

Most odd degree hyperelliptic curves have only one rational point

Michael Stoll Universität Bayreuth

Jahrestagung SPP 1489 Bad Boll March 4, 2014

We consider hyperelliptic curves of genus g of the form

$$C\colon y^2 = f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1}$$
 with $\underline{c} = (c_1, c_2, \ldots, c_{2g+1}) \in \mathbb{Z}^{2g+1}$ and $\text{disc}(f) \neq 0$,

We consider hyperelliptic curves of genus g of the form

$$\begin{split} C\colon y^2 &= f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1} \\ \text{with } \underline{c} = (c_1, c_2, \ldots, c_{2g+1}) \in \mathbb{Z}^{2g+1} \text{ and } \text{disc}(f) \neq 0 \text{, ordered by height} \\ \\ \mathsf{H}(\underline{c}) &= \max \big\{ |c_1|, |c_2|^{1/2}, |c_3|^{1/3}, \ldots, |c_{2g+1}|^{1/(2g+1)} \big\} \,. \end{split}$$

We consider hyperelliptic curves of genus g of the form

$$\begin{split} C: y^2 &= f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1} \\ \text{with } \underline{c} &= (c_1, c_2, \ldots, c_{2g+1}) \in \mathbb{Z}^{2g+1} \text{ and } \text{disc}(f) \neq 0, \text{ ordered by height} \\ &\quad H(\underline{c}) = \max\{|c_1|, |c_2|^{1/2}, |c_3|^{1/3}, \ldots, |c_{2g+1}|^{1/(2g+1)}\} \,. \\ \text{Let } \mathcal{F}_g &= \{\underline{c} \in \mathbb{Z}^{2g+1} : \text{disc}(f) \neq 0\} \text{ and } \mathcal{F}_{g,X} = \{\underline{c} \in \mathcal{F}_g : H(\underline{c}) < X\}. \end{split}$$

We consider hyperelliptic curves of genus g of the form

$$\begin{split} C: y^2 &= f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1} \\ \text{with } \underline{c} &= (c_1, c_2, \ldots, c_{2g+1}) \in \mathbb{Z}^{2g+1} \text{ and } \text{disc}(f) \neq 0, \text{ ordered by height} \\ &\quad H(\underline{c}) = \max\{|c_1|, |c_2|^{1/2}, |c_3|^{1/3}, \ldots, |c_{2g+1}|^{1/(2g+1)}\} \,. \\ \text{Let } \mathcal{F}_g &= \{\underline{c} \in \mathbb{Z}^{2g+1} : \text{disc}(f) \neq 0\} \text{ and } \mathcal{F}_{g,X} = \{\underline{c} \in \mathcal{F}_g : H(\underline{c}) < X\}. \end{split}$$

For a subset $S \subset \mathcal{F}_g$, we define its lower and upper density by

$$\underline{\delta}(\mathbf{S}) = \liminf_{X \to \infty} \frac{\#(\mathbf{S} \cap \mathcal{F}_{g,X})}{\#\mathcal{F}_{g,X}}, \qquad \overline{\delta}(\mathbf{S}) = \limsup_{X \to \infty} \frac{\#(\mathbf{S} \cap \mathcal{F}_{g,X})}{\#\mathcal{F}_{g,X}}$$

If $\underline{\delta}(S) = \delta(S)$, then the common value is the density $\delta(S)$ of S.

The Meaning of the Title

C:
$$y^2 = f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1}$$

Each curve C as above has a rational point at infinity, denoted ∞ .

The Meaning of the Title

C:
$$y^2 = f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1}$$

Each curve C as above has a rational point at infinity, denoted ∞ .

Now the precise version of the statement in the title is as follows.

Theorem.

