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Torsion Points on Elliptic Curves

Let K be a number field and E/K an elliptic curve.

It is well-known that the torsion subgroup E(K)tors of E(K) is finite.

This prompts the following

Questions.

1. Fixing K, is there a universal bound for #E(K)tors ?

2. Is there even such a universal bound if we only fix the degree of K ?

3. Can we explicitly determine the possible groups E(K)tors

for given degree d = [K : Q] ?



Some Answers (1)

The third question was famously answered by Mazur for the case d = 1:

Theorem (Mazur 1978).

The following groups occur as E(Q)tors for elliptic curves E/Q:

• Z/nZ for n ∈ {1,2,3, . . . ,9,10,12}

• Z/2Z× Z/2nZ for n ∈ {1,2,3,4}

Each of these groups occurs for infinitely many distinct j-invariants.



Some Answers (2)

The second question was given a positive answer by Merel

(after previous results by Kamienny-Mazur (d ≤ 8)

and Abramovich (d ≤ 14)):

Theorem (Merel 1996).

Fix a positive integer d.

Then the groups E(K)tors, where K is a number field of degree ≤ d
and E/K is an elliptic curve, belong to finitely many isomorphism classes.

The possible groups are known for d = 2

(Kenku, Momose, Kamienny, Mazur).

For d = 3 and d = 4, it is known which groups occur infinitely often

(Jeon, Kim, Schweizer 2004; Jeon, Kim, Park 2006).



The Main Step

The key step in proving a universal bound is to bound the set

S(d) = {p prime | ∃K,E/K,P ∈ E(K) : [K : Q] ≤ d,ord(P) = p}

of possible prime orders of K-rational points on elliptic curves.

By results of Frey and Faltings,

finiteness of S(d) implies a universal bound for fields of degree ≤ d.

• S(1) = {2,3,5,7}

• S(2) = {2,3,5,7,11,13}

• S(3) = {2,3,5,7,11,13} (Parent 2000, 2003)

• S(4) = ?



The Problem

We would like to determine S(4).

From the result of Jeon, Kim and Park mentioned earlier, we know that

S(4) ⊃ {2,3,5,7,11,13,17} .

(These are the prime orders that occur for infinitely many curves.)

The situation for d ≤ 3 suggests that we should have equality.

So we need good upper bounds.



Upper Bounds

Merel gave the first explicit upper bound:

maxS(d) ≤ d3d2

This is not really helpful when d = 4.

Fortunately, there is a better bound due to Oesterlé:

maxS(d) ≤ (3d/2 + 1)2

For d = 4, this says that maxS(4) ≤ 97.



Kamienny and Stein

Sheldon Kamienny and William Stein developed a computational test

that can (with some luck) show that p /∈ S(d) for a given prime p.

Using this test, they were able to show that

S(4) ⊂ {2,3,5,7,11,13,17,19,23,29,31} .

William reported on this a few months ago

at the “Pacific Northwest Number Theory Conference”.

Realizing that this is really a question about rational points

on symmetric powers of certain modular curves,

I offered my help in dealing with the remaining four primes.



The Theorem

Our joint efforts were successful, and we now have the following

Theorem (Kamienny, Stein, Stoll 2010).

S(4) = {2,3,5,7,11,13,17} .

In the remainder of this talk,

I will sketch how 19, 23, 29 and 31 can be excluded.



Rational Points on Symmetric Powers

Let X1(p) denote the usual modular curve

that parameterizes elliptic curves together with a point of order p.

Let X1(p)(d) denote its dth symmetric power

(the points of X1(p)(d) are effective divisors of degree d on X1(p)).

X1(p) has p−1
2 rational cusps. Let P0 be one of them.

If K is a number field of degree d′ ≤ d, E/K is an elliptic curve

and P ∈ E(K) has order p, then we obtain a point Q ∈ X1(p)(K).

Adding the d′ conjugates of Q and d− d′ times P0,

we obtain a rational effective divisor of degree d on X1(p),

or equivalently, a rational point on X1(p)(d).



A Lemma

We can deduce the following.

Lemma.

Let p be a prime number, and let C be the set of rational cusps on X1(p).

If d < p−1
2 , then

p /∈ S(d) ⇐⇒ X1(p)(d)(Q) = C(d) .

(The remaining cusps are defined over Q(µp)+ of degree p−1
2 .)



A Proposition

Proposition.

Let X/Q be a curve and use P0 ∈ X(Q) to embed X into its Jacobian J.

Let ` be a prime of good reduction, and let d be a positive integer.

Assume that

1. J(Q) is finite.

2. If ` = 2, then J(Q)[2] injects into J(F2).

3. There is no morphism X → P1 of degree ≤ d.

4. The reduction map X(Q)→ X(F`) is surjective.

5. The images of X(d)(F`) and J(Q) in J(F`)
meet only in points coming from X(F`)(d).

Then X(d)(Q) = X(Q)(d):

Every point of degree ≤ d on X is already rational.



Proof

X(Q)(d) � � //

4

��
��

X(d)(Q) � � 3 //

��

J(Q)
� _

1 & 2

��

X(F`)(d) //X(d)(F`) //J(F`)

Let P ∈ X(d)(Q).

By Assumption 5, there is Q ∈ X(F`)(d) with the same image in J(F`).

So (by Assumption 4) there is P ′ ∈ X(Q)(d) with the same image in J(F`).

Since X(d)(Q)→ J(F`) is injective (Assumptions 1–3),

it follows that P = P ′.



Application

We apply the Proposition to X = X1(p) with p ∈ {19,23,29,31} and d = 4;

we write J1(p) for the Jacobian of X1(p).

Note that by Mazur, for p ≥ 11 we have X1(p)(Q) = {rational cusps}.

By work of Conrad, Edixhoven and Stein,

it is known that J1(p)(Q) is finite for p ≤ 31 (and a few larger p).

By Jeon, Kim and Park, Assumption 3 is satisfied for p ≥ 19.

Assumption 4 holds whenever (
√
`+ 1)2 < p.

The remaining Assumptions 2 and 5 need to be checked in each case.



19 and 23

For p = 19 and p = 23, it is known that #J1(p)(Q) is odd.

So Assumption 2 is satisfied when we take ` = 2.

To verify Assumption 5, it suffices to show that

X1(p)(4)(F2) = X1(p)(F2)(4) .

This means that there are no elliptic curves over F2e, e ≤ 4,

with a point of order p.

The Hasse-Weil bound forces e = 4 and #E(F24) = p.

However, by results of Waterhouse (see Mestre’s talk),

such curves do not exist.

We conclude that

19 /∈ S(4) and 23 /∈ S(4) .



31

We want to take ` = 2 again.

In this case, #J1(31)(Q) is even, but it is known

that J1(31)(Q) is generated by the images of the rational cusps.

This allows us to check by an explicit computation

that Assumption 2 is satisfied.

Assumption 5 is trivially satisfied by the Hasse-Weil bound

(note that 31 > (
√

16 + 1)2).

We conclude that

31 /∈ S(4) .



29

This is the hardest case:

It is not known (yet) what J1(29)(Q) is;

there are only upper and lower bounds (the ambiguity is in the 2-torsion).

We cannot use ` = 2, because we cannot check Assumption 2.

So we use a larger prime ` and the upper bound for J1(29)(Q)

and hope that we can verify that Assumption 5 holds.

After a lengthy computation, we are successful with ` = 11.

We conclude that

29 /∈ S(4) .


