log is a homomorphism with finite kernel J(Qp)tors.

Picking a suitable Qp-basis of the tangent space,

the image of log is Zgp.



A Diagram

C(Q) C(Qp) .

ρ log

.

............................

J(Q) J(Qp) Zgp Pg−1(Qp)

J(Q)

pJ(Q)

J(Qp)
pJ(Qp)

Fgp Pg−1(Fp)

Selp J

The dashed arrows are partially defined maps:

ρ is defined on Zgp \ {0}, P is defined on Fgp \ {0}.
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The dashed arrows are partially defined maps:

ρ log is defined on C(Qp) \ J(Qp)tors, Pσ is defined on Selp J \ ker σ.
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Proposition.

If σ is injective and ρ log(C(Qp)) and Pσ(Selp J) are disjoint,

then all points in C(Q) are torsion points in J of order prime to p.
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P ∈ C(Q) not in J(Q)[p ′] =⇒ P = pnQ with Q ∈ J(Q) \ pJ(Q), n ≥ 0.
σ injective =⇒ σδ(Q+ pJ(Q)) 6= 0.
Now Pσ

(
δ(Q+ pJ(Q))

)
= ρ log(Q) = ρ log(pnQ) = ρ log(P), contradiction!
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Effectivity

Proposition.

If σ is injective and ρ log(C(Qp)) and Pσ(Selp J) are disjoint,

then all points in C(Q) are torsion points in J of order prime to p.

The conditions can be checked by a computation.

• The Selmer group is computable together with the map s.

• log is computable to any p-adic precision.

• =⇒ ρ log(C(Qp)) can be computed.

• =⇒ σ can be computed and checked for injectivity.

• =⇒ Pσ(Selp J) can be computed.



Bhargava-Gross

We now fix p = 2.

Manjul Bhargava and Dick Gross have recently proved the following.

Theorem.

The average of # Sel2 J exists in Fg and equals 3.

This is still true for subfamilies defined by congruence conditions.

If in such a subfamily J(Q2)/2J(Q2) = G is constant,

then each element of G has on average 2
#G nontrivial preimages in Sel2 J.

This implies that on 2-adically small subsets of Fg,
an element of Fg2 \ {0} is in the image of σ with density ≤ 21−g

and that σ is not injective on a set of density ≤ 21−g.



Bhargava-Gross

We now fix p = 2.

Manjul Bhargava and Dick Gross have recently proved the following.

Theorem.

The average of # Sel2 J exists in Fg and equals 3.

This is still true for subfamilies defined by congruence conditions.

If in such a subfamily J(Q2)/2J(Q2) = G is constant,

then each element of G has on average 2
#G nontrivial preimages in Sel2 J.

This implies that on 2-adically small subsets of Fg,
an element of Fg2 \ {0} is in the image of σ with density ≤ 21−g

and that σ is not injective on a set of density ≤ 21−g.



Application of Bargava-Gross

We know:

If J(Q)tors = 0, σ is injective and ρ log(C(Q2)) ∩ Pσ(Sel2 J) = ∅,
then C(Q) = {∞}.

The set of curves in Fg such that J(Q)tors 6= 0 has density zero.

Bhargava-Gross: σ is not injective on a set of upper density ≤ 21−g.

So we have to make sure that ρ log(C(Q2)) is small on average;

then we will get ρ log(C(Q2)) ∩ Pσ(Sel2 J) = ∅ for most curves.
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Bounding ρ log(C(Q2))

We can split C(Q2) into a number of residue disks.

(A residue disk is a subset of the form {P ∈ C(Q2) : P reduces to P0}

for some point P0 ∈ Csmooth(Fp), where C is a regular model of C over Z2.)

If D is a residue disk, then we can show that

#ρ log(D) ≤ 3nD + 5 ,

where nD is the number of zeros in D of some fixed differential on C.

Let d(C) denote the number of residue disks.

Since
∑
D
nD ≤ 2g− 2, we obtain

#ρ log
(
C(Q2)

)
≤ 6(g− 1) + 5d(C) .



Bounding ρ log(C(Q2))

We can split C(Q2) into a number of residue disks.

(A residue disk is a subset of the form {P ∈ C(Q2) : P reduces to P0}

for some point P0 ∈ Csmooth(Fp), where C is a regular model of C over Z2.)

If D is a residue disk, then we can show that

#ρ log(D) ≤ 3nD + 5 ,

where nD is the number of zeros in D of some fixed differential on C.

Let d(C) denote the number of residue disks.

Since
∑
D
nD ≤ 2g− 2, we obtain

#ρ log
(
C(Q2)

)
≤ 6(g− 1) + 5d(C) .



Bounding ρ log(C(Q2))

We can split C(Q2) into a number of residue disks.

(A residue disk is a subset of the form {P ∈ C(Q2) : P reduces to P0}

for some point P0 ∈ Csmooth(Fp), where C is a regular model of C over Z2.)

If D is a residue disk, then we can show that

#ρ log(D) ≤ 3nD + 5 ,

where nD is the number of zeros in D of some fixed differential on C.

Let d(C) denote the number of residue disks.

Since
∑
D
nD ≤ 2g− 2, we obtain

#ρ log
(
C(Q2)

)
≤ 6(g− 1) + 5d(C) .



Average Number of Residue Disks

#ρ log
(
C(Q2)

)
≤ 6(g− 1) + 5d(C)

=⇒ In a 2-adic neighborhood of C in Fg,
the upper density of curves such that the images of ρ log and Pσ meet

is ≤
(
12(g− 1) + 10d(C)

)
2−g.

To conclude the argument, we have to control d(C).

Considering d(C) as a random variable on Fg(Z2), we find:

Lemma.

The average of d(C) is at most 3.
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Result

J(Q)tors = 0 and σ injective and ρ log(C(Q2)) ∩ Pσ(Sel2 J) = ∅ =⇒ C(Q) = {∞}.

We know:

• J(Q)tors 6= 0 has density zero.

• σ not injective has upper density ≤ 2 · 2−g.
• ρ log(C(Q2)) ∩ Pσ(Sel2 J) 6= ∅ has upper density ≤

(
12(g− 1) + 10d(C)

)
2−g.

• The average of d(C) is at most 3.

Conclusion.

The set of curves C ∈ Fg such that C(Q) 6= {∞}

has upper density ≤ (12g+ 20)2−g.

This is < 1 for g ≥ 7 and tends to zero quickly as g→∞.
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Small Genus

For each g ≥ 2, we have #ρ log(C(Q2)) = 1
on a 2-adic neighborhood U of a curve isomorphic to

C0 : y
2 + y = x2g+1 + x+ 1 .

We get a relative lower density of curves C ∈ FG ∩U with C(Q) = {∞}

that is ≥ 1− 4 · 2−g.

For g ≥ 3, this is positive. Since δ(U) > 0 as well, we obtain:

Conclusion.

For each g ≥ 3,
the set of curves C ∈ Fg such that C(Q) = {∞} has positive lower density.
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Variants

For the family of hyperelliptic curves of genus g of the form

C : y2 = f(x)

with f monic of degree 2g+ 2 (which have two rational points at infinity),

Shankar and Wang have shown

(extending the methods of Bhargava-Gross and Poonen-St)

that the lower density of C with #C(Q) = 2 is ≥ 1− (48g+ 120)2−g.

For the family of general hyperelliptic curves of genus g

(f of degree 2g+ 2, not necessarily monic),

Bhargava, Gross and Wang have shown

that the lower density of C with C(Q) = ∅ is 1− o(2−g).

Heuristically, all these densities should be 1.