Let C_g be the subset of \mathcal{F}_g consisting of curves C with $C(\mathbb{Q}) = \{\infty\}$. Then $\underline{\delta}(C_g) > 0$ for all $g \ge 3$ and

$$\label{eq:constraint} \begin{split} &\lim_{g\to\infty} \underline{\delta}(\mathcal{C}_g) = 1\,. \end{split}$$
 More precisely, $& \underline{\delta}(\mathcal{C}_g) = 1 - O\bigl(g2^{-g}\bigr). \end{split}$

The Meaning of the Title

C:
$$y^2 = f(x) = x^{2g+1} + c_1 x^{2g} + c_2 x^{2g-1} + \ldots + c_{2g} x + c_{2g+1}$$

Each curve C as above has a rational point at infinity, denoted ∞ .

Now the precise version of the statement in the title is as follows.

Theorem.

Let C_g be the subset of \mathcal{F}_g consisting of curves C with $C(\mathbb{Q}) = \{\infty\}$. Then $\underline{\delta}(C_g) > 0$ for all $g \ge 3$ and

$$\label{eq:model} \begin{split} &\lim_{g\to\infty} \underline{\delta}(\mathcal{C}_g) = 1\,. \end{split}$$
 More precisely, $& \underline{\delta}(\mathcal{C}_g) = 1 - O\bigl(g2^{-g}\bigr). \end{split}$

This is joint work with **Bjorn Poonen**.

The Selmer Group

Let J denote the Jacobian variety of C. This is a g-dimensional abelian variety defined over \mathbb{Q} . We take ∞ as base-point to embed C into J: $C \hookrightarrow J$ sends ∞ to 0.

The Selmer Group

Let J denote the Jacobian variety of C. This is a g-dimensional abelian variety defined over \mathbb{Q} . We take ∞ as base-point to embed C into J: $C \hookrightarrow J$ sends ∞ to 0.

Fix a prime p.

Then there is the p-Selmer group $Sel_p J$ of J.

It is a **computable** finite abelian group of exponent p that comes with homomorphisms

$$\frac{J(\mathbb{Q})}{pJ(\mathbb{Q})} \xrightarrow{\delta} \text{Sel}_p J \xrightarrow{s} \frac{J(\mathbb{Q}_p)}{pJ(\mathbb{Q}_p)}$$

such that $s\delta$ is the homomorphism induced by $J(\mathbb{Q}) \hookrightarrow J(\mathbb{Q}_p)$.

The Logarithm

 $J(\mathbb{Q}_p)$ is a compact p-adic Lie group.

It has a logarithm

 $\text{log: } J(\mathbb{Q}_p) \longrightarrow T_0 J(\mathbb{Q}_p) \cong \mathbb{Q}_p^g \,.$

log is a homomorphism with finite kernel $J(\mathbb{Q}_p)_{tors}$. Picking a suitable \mathbb{Q}_p -basis of the tangent space, the image of log is \mathbb{Z}_p^g .

$C(\mathbb{Q})$

The dashed arrows are partially defined maps

The dashed arrows are partially defined maps \mathbb{P} is defined on $\mathbb{F}_p^g \setminus \{0\}$.

The dashed arrows are partially defined maps: ρ is defined on $\mathbb{Z}_p^g \setminus \{0\}$, \mathbb{P} is defined on $\mathbb{F}_p^g \setminus \{0\}$.

The dashed arrows are partially defined maps:

 $\rho \log$ is defined on $C(\mathbb{Q}_p) \setminus J(\mathbb{Q}_p)_{tors}$, \mathbb{P}_{σ} is defined on $Sel_p J \setminus \ker \sigma$.

A Criterion

Proposition.

If σ is injective and $\rho \log(C(\mathbb{Q}_p))$ and $\mathbb{P}\sigma(\operatorname{Sel}_p J)$ are disjoint, then all points in $C(\mathbb{Q})$ are torsion points in J of order prime to p.

 $P\in C(\mathbb{Q}) \text{ not in } J(\mathbb{Q})[p'] \Longrightarrow P=p^nQ \text{ with } Q\in J(\mathbb{Q})\setminus pJ(\mathbb{Q}), \ n\geq 0.$

$$\begin{split} \mathsf{P} &\in C(\mathbb{Q}) \text{ not in } J(\mathbb{Q})[p'] \Longrightarrow \mathsf{P} = p^n Q \text{ with } Q \in J(\mathbb{Q}) \setminus pJ(\mathbb{Q}), \ n \geq 0. \\ \sigma \text{ injective} \Longrightarrow \sigma \delta(Q + pJ(\mathbb{Q})) \neq 0. \end{split}$$

$$\begin{split} \mathsf{P} &\in C(\mathbb{Q}) \text{ not in } J(\mathbb{Q})[p'] \Longrightarrow \mathsf{P} = p^n Q \text{ with } Q \in J(\mathbb{Q}) \setminus pJ(\mathbb{Q}), \ n \geq 0. \\ \sigma \text{ injective} \implies \sigma \delta(Q + pJ(\mathbb{Q})) \neq 0. \\ \mathsf{Now} \quad \mathbb{P}\sigma\big(\delta(Q + pJ(\mathbb{Q}))\big) = \rho \log(Q) = \rho \log(p^n Q) = \rho \log(\mathsf{P}), \quad \text{ contradiction!} \end{split}$$

Effectivity

Proposition.

If σ is injective and $\rho \log(C(\mathbb{Q}_p))$ and $\mathbb{P}\sigma(\operatorname{Sel}_p J)$ are disjoint, then all points in $C(\mathbb{Q})$ are torsion points in J of order prime to p.

The conditions can be checked by a computation.

- The Selmer group is computable together with the map s.
- log is computable to any p-adic precision.
- $\implies \rho \log(C(\mathbb{Q}_p))$ can be computed.
- $\implies \sigma$ can be computed and checked for injectivity.
- $\implies \mathbb{P}\sigma(\operatorname{Sel}_p J)$ can be computed.

Bhargava-Gross

We now fix p = 2.

Manjul Bhargava and Dick Gross have recently proved the following.

Theorem.

The average of $\# \operatorname{Sel}_2 J$ exists in \mathcal{F}_q and equals 3.

This is still true for subfamilies defined by congruence conditions.

If in such a subfamily $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2) = G$ is constant,

then each element of G has on average $\frac{2}{\#G}$ nontrivial preimages in Sel₂ J.

Bhargava-Gross

We now fix p = 2.

Manjul Bhargava and Dick Gross have recently proved the following.

Theorem.

The average of $\# \operatorname{Sel}_2 J$ exists in \mathcal{F}_q and equals 3.

This is still true for subfamilies defined by congruence conditions.

If in such a subfamily $J(\mathbb{Q}_2)/2J(\mathbb{Q}_2) = G$ is constant, then each element of G has on average $\frac{2}{\#G}$ nontrivial preimages in Sel₂J.

This implies that on 2-adically small subsets of \mathcal{F}_g , an element of $\mathbb{F}_2^g \setminus \{0\}$ is in the image of σ with density $\leq 2^{1-g}$ and that σ is not injective on a set of density $\leq 2^{1-g}$.

We know:

If $J(\mathbb{Q})_{tors} = 0$, σ is injective and $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset$, then $C(\mathbb{Q}) = \{\infty\}$.

We know:

If $J(\mathbb{Q})_{tors} = 0$, σ is injective and $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset$, then $C(\mathbb{Q}) = \{\infty\}$.

The set of curves in \mathcal{F}_q such that $J(\mathbb{Q})_{tors} \neq 0$ has density zero.

We know:

If $J(\mathbb{Q})_{tors} = 0$, σ is injective and $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset$, then $C(\mathbb{Q}) = \{\infty\}$.

The set of curves in \mathcal{F}_q such that $J(\mathbb{Q})_{tors} \neq 0$ has density zero.

Bhargava-Gross: σ is not injective on a set of upper density $\leq 2^{1-g}$.

We know:

If $J(\mathbb{Q})_{tors} = 0$, σ is injective and $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset$, then $C(\mathbb{Q}) = \{\infty\}$.

The set of curves in \mathcal{F}_q such that $J(\mathbb{Q})_{tors} \neq 0$ has density zero.

Bhargava-Gross: σ is not injective on a set of upper density $\leq 2^{1-g}$.

So we have to make sure that $\rho \log(C(\mathbb{Q}_2))$ is small on average; then we will get $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\operatorname{Sel}_2 J) = \emptyset$ for most curves.

Bounding $\rho \log(C(\mathbb{Q}_2))$

We can split $C(\mathbb{Q}_2)$ into a number of residue disks. (A residue disk is a subset of the form $\{P \in C(\mathbb{Q}_2) : P \text{ reduces to } P_0\}$ for some point $P_0 \in \mathcal{C}^{\text{smooth}}(\mathbb{F}_p)$, where \mathcal{C} is a regular model of C over \mathbb{Z}_2 .)

Bounding $\rho \log(C(\mathbb{Q}_2))$

We can split $C(\mathbb{Q}_2)$ into a number of residue disks. (A residue disk is a subset of the form $\{P \in C(\mathbb{Q}_2) : P \text{ reduces to } P_0\}$ for some point $P_0 \in \mathcal{C}^{smooth}(\mathbb{F}_p)$, where \mathcal{C} is a regular model of C over \mathbb{Z}_2 .)

If ${\sf D}$ is a residue disk, then we can show that

 $\#\rho \log(D) \leq 3n_D + 5\,,$

where n_D is the number of zeros in D of some fixed differential on C.

Bounding $\rho \log(C(\mathbb{Q}_2))$

We can split $C(\mathbb{Q}_2)$ into a number of residue disks. (A residue disk is a subset of the form $\{P \in C(\mathbb{Q}_2) : P \text{ reduces to } P_0\}$ for some point $P_0 \in \mathcal{C}^{smooth}(\mathbb{F}_p)$, where \mathcal{C} is a regular model of C over \mathbb{Z}_2 .)

If ${\sf D}$ is a residue disk, then we can show that

 $\#\rho \log(D) \leq 3n_D + 5\,,$

where n_D is the number of zeros in D of some fixed differential on C.

Let d(C) denote the number of residue disks. Since $\sum_{D} n_{D} \le 2g - 2$, we obtain

 $\#\rho \log \bigl(C(\mathbb{Q}_2) \bigr) \le 6(g-1) + 5d(C) \,.$

 $\#\rho\log\big(C(\mathbb{Q}_2)\big) \le 6(g-1) + 5d(C)$

 $\#\rho\log(C(\mathbb{Q}_2)) \le 6(g-1) + 5d(C)$

⇒ In a 2-adic neighborhood of C in \mathcal{F}_g , the upper density of curves such that the images of $\rho \log$ and $\mathbb{P}\sigma$ meet is $\leq (12(g-1) + 10d(C))2^{-g}$.

 $\#\rho\log(C(\mathbb{Q}_2)) \le 6(g-1) + 5d(C)$

⇒ In a 2-adic neighborhood of C in \mathcal{F}_g , the upper density of curves such that the images of $\rho \log$ and $\mathbb{P}\sigma$ meet is $\leq (12(g-1) + 10d(C))2^{-g}$.

To conclude the argument, we have to control d(C).

 $\#\rho\log(C(\mathbb{Q}_2)) \le 6(g-1) + 5d(C)$

⇒ In a 2-adic neighborhood of C in \mathcal{F}_g , the upper density of curves such that the images of $\rho \log$ and $\mathbb{P}\sigma$ meet is $\leq (12(g-1) + 10d(C))2^{-g}$.

To conclude the argument, we have to control d(C).

Considering d(C) as a random variable on $\mathcal{F}_q(\mathbb{Z}_2)$, we find:

Lemma.

The average of d(C) is at most 3.

 $J(\mathbb{Q})_{tors} = 0$ and σ injective and $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\operatorname{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

 $J(\mathbb{Q})_{\text{tors}} = 0 \text{ and } \sigma \text{ injective and } \rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

We know:

• $J(\mathbb{Q})_{tors} \neq 0$ has density zero.

 $J(\mathbb{Q})_{\text{tors}} = 0 \text{ and } \sigma \text{ injective and } \rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

We know:

- $J(\mathbb{Q})_{tors} \neq 0$ has density zero.
- σ not injective has upper density $\leq 2 \cdot 2^{-g}$.

 $J(\mathbb{Q})_{\text{tors}} = 0 \text{ and } \sigma \text{ injective and } \rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

We know:

- $J(\mathbb{Q})_{tors} \neq 0$ has density zero.
- σ not injective has upper density $\leq 2 \cdot 2^{-g}$.
- $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\operatorname{Sel}_2 J) \neq \emptyset$ has upper density $\leq (12(g-1) + 10d(C))2^{-g}$.

 $J(\mathbb{Q})_{\text{tors}} = 0 \text{ and } \sigma \text{ injective and } \rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

We know:

- $J(\mathbb{Q})_{tors} \neq 0$ has density zero.
- σ not injective has upper density $\leq 2 \cdot 2^{-g}$.
- $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\operatorname{Sel}_2 J) \neq \emptyset$ has upper density $\leq (12(g-1) + 10d(C))2^{-g}$.
- The average of d(C) is at most 3.

 $J(\mathbb{Q})_{\text{tors}} = 0 \text{ and } \sigma \text{ injective and } \rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\text{Sel}_2 J) = \emptyset \implies C(\mathbb{Q}) = \{\infty\}.$

We know:

- $J(\mathbb{Q})_{tors} \neq 0$ has density zero.
- σ not injective has upper density $\leq 2 \cdot 2^{-g}$.
- $\rho \log(C(\mathbb{Q}_2)) \cap \mathbb{P}\sigma(\operatorname{Sel}_2 J) \neq \emptyset$ has upper density $\leq (12(g-1) + 10d(C))2^{-g}$.
- The average of d(C) is at most 3.

Conclusion.

The set of curves $C \in \mathcal{F}_g$ such that $C(\mathbb{Q}) \neq \{\infty\}$ has upper density $\leq (12g + 20)2^{-g}$.

This is < 1 for $g \ge 7$ and tends to zero quickly as $g \to \infty$.

Small Genus

For each $g \ge 2$, we have $\#\rho \log(C(\mathbb{Q}_2)) = 1$ on a 2-adic neighborhood U of a curve isomorphic to

$$C_0: y^2 + y = x^{2g+1} + x + 1.$$

We get a relative lower density of curves $C \in \mathcal{F}_G \cap U$ with $C(\mathbb{Q}) = \{\infty\}$ that is $\geq 1 - 4 \cdot 2^{-g}$.

Small Genus

For each $g \ge 2$, we have $\#\rho \log(C(\mathbb{Q}_2)) = 1$ on a 2-adic neighborhood \mathbb{U} of a curve isomorphic to

$$C_0: y^2 + y = x^{2g+1} + x + 1.$$

We get a relative lower density of curves $C \in \mathcal{F}_G \cap U$ with $C(\mathbb{Q}) = \{\infty\}$ that is $\geq 1 - 4 \cdot 2^{-g}$.

For $g \ge 3$, this is positive. Since $\delta(U) > 0$ as well, we obtain:

Conclusion.

For each $g \ge 3$, the set of curves $C \in \mathcal{F}_q$ such that $C(\mathbb{Q}) = \{\infty\}$ has positive lower density.

Variants

For the family of hyperelliptic curves of genus g of the form

$$C: y^2 = f(x)$$

with f monic of degree 2g + 2 (which have two rational points at infinity), **Shankar** and **Wang** have shown (extending the methods of Bhargava-Gross and Poonen-St) that the lower density of C with $\#C(\mathbb{Q}) = 2$ is $\ge 1 - (48g + 120)2^{-9}$.

For the family of general hyperelliptic curves of genus g (f of degree 2g + 2, not necessarily monic), **Bhargava**, **Gross** and **Wang** have shown that the lower density of C with $C(\mathbb{Q}) = \emptyset$ is $1 - o(2^{-g})$.

Heuristically, all these densities should be 1.